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20 Applications. Recent work in heuristic data cleaning [49, 43, 40, 8, 43] emits a PDB when V’M CdXVP
»0 insufficient data exists to select the ‘correct’ data repair. Probabilistic data cleaning is a
a1 crucial innovation, as the alternative is to arbitrarily select one repair and ‘hope’ that queries
2 receive meaningful results. Although PDB queries instead convey the trustworthiness of
s results [35], they are impractically slow [18, 17], even in approximation (see Appendix G). U\S{
2 Bags, as we consider, are sufficient for production use, where bag-relational algebra is already (O{ m
25 the default for performance reasons. Our results show that bag-PDBs can be competitive, +l ) : }
26 laying the groundwork for probabilistic functionality in production database engines.

2

N

27 Paper Organization. We present relevant background and notation in Sec. 2. We then }
28 prove our main hardness results in Sec. 3 and present our approximation algorithm in Sec. 4. \/
29 Finally, we discuss related work in Sec. 5 and conclude in Sec. 6. All proofs are in the g {/\Q:e/
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C,
x 2.1 Polynomial Definition and Terminology @

s A polynomial over X = (1th individual degree B < oo is formally deﬁned as
s+ (where ¢q € N):
V)wf’ (ONLIS
23 d >

2 » Definition 2.1 (Standard Monomial Basis). The tetm [],cp X% @ Eq. (1) s a monomial. ,WP‘Q .
zr A polynomial ® (X) is in standard monomial basis (S when we keep only the terms with
238 Cq 7§ 0 from Eq. (1)

20 Unless othewise noted, we consider all polynomials to be in SMB representation. When it i b (
(\Q 40 unclear, we use SMB (®) to denote the SMB form of a polynomial ®. e&é

21 » Definition 2.2 (Degree). The degree of polynomial ®(X) is the largest|||d|/, yuch that
2w C(dy,...dn) 7 0-
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23 As an example, the degree of the polynomial X2 +2XY?2+Y? is 3. Product tefms in lineage
244 arise only from join operations (Fig. 1), so intuitively, the degree of a-lineage polynomial

25 is analogous to the largest number of joins needed to produce a result tuple. We call a
s polynomial ® (X) a ¢-TIDB-lineage polynomial (or simply lineage polynomial) if there gxists
a RAT query Q, c-TIDB D, and result tuple ¢ such that® (X) = ®[Q, D, t] ( v ’P
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'2.1.1 TIDBs and 1- BIDst !}\ uH Le n ( C cub CWI@
p“_ﬁ An incomplete database () is a set of deterministic databases w £alled possible . V\J

N\O \F A ¢-TIDB D is a pair ({0, o ,C}D ,73> stch that {0, ... ,c}D is an incomplete database 'V\b{’
V‘oj& 251 \whose set of possible worlds is the ¢ + ¥ tuple/multiplicity combinations across all ¢t € D,

2 Where |D| =n, D = UMG{O?““’C}D’ M, 21t is the set of possible tuples across possible worlds, V\I ()\b'?
< s and P is a probability distribution gver {0, ..., c}". (0 C \1') 7

254 A block independent database/ BIDB) is a related probabilistic data model D = (€2, P) °

25\ such that the base set of tuplés D = t is partitioned into a set of n mdependent
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blocks I(h; Eth} such of Tuples { 1@“ ]} in block by are disjoint from one M‘-‘
another This construction produces the se{ of p0531ble worlds €2 that consists of all unlque ﬂ

combinations of tuples in D with the const that for any w € €2, no two tuples t;,t;/,j # j'
from the same block b; exist together. A_c-BIDB )as the further requirement that each blo§ > gr? ’
has a multiplicity of at most ¢. We present a reduction that is useful in producing our rey

e &

» Definition 2.3 (c-TIDB reduction). Given -TIDB D = ({o,...,c}D,P T
AD(\é w2 (2, P") be the 1-BIDB obtained in the following manner: for each t € B, create block
%3 by &]Xm ]e[ L} such that Xy ; € {0,1}. The probability distribution P’ is, the dne /1" ‘r 0

7 el [ ON L

A v
V7 D (,_—
For the ¢-TIDB D, ea ], while in the reduced 1-BIDB D', each X; ; € {0, . .
Hence, in the setting of 1-BIDB, thdbase case of Fig. 1 now becomes ® [R, D, t] = > DO 4

~— Zje c thzZ
Then given the disjoint requirement and the semantics Tor constructing the limeage polynomial
over a 1-BIDB, ® [R, D', t] is of the same structure as the reformulated polynomial ®p of
step i) from Definition 1.3, which then implies that ® is the reduced polynomial that results
oo from step ii) of Definition 1.3, and further that Lemma 1.4 immediately follows for 1-BIDB

polynomials: Ew.p’ [® (W)] = ® (p).

induced by p = ((pt»j)teD je[c]) and the BIDB disjoint requirement.

Instead of looking only at the possible worlds of D, one can consider all worlds, including
on those that cannot exist due to disjointness. The all worlds set can be modeled by M €
s {0,1}".3 such that M, ; € M represents whether or not the multiplicity of ¢ is j.We denote
o6 a probability distribution over all M € {0,1}" as P”. When P” is the one induced from
‘CQ ‘b7 each p; ; while assigning Pr [M] = 0 for any M with M, ; = M, j» =1 for j # j', we end up

b A
O ‘D as - with a bijective mapping from 73’ to P”, such that each mapping is equivalent, implying the . \/OU\
@(S/ ) rom distributions are equivalente=rrppendinl e deta ’-. QY We -
{ \I\w 280 Let |®| be the number of operators in ®. \/\p{’ 2/ -)\). y [
o .
z _\ 2 Corollary 2.4.~If(I> is a BB e OTrwenmwoaaly in SMB, then the expectation of Q "
w2 D, de, E[P] =P (p1,...,pn)carcbe o puted in O (|®]) ti
’ & A L7V} 7,
,7 =207 < . - N g ) =) '& Ve’ YA~ E~ d /Inlul.\ Y -
‘/T_ LVa\ T 253 eeleprerreeseiaL ol redesedascs Arc cvaluated using the so-called possible world semantics.

s Under the possible world semantics, the result of a qQUeTy () overmIrMICompIete datapase
s () is the set of query answers produced by evaluating ) over each possible world w € €:

C{ 286 {Q (w) TwE Q}
Ef,&( The result of a query is the pair (Q (w) ,P") where P’ is a probability distribution that
a

288 assigns to each possible quer the probabilites of the worlds that prgd
20 this answer: Prijw e Q] =3 w' € Sl,(og(w ] = )P (W] b/u s>
200 Recalling Fig. 1 again, which defimes the lineage polynomial ®[Q, D, t] for any

21 query. We now make a meaningful connection between possible world semantics and World

assignments on the lineage polynomial.
(PP 006 (echur mrodet feng-

3 Here and later, especially in Sec. 4, we will rename the variables as X1, ..., X,, where

tA)

Note: Don't forget to ¢
\mathcal{P}$ is a probabjli
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= #8ge polynomials via arithmetic circuits [9], a standard way to represent
polynomials over fields (particularly in the field of algebraic complexity) that we use for
polynomials over N in the obvious way. Since we are particularly using circuits to model
lineage polynomials, we can refer to these circuits as lineage circuits. However, when the
meaning is clear, we will drop the term lineage and only refer to them as circuits.

- 5(\-""1><Y\

» Definition 2.6 (Circuit). A circuit C is a Directed Acyglic Graph (DAG) whosé source
gates (in degree of 0) consist of elements in either N or X. For each result tuple there exists
one sink gate. The internal gates have binary input and are either sum (+) or product (X )
gates. Each gate has the following members: type, partial, input, degree, Lweight, and
Rweight, where type is the value type {+, X, VAR, NUM} and input the list of inputs. Source
gates have an extra member val storing the value. Cp (Cg) denotes the left (right) input of C.

When the underlying DAG is a tree (with edges pointing towards the root), the structure
is an expression tree T. In such a case, the root of T is analogous to the sink of C. The fields
partial, degree, Lweight, and Rweight are used in the proofs of Appendix D.

The circuits in Fig. 2 encode their respective polynomials in column . Note that each
circuit C encodes a tree, with edges pointing towards the root.

We next formally define the relationship of
circuits with polynomials. While the definition
assumes one sink for notational convenience, it
easily generalizes to the multiple sinks case.

» Definition 2.7 (POLY(:)). Denote POLY(C) to
be the function from the sink of circuit C to
its corresponding polynomial (in SMB). POLY(-)
is recursively defined on C as follows, with

Figure 3 Circuit encoding of (X + gddition and multiplication following the standard
2Y)(2X — Y)

interpretation for polynomials:

POLY(Cy) + POLY(Cg)  if C.type =+
POLY(C) = { POLY(Cy) - POLY(Ch) if C.type = X
C.val if C.type = VAR OR NUM.

4 Although Proposition 2.5 follows, e.g., as an obvious consequence of [28]’s Theorem 7.1, we are unaware
of any formal proof for bag-probabilistic databases.
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Bag PDB Queries

C need not encode ® (X) in the same, default SMB representation. For instance, C could
encode the factorized representation (X +2Y)(2X —Y) of ® (X) = 2X? +3XY —2Y?, as
shown in Fig. 3, while poLY(C) = ® (X)) is always the equivalent SMB representation.

» Definition 2.8 (Circuit Set). CSet (® (X)) is the set of all possible circuits C such that
poLY(C) = @ (X).

The circuit of Fig. 3 is an element of CSet (2X2 +3XY — 2Y2). One can think of
CSet (¥ (X)) as the infinite set of circuits where for each element C, POLY (C) = ® (X).

We are now ready to formally state the final version of Problem 1.6.

» Definition 2.9 (The Expected Result Multiplicity Problem). Let D be an arbitrary BIDB-
PDB and X be the set of variables annotating tuples in Dq. Fiz an RAT query Q and a
result tuple t. The EXPECTED RESULT MULTIPLICITY PROBLEM is defined as follows

Input: C € CSet (P (X)) for ®(X) = ®[Q,D,t] Output: Ewp[P Q D, t)( é ?
b

To decouple our results fro spemﬁc join algorithms, we first abstract the cost of a join.

» Definition 2.10 (Join Cost). Denote by Tjoin(Ru,. .., Ry) the runtime of an algorithm
for computing the m-ary join Ry < ... R,,. We require only that the algorithm must
enumerate its output, i.e., that Tjoium(R1, ..., Ry) > [R1 >4 ... >4 Ry|.

Worst-case optimal join algorithms [37, 36] and query evaluation via factorized databases [39]
(as well as work on FAQs [33]) can be modeled as RA™ queries (though the query size is
data dependent). For these algorithms, Tjoin(R1,. .., Ry) is linear in the AGM bound [6].
Our cost model for general query evaluation follows from the join cost:

Tdet (Ru D) - |DR| Tdet (0Q7 D) - Tdet (Q7 D) Tdet (ﬂ'Q, D) - Tdet (Qa D) + |Q(D)|
Tdet (Q U Q/’D) = Tdet (Q,D) + Tdet (QlaD) =+ |Q(D)| =+ |QI(D)|
Tdet (Ql DJ... X vaD) = Tdet (Ql,D) + ...+ Tdet (meD) + Tjoin(Q1<D)7 s 7Qm(D))

Under this model, an RA™ query Q evaluated over database D has runtime O (T, (Q, D)).
We assume that full table scans are used for every base relation access. We can model index m

scans by treating an index scan query og(R) as a base relation.

Finally, Lemma E.2 and Lemm show that for any RAT query Q and
exists a circuit C* such that Tpc(Q), *) and |C*| are both O(Tyt (Q,
assumed these two bounds when we,mowgd from Problem 1.5 to Proble

3 Hardness of Exact Computation

In this section, we will prove the hardness results claimed in Table 1 for a specific (family) of
hard instance (@, D) for Problem 1.2 where D is a 1-TIDB. Note that this implies hardness
for ¢-TIDBs (¢ > 1), BIDBs and general bag-PDB, showing Problem 1.2 cannot be done in
O (T};.,(Q, D)) runtime.

3.1 Preliminaries

Our hardness results are based on (exactly) counting the number of (not necessarily induced)
subgraphs in G isomorphic to H. Let # (G, H) denote this quantity. We can think of H
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