
S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:7

equivalent SMB representation of � (without materializing the SMB representation) and216

‘adjust’ their contribution to Â� (·).217

218

Applications. Recent work in heuristic data cleaning [49, 43, 40, 8, 43] emits a PDB when219

insu�cient data exists to select the ‘correct’ data repair. Probabilistic data cleaning is a220

crucial innovation, as the alternative is to arbitrarily select one repair and ‘hope’ that queries221

receive meaningful results. Although PDB queries instead convey the trustworthiness of222

results [35], they are impractically slow [18, 17], even in approximation (see Appendix G).223

Bags, as we consider, are su�cient for production use, where bag-relational algebra is already224

the default for performance reasons. Our results show that bag-PDBs can be competitive,225

laying the groundwork for probabilistic functionality in production database engines.226

Paper Organization. We present relevant background and notation in Sec. 2. We then227

prove our main hardness results in Sec. 3 and present our approximation algorithm in Sec. 4.228

Finally, we discuss related work in Sec. 5 and conclude in Sec. 6. All proofs are in the229

appendix.230

2 Background and Notation231

2.1 Polynomial Definition and Terminology232

A polynomial over X = (X1, . . . , Xn) with individual degree B < Œ is formally defined as233

(where cd œ N):234

� (X1, . . . , Xn) =
ÿ

dœ{0,...,B}D

cd ·

Ÿ

tœD

Xdt
t

. (1)235

I Definition 2.1 (Standard Monomial Basis). The term
r

tœD
Xdt

t
in Eq. (1) is a monomial.236

A polynomial � (X) is in standard monomial basis (SMB) when we keep only the terms with237

cd ”= 0 from Eq. (1).238

Unless othewise noted, we consider all polynomials to be in SMB representation. When it is239

unclear, we use SMB (�) to denote the SMB form of a polynomial �.240

I Definition 2.2 (Degree). The degree of polynomial �(X) is the largest ÎdÎ1such that241

c(d1,...,dn) ”= 0.242

As an example, the degree of the polynomial X2 + 2XY 2 + Y 2 is 3. Product terms in lineage243

arise only from join operations (Fig. 1), so intuitively, the degree of a lineage polynomial244

is analogous to the largest number of joins needed to produce a result tuple. We call a245

polynomial � (X) a c-TIDB-lineage polynomial (or simply lineage polynomial), if there exists246

a RA
+ query Q, c-TIDB D, and result tuple t such that � (X) = �[Q, D, t] (X) .247

2.1.1 c-TIDBs and 1-BIDBs248

An incomplete database � is a set of deterministic databases Ê called possible worlds.249

A c-TIDB D is a pair
1

{0, . . . , c}
D , P

2
such that {0, . . . , c}

D is an incomplete database250

whose set of possible worlds is the c + 1n tuple/multiplicity combinations across all t œ D,251

where |D| = n, D =
t

Mœ{0,...,c}D
, MtØ1 t is the set of possible tuples across possible worlds,252

and P is a probability distribution over {0, . . . , c}
D.253

A block independent database (BIDB) is a related probabilistic data model D = (�, P)254

such that the base set of tuples D =
t

Êœ�, tœÊ
t is partitioned into a set of n independent255

CVIT 2016

Aaron
Pencil
Can't decipher

Aaron
Pencil

23:8 Bag PDB Queries

blocks
Ó

(bt)tœ[n]

Ô
such that the set of tuples

Ó
(tj)

jœ[|b|]

Ô
in block bt are disjoint from one256

another. This construction produces the set of possible worlds � that consists of all unique257

combinations of tuples in D with the constraint that for any Ê œ �, no two tuples tj , tjÕ , j ”= jÕ258

from the same block bt exist together. A c-BIDB has the further requirement that each block259

has a multiplicity of at most c. We present a reduction that is useful in producing our results:260

I Definition 2.3 (c-TIDB reduction). Given c-TIDB D =
1

{0, . . . , c}
D , P

2
, let D

Õ =261

(�, P
Õ) be the 1-BIDB obtained in the following manner: for each t œ D, create block262

bt =
Ó

Èt, jXt,jÍ
jœ[c]

Ô
, such that Xt,j œ {0, 1}. The probability distribution P

Õ is the one263

induced by p =
1

(pt,j)
tœD,jœ[c]

2
and the BIDB disjoint requirement.264

For the c-TIDB D, each Xt œ [c], while in the reduced 1-BIDB D
Õ, each Xt,j œ {0, 1}.265

Hence, in the setting of 1-BIDB, the base case of Fig. 1 now becomes � [R, D, t] =
q

jœ[c] jXt,j .266

Then given the disjoint requirement and the semantics for constructing the lineage polynomial267

over a 1-BIDB, � [R, DÕ, t] is of the same structure as the reformulated polynomial �R of268

step i) from Definition 1.3, which then implies that Â� is the reduced polynomial that results269

from step ii) of Definition 1.3, and further that Lemma 1.4 immediately follows for 1-BIDB270

polynomials: EW≥PÕ [� (W)] = Â� (p).271

Aaron says: @atri, not sure if P
Õ should be P

ÕÕ (in the above expectation) as discussed
below. Since P

Õ
© P

ÕÕ, then the proof still holds for Lemma 1.4, but maybe it is
important to P

ÕÕ to drive the point home that we iterate over the all worlds set (as
opposed to the set of possible worlds) when computing the expectation of a polynomial.
Or maybe it su�ces to note that P

Õ
© P

ÕÕ.
272

Instead of looking only at the possible worlds of D, one can consider all worlds, including273

those that cannot exist due to disjointness. The all worlds set can be modeled by M œ274

{0, 1}
cn,3 such that Mt,j œ M represents whether or not the multiplicity of t is j.We denote275

a probability distribution over all M œ {0, 1}
n as P

ÕÕ. When P
ÕÕ is the one induced from276

each pt,j while assigning Pr [M] = 0 for any M with Mt,j = Mt,jÕ = 1 for j ”= jÕ, we end up277

with a bijective mapping from P
Õ to P

ÕÕ, such that each mapping is equivalent, implying the278

distributions are equivalent. Appendix B.2 has more details.279

Let |�| be the number of operators in �.280

I Corollary 2.4. If � is a BIDB-lineage polynomial already in SMB, then the expectation of281

�, i.e., E [�] = Â� (p1, . . . , pn) can be computed in O (|�|) time.282

Queries over probabilistic databases are evaluated using the so-called possible world semantics.283

Under the possible world semantics, the result of a query Q over an incomplete database284

� is the set of query answers produced by evaluating Q over each possible world Ê œ �:285

{Q (Ê) : Ê œ �}.286

The result of a query is the pair (Q (Ê) , P
Õ) where P

Õ is a probability distribution that287

assigns to each possible query result the sum of the probabilites of the worlds that produce288

this answer: Pr [Ê œ �] =
q

ÊÕ
œ �, Q (ÊÕ) = Q (Ê)Pr [ÊÕ].289

Recalling Fig. 1 again, which defines the lineage polynomial �[Q, D, t] for any RA
+

290

query. We now make a meaningful connection between possible world semantics and world291

assignments on the lineage polynomial.292

3 Here and later, especially in Sec. 4, we will rename the variables as X1, . . . , Xn, where n =
q¸

i=1 |bi|.

Aaron
Pencil
Can't decipher.

Aaron
Pencil
We never formally defined \Phi outside of figure 1.

Aaron
Pencil
How is this incorrect?

Aaron
Pencil
what do you mean by highlighted?

Aaron
Pencil
What about definition 1.3?

Aaron
Sticky Note
Why do we need c > 1 for c-BIDB?

Aaron
Pencil

Aaron
Pencil

Aaron
Typewritten Text
Note: Don't forget to change the opening of S1 to not use the term product distribution, but rather state that \mathcal{P} is a probability distribution.

Aaron
Pencil

Aaron
Pencil

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:9

I Proposition 2.5 (Expectation of polynomials). Given a bag-PDB D = (�, P), RA
+ query293

Q, and lineage polynomial �[Q, D, t] for arbitrary result tuple t, we have (denoting D as the294

random variable over �): ED≥P [Q(D)(t)] = EW≥P [�[Q, D, t] (W)] .295

A formal proof of Proposition 2.5 is given in Appendix B.3.4 We focus on the problem of296

computing EP [�[Q, D, t] (W)] from now on, assume implicit Q, D, t, and drop them from297

�[Q, D, t] (i.e., � (X) will denote a polynomial).298

2.2 Formalizing Problem 1.6299

We represent lineage polynomials via arithmetic circuits [9], a standard way to represent300

polynomials over fields (particularly in the field of algebraic complexity) that we use for301

polynomials over N in the obvious way. Since we are particularly using circuits to model302

lineage polynomials, we can refer to these circuits as lineage circuits. However, when the303

meaning is clear, we will drop the term lineage and only refer to them as circuits.304

I Definition 2.6 (Circuit). A circuit C is a Directed Acyclic Graph (DAG) whose source305

gates (in degree of 0) consist of elements in either N or X. For each result tuple there exists306

one sink gate. The internal gates have binary input and are either sum (+) or product (◊)307

gates. Each gate has the following members: type, partial, input, degree, Lweight, and308

Rweight, where type is the value type {+, ◊, var, num} and input the list of inputs. Source309

gates have an extra member val storing the value. CL (CR) denotes the left (right) input of C.310

Aaron says: Does the following matter, i.e., does it point anything out special for our
research?311

When the underlying DAG is a tree (with edges pointing towards the root), the structure312

is an expression tree T. In such a case, the root of T is analogous to the sink of C. The fields313

partial, degree, Lweight, and Rweight are used in the proofs of Appendix D.314

The circuits in Fig. 2 encode their respective polynomials in column �. Note that each315

circuit C encodes a tree, with edges pointing towards the root.316

X 2 Y ≠1

◊ ◊ ◊

+ +

◊

Figure 3 Circuit encoding of (X +
2Y)(2X ≠ Y)

We next formally define the relationship of317

circuits with polynomials. While the definition318

assumes one sink for notational convenience, it319

easily generalizes to the multiple sinks case.320

I Definition 2.7 (poly(·)). Denote poly(C) to321

be the function from the sink of circuit C to322

its corresponding polynomial (in SMB). poly(·)323

is recursively defined on C as follows, with324

addition and multiplication following the standard325

interpretation for polynomials:326

poly(C) =

Y
__]

__[

poly(CL) + poly(CR) if C.type = +
poly(CL) · poly(CR) if C.type = ◊

C.val if C.type = var OR num.

327

4 Although Proposition 2.5 follows, e.g., as an obvious consequence of [28]’s Theorem 7.1, we are unaware
of any formal proof for bag-probabilistic databases.

CVIT 2016

Aaron
Pencil

Aaron
Pencil

23:10 Bag PDB Queries

C need not encode � (X) in the same, default SMB representation. For instance, C could328

encode the factorized representation (X + 2Y)(2X ≠ Y) of � (X) = 2X2 + 3XY ≠ 2Y 2, as329

shown in Fig. 3, while poly(C) = � (X) is always the equivalent SMB representation.330

I Definition 2.8 (Circuit Set). CSet (� (X)) is the set of all possible circuits C such that331

poly(C) = � (X).332

The circuit of Fig. 3 is an element of CSet
!
2X2 + 3XY ≠ 2Y 2"

. One can think of333

CSet (� (X)) as the infinite set of circuits where for each element C, poly (C) = � (X).334

We are now ready to formally state the final version of Problem 1.6.335

I Definition 2.9 (The Expected Result Multiplicity Problem). Let D be an arbitrary BIDB-336

PDB and X be the set of variables annotating tuples in D�. Fix an RA
+ query Q and a337

result tuple t. The Expected Result Multiplicity Problem is defined as follows:338
339

Input: C œ CSet (� (X)) for � (X) = �[Q, D, t] Output: EW≥P [�[Q, D, t](W)]340

2.3 Relationship to Deterministic Query Runtimes341

To decouple our results from specific join algorithms, we first abstract the cost of a join.342

I Definition 2.10 (Join Cost). Denote by Tjoin(R1, . . . , Rm) the runtime of an algorithm343

for computing the m-ary join R1 ÛÙ . . . ÛÙ Rm. We require only that the algorithm must344

enumerate its output, i.e., that Tjoin(R1, . . . , Rm) Ø |R1 ÛÙ . . . ÛÙ Rm|.345

Worst-case optimal join algorithms [37, 36] and query evaluation via factorized databases [39]346

(as well as work on FAQs [33]) can be modeled as RA
+ queries (though the query size is347

data dependent). For these algorithms, Tjoin(R1, . . . , Rn) is linear in the AGM bound [6].348

Our cost model for general query evaluation follows from the join cost:349

Tdet (R, D) = |D.R| Tdet (‡Q, D) = Tdet (Q, D) Tdet (fiQ, D) = Tdet (Q, D) + |Q(D)|
Tdet (Q fi QÕ, D) = Tdet (Q, D) + Tdet (QÕ, D) + |Q(D)| + |QÕ(D)|

Tdet (Q1 ÛÙ . . . ÛÙ Qm, D) = Tdet (Q1, D) + . . . + Tdet (Qm, D) + Tjoin(Q1(D), . . . , Qm(D))

350

351

Under this model, an RA
+ query Q evaluated over database D has runtime O(Tdet (Q, D)).352

We assume that full table scans are used for every base relation access. We can model index353

scans by treating an index scan query ‡◊(R) as a base relation.354

Finally, Lemma E.2 and Lemma E.3 show that for any RA
+ query Q and D�, there355

exists a circuit Cú such that TLC(Q, D�, Cú) and |Cú
| are both O(Tdet (Q, D�)). Recall we356

assumed these two bounds when we moved from Problem 1.5 to Problem 1.6.357

3 Hardness of Exact Computation358

In this section, we will prove the hardness results claimed in Table 1 for a specific (family) of359

hard instance (Q, D) for Problem 1.2 where D is a 1-TIDB. Note that this implies hardness360

for c-TIDBs (c Ø 1), BIDBs and general bag-PDB, showing Problem 1.2 cannot be done in361

O (T ú
det

(Q, D)) runtime.362

3.1 Preliminaries363

Our hardness results are based on (exactly) counting the number of (not necessarily induced)364

subgraphs in G isomorphic to H. Let # (G, H) denote this quantity. We can think of H365

Aaron
Pencil

