
Computing expected multiplicities for bag-TIDBs1

with bounded multiplicities2

Su Feng !3

Illinois Institute of Technology, Chicago, USA4

Boris Glavic !5

Illinois Institute of Technology, USA6

Aaron Huber !7

University at Buffalo, USA8

Oliver Kennedy !9

University at Buffalo, USA10

Atri Rudra !11

University at Buffalo, USA12

Abstract13

In this work, we study the problem of computing a tuple’s expected multiplicity over probabilistic14

databases with bag semantics (where each tuple is associated with a multiplicity) exactly and15

approximately. We consider bag-TIDBs where we have a bound c on the maximum multiplicity of16

each tuple and tuples are independent probabilistic events (we refer to such databases as c-TIDBs).17

We are specifically interested in the fine-grained complexity of computing expected multiplicities18

and how it compares to the complexity of deterministic query evaluation algorithms — if these19

complexities are comparable, it opens the door to practical deployment of probabilistic databases.20

Unfortunately, our results imply that computing expected multiplicities for c-TIDBs based on21

the results produced by such query evaluation algorithms introduces super-linear overhead (under22

parameterized complexity hardness assumptions/conjectures). We proceed to study approximation23

of expected result tuple multiplicities for positive relational algebra queries (RA+) over c-TIDBs24

and for a non-trivial subclass of block-independent databases (BIDBs). We develop a sampling25

algorithm that computes a (1 ± ϵ)-approximation of the expected multiplicity of an output tuple in26

time linear in the runtime of the corresponding deterministic query for any RA+ query.27

2012 ACM Subject Classification Information systems → Incomplete data28

Keywords and phrases PDB, bags, polynomial, boolean formula, etc.29

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2330

1 Introduction31

This work explores the problem of computing the expectation of the multiplicity of a tuple32

in the result of a query over a c-TIDB, a type of probabilistic database with bag semantics33

where the multiplicity of a tuple is a random variable with range [0, c] for some fixed constant34

c and multiplicities assigned to any two tuples are independent of each other. Formally, a35

c-TIDB, D =
(
{0, . . . , c}D ,P

)
consists of a set of tuples D and a probability distribution P36

over all possible worlds generated by assigning each tuple t ∈ D a multiplicity in the range37

[0, c]. Any such world can be encoded as a vector from {0, . . . , c}D, the set of all vectors of38

length n = |D| such that each index corresponds to a distinct t ∈ D storing its multiplicity.39

A given world W ∈ {0, . . . , c}D can be interpreted as follows: for each t ∈ D, Wt is the40

multiplicity of t in W. Given that the multiplicities of tuples are independent events, the41

probability distribution P can be expressed compactly by assigning each tuple a (disjoint)42

probability distribution over [0, c]. Let pt,j denote the probability that tuple t is assigned43

multiplicity j. The probability of a particular world W is then
∏
t∈D pt,Wt

.44

© Aaron Huber, Oliver Kennedy, Atri Rudra, Su Feng, Boris Glavic;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:54

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sfeng14@hawk.iit.edu
mailto:bglavic@iit.edu
mailto:ahuber@buffalo.edu
mailto:okennedy@buffalo.edu
mailto:atri@buffalo.edu
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Bag PDB Queries

Allowing for ≤ c multiplicities across all tuples gives rise to having ≤ (c+ 1)n possible45

worlds instead of the usual 2n possible worlds of a 1-TIDB, which (assuming set query46

semantics), is the same as the traditional set TIDB. In this work, since we are generally47

considering bag query input, we will only be considering bag query semantics. We denote by48

Q (W) (t) the multiplicity of t in query Q over possible world W ∈ {0, . . . , c}D.49

We can formally state our problem of computing the expected multiplicity of a result50

tuple as:51

▶ Problem 1.1. Given a c-TIDB D =
(
{0, . . . , c}D ,P

)
, RA+ query1 Q, and result tuple t,52

compute the expected multiplicity of t: EW∼P [Q (W) (t)].53

It is natural to explore computing the expected multiplicity of a result tuple as this is the54

analog for computing the marginal probability of a tuple in a set PDB. In this work we will55

assume that c = O (1) since this is what is typically seen in practice. Allowing for unbounded56

c is an interesting open problem.57

Hardness of Set Query Semantics and Bag Query Semantics. Set query evaluation58

semantics over 1-TIDBs have been studied extensively, and the data complexity of the59

problem in general has been shown by Dalvi and Suicu to be #P-hard [14]. For our setting,60

there exists a trivial polytime algorithm to compute Problem 1.1 for any RA+ query over a61

c-TIDB due to linearity of expection (see Sec. 1.1). Since we can compute Problem 1.1 in62

polynomial time, the interesting question that we explore deals with analyzing the hardness63

of computing expectation using fine-grained analysis and parameterized complexity, where64

we are interested in the exponent of polynomial runtime.65

Specifically, in this work we ask if Problem 1.1 can be solved in time linear in the runtime66

of an analogous deterministic query which we make more precise shortly. If this is true,67

then this would open up the way for deployment of c-TIDBs in practice. To analyze this68

question we denote by T ∗(Q,D) the optimal runtime complexity of computing Problem 1.169

over c-TIDB D.70

Let Tdet
(
Q,D, c

)
(see Sec. 2.4 for further details) denote the runtime for query Q,71

deterministic database D, and multiplicity bound c. This paper considers RA+ queries for72

which order of operations is explicit, as opposed to other query languages, e.g. Datalog, UCQ.73

Thus, since order of operations affects runtime, we denote the optimized RA+ query picked74

by an arbitrary production system as OPT (Q) = minQ′∈RA+,Q′≡Q Tdet
(
Q′, D, c

)
. Then75

Tdet
(
OPT (Q) , D, c

)
is the runtime for the optimized query.276

Our lower bound results. Our question is whether or not it is always true that T ∗ (Q,D) ≤77

Tdet (OPT (Q) , D, c). Unfortunately this is not the case. Table 1 shows our results.78

Specifically, depending on what hardness result/conjecture we assume, we get various79

weaker or stronger versions of no as an answer to our question. To make some sense of the80

other lower bounds in Table 1, we note that it is not too hard to show that T ∗(Q,D) ≤81

O
(

(Tdet (OPT (Q) , D, c))k
)

, where k is the join width (our notion of join width follows82

from Definition 2.2 and Fig. 1.) of the query Q over all result tuples t (and the parameter83

that defines our family of hard queries).84

What our lower bound in the third row says is that one cannot get more than a polynomial85

improvement over essentially the trivial algorithm for Problem 1.1. However, this result86

1 An RA+ query is a query expressed in positive relational algebra, i.e., using only the relational algebra
operators selection (σ), projection (π), natural join (⋊⋉) and union (∪).

2 Note that our work applies to any Q ∈ RA+, which implies that specific heuristics for choosing an
optimized query can be abstracted away, i.e., our work does not consider heuristic techniques.

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:3

Lower bound on T ∗(Qhard,D) Num. Ps Hardness Assumption
Ω
(

(Tdet (OPT (Qhard) , D, c))1+ϵ0
)

for
some ϵ0 > 0

Single Triangle Detection hypothesis

ω
(

(Tdet (OPT (Qhard) , D, c))C0
)

for
all C0 > 0

Multiple #W[0] ̸= #W[1]

Ω
(

(Tdet (OPT (Qhard) , D, c))c0·k
)

for
some c0 > 0

Multiple Conjecture 3.2

Table 1 Our lower bounds for a specific hard query Qhard parameterized by k. For D ={
{0, . . . , c}D , P

}
those with ‘Multiple’ in the second column need the algorithm to be able to handle

multiple P, i.e. probability distributions (for a given D). The last column states the hardness
assumptions that imply the lower bounds in the first column (ϵo, C0, c0 are constants that are
independent of k).

assumes a hardness conjecture that is not as well studied as those in the first two rows of87

the table (see Sec. 3 for more discussion on the hardness assumptions). Further, we note88

that existing results3 already imply the claimed lower bounds if we were to replace the89

Tdet (OPT (Q) , D, c) by just n (indeed these results follow from known lower bounds for90

deterministic query processing). Our contribution is to then identify a family of hard queries91

where deterministic query processing is ‘easy’ but computing the expected multiplicities is92

hard.93

Our upper bound results. We introduce a (1 ± ϵ)-approximation algorithm that94

computes Problem 1.1 in time Oϵ (Tdet (OPT (Q) , D, c)). This means, when we are okay95

with approximation, that we solve Problem 1.1 in time linear in the size of the deterministic96

query and bag PDBs are deployable in practice. In contrast, known approximation techniques97

([38, 31]) in set-PDBs need time Ω(Tdet (OPT (Q) , D, c)2k) (see Appendix G). Further, our98

approximation algorithm works for a more general notion of bag PDBs beyond c-TIDBs (see99

Sec. 2.2).100

1.1 Polynomial Equivalence101

A common encoding of probabilistic databases (e.g., in [29, 28, 5, 2] and many others) relies102

on annotating tuples with lineages or propositional formulas that describe the set of possible103

worlds that the tuple appears in. The bag semantics analog is a provenance/lineage polynomial104

(see Fig. 1) Φ[Q,D, t] [26], a polynomial with non-zero integer coefficients and exponents,105

over variables X encoding input tuple multiplicities. Evaluating a lineage polynomial for a106

query result tuple tout by, for each tuple tin, assigning the variable Xtin encoding the tuple’s107

multiplicity to the tuple’s multiplicity in the possible world yields the multiplicity of the tout108

in the query result for this world.109

We drop Q, D, and t from Φ[Q,D, t] when they are clear from the context or irrelevant to110

the discussion. We now specify the problem of computing the expectation of tuple multiplicity111

3 This claim follows from known results for the problem of counting k-cliques, where for a query Q over
database D that counts the number of k-cliques. Specifically, a lower bound of the form Ω

(
n1+ϵ0

)
for

some ϵ0 > 0 follows from the triangle detection hypothesis (this like our result is for k = 3). Second, a
lower bound of ω

(
nC0
)

for all C0 > 0 under the assumption #W[0] ̸= #W[1] for counting k-clique [23].
Finally, a lower bound of Ω

(
nc0·k

)
for some c0 > 0 was shown by [11] (under the strong exponential

time hypothesis).

CVIT 2016

23:4 Bag PDB Queries

in the language of lineage polynomials:112

▶ Problem 1.2 (Expected Multiplicity of Lineage Polynomials). Given an RA+ query Q,113

c-TIDB D and result tuple t, compute the expected multiplicity of the polynomial Φ[Q,D, t]114

(i.e., EW∼P [Φ[Q,D, t](W)], where W ∈ {0, . . . , c}D).115

We note that computing Problem 1.1 is equivalent (yields the same result as) to computing116

Problem 1.2 (see Proposition 2.8).117

All of our results rely on working with a reduced form
(

Φ̃
)

of the lineage polynomial Φ.118

In fact, it turns out that for the 1-TIDB case, computing the expected multiplicity (over119

bag query semantics) is exactly the same as evaluating this reduced polynomial over the120

probabilities that define the 1-TIDB. This is also true when the query input(s) is a block121

independent disjoint probabilistic database [38] (bag query semantics with tuple multiplicity122

at most 1), for which the proof of Lemma 1.4 (introduced shortly) holds .123

Next, we motivate this reduced polynomial. Consider the query Q1 defined as follows124

over the bag relations of Fig. 2:125

126
SELECT DISTINCT 1 FROM T t1 , R r, T t2127

WHERE t1.Point = r.Point1 AND t2.Point = r.Point2128129

It can be verified that Φ (A,B,C,E,X, Y, Z) for the sole result tuple of Q1 is AXB +
BY E +BZC. Now consider the product query Q2

1 = Q1 ×Q1. The lineage polynomial for
Q2

1 is given by Φ2
1 (A,B,C,E,X, Y, Z)

= A2X2B2 +B2Y 2E2 +B2Z2C2 + 2AXB2Y E + 2AXB2ZC + 2B2Y EZC.

To compute E
[
Φ2

1
]

we can use linearity of expectation and push the expectation through130

each summand. To keep things simple, let us focus on the monomial Φ(ABX)2

1 = A2X2B2
131

as the procedure is the same for all other monomials of Φ2
1. Let WX be the random132

variable corresponding to a lineage variable X. Because the distinct variables in the133

product are independent, we can push expectation through them yielding E
[
W 2
AW

2
XW

2
B

]
=134

E
[
W 2
A

]
E
[
W 2
X

]
E
[
W 2
B

]
. Since WA,WB ∈ {0, 1} we can further derive E [WA]E

[
W 2
X

]
E [WB]135

by the fact that for any W ∈ {0, 1}, W 2 = W . Observe that if X ∈ {0, 1}, then we136

further would have E [WA]E [WX]E [WB] = pA · pX · pB (denoting Pr [WA = 1] = pA)137

= Φ̃(ABX)2

1 (pA, pX , pB) (see ii) of Definition 1.3). However, in this example, we get stuck138

with E
[
W 2
X

]
, since WX ∈ {0, 1, 2} and for WX ← 2, W 2

X ̸= WX .139

Denote the variables of Φ to be Vars (Φ) . In the c-TIDB setting, Φ (X) has an equivalent140

reformulation (ΦR (XR)) that is of use to us, where |XR| = c · |X| . Given Xt ∈ Vars (Φ)141

Φ[πA(Q), D, t] =
∑

t′:πA(t′)=t

Φ[Q,D, t′] Φ[Q1 ∪Q2, D, t] =Φ[Q1, D, t] + Φ[Q2, D, t]

Φ[σθ(Q), D, t] =
{

Φ[Q,D, t] if θ(t)
0 otherwise.

Φ[Q1⋊⋉Q2, D, t] =Φ[Q1, D, πattr(Q1)t]

· Φ[Q2, D, πattr(Q2)t]

Φ[R,D, t] = Xt

Figure 1 Construction of the lineage (polynomial) for an RA+ query Q over an arbitrary
deterministic database D, where X consists of all Xt over all R in D and t in R. Here D.R denotes
the instance of relation R in D. Please note, after we introduce the reduction to 1-BIDB, the base
case will be expressed alternatively.

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:5

and integer valuation Xt ∈ {0, . . . , c}. We can replace Xt by
∑
j∈[c] jXt,j where the variables142

(Xt,j)j∈[c] are disjoint with integer assignments Xt ∈ {0, 1}. Then for any W ∈ {0, . . . , c}D143

and corresponding reformulated world WR ∈ {0, 1}Dc, we set WRt,j
= 1 for Wt = j, while144

WRt,j′ = 0 for all j′ ̸= j ∈ [c]. By construction then Φ (X) ≡ ΦR (XR) (XR = Vars (ΦR))145

since for any integer valuation Xt ∈ [c], Xj ∈ {0, 1} we have the equality Xt = j =
∑
j∈[c] jXj .146

Considering again our example,147

148

Φ(ABX)2

1,R (A,X,B) = Φ(AXB)2

1

∑
j1∈[c]

j1Aj1 ,
∑
j2∈[c]

j2Xj2 ,
∑
j3∈[c]

j3Bj3

149

=

∑
j1∈[c]

j1Aj1

2∑
j2∈[c]

j2Xj2

2∑
j3∈[c]

j3Bj3

2

.150

151

Since the set of multiplicities for tuple t by nature are disjoint we can drop all cross terms152

and have Φ2
1,R =

∑
j1,j2,j3∈[c] j

2
1A

2
j1
j2

2X
2
j2
j2

3B
2
j3

. Computing expectation we get E
[
Φ2

1,R
]

=153 ∑
j1,j2,j3∈[c] j

2
1j

2
2j

2
3 E
[
WAj1

]
E
[
WXj2

]
E
[
WBj3

]
, since we now have that all WXj ∈ {0, 1}.154

This leads us to consider a structure related to the lineage polynomial.155

▶ Definition 1.3. For any polynomial Φ
(
(Xt)t∈D

)
define the reformulated polynomial156

ΦR
(

(Xt,j)t∈D,j∈[c]

)
to be the polynomial ΦR = Φ

((∑
j∈[c] j ·Xt,j

)
t∈D

)
and ii) define the157

reduced polynomial Φ̃
(

(Xt,j)t∈D,j∈[c]

)
to be the polynomial resulting from converting ΦR158

into the standard monomial basis (SMB), 4 removing all monomials containing the term159

Xt,jXt,j′ for t ∈ D, j ̸= j′ ∈ [c], and setting all variable exponents e > 1 to 1.160

Continuing with the example 5 Φ2
1 (A,B,C,E,X1, X2, Y, Z) we have161

162

Φ̃2
1(A,B,C,E,X1, X2, Y, Z) =163

A

∑
j∈[c]

j2Xj

B+BY E+BZC+2A

∑
j∈[c]

j2Xj

BY E+2A

∑
j∈[c]

j2Xj

BZC+2BY EZC =164

ABX1+AB (2)2
X2+BY E+BZC+2AX1BY E+2A (2)2

X2BY E+2AX1BZC+2A (2)2
X2BZC+2BY EZC.165

166

Note that we have argued that for our specific example the expectation that we want is167

Φ̃2
1(Pr (A = 1) , P r (B = 1) , P r (C = 1)), P r (E = 1) , P r (X1 = 1) , P r (X2 = 1) , P r (Y = 1) , P r (Z = 1)).168

Lemma 1.4 generalizes the equivalence to allRA+ queries on c-TIDBs (proof in Appendix B.5).169

▶ Lemma 1.4. For any c-TIDB D, RA+ query Q, and lineage polynomial Φ (X) =170

Φ [Q,D, t] (X), it holds that EW∼P [ΦR (W)] = Φ̃ (p), where p =
(

(pt,j)t∈D,j∈[c]

)
.171

1.2 Our Techniques172

Lower Bound Proof Techniques. Our main hardness result shows that computing Problem 1.1173

is #W[1]− hard for 1-TIDB. To prove this result we show that for the same Q1 from the174

4 This is the representation, typically used in set-PDBs, where the polynomial is reresented as sum of
‘pure’ products. See Definition 2.1 for a formal definition.

5 To save clutter we do not show the full expansion for variables with greatest multiplicity = 1 since e.g.
for variable A, the sum of products itself evaluates to 12 · A2 = A.

CVIT 2016

23:6 Bag PDB Queries

T

Point Φ
e1 A

e2 B

e3 C

e4 E

R

Point1 Point2 Φ
e1 e2 X

e2 e4 Y

e2 e3 Z

D

LC

Q2

Point Φ Circuit

e1 AX
×

A X

e2

B(Y + Z)
Or

BY +BZ

Y Z

B +

×

Or

Y B Z

× ×

+

Q2(D) (t) ≡ Φ (X)

EC
Point E[Φ(X)]

e1 (pA,1 + pA,2) · (pX,1 + 2pX,2)
e2 (pB,1 + pB2) (pY,1 + 2pY,2 + pZ,1 + 2pZ,2)

E [Φ(X)]

Figure 2 Intensional Query Evaluation Model (Q2 = πPoint (T⋊⋉Point=Point1 R) where, for table
R, c = 2, while for T, c = 1.)

example above, for an arbitrary ‘product width’ k, the query Qkhard is able to encode various175

hard graph-counting problems (assuming O (n) tuples rather than the O (1) tuples in Fig. 2).176

We do so by considering an arbitrary graph G (analogous to relation R of Q1) and analyzing177

how the coefficients in the (univariate) polynomial Φ̃ (p, . . . , p) relate to counts of subgraphs178

in G that are isomorphic to various graphs with k edges. E.g., we exploit the fact that the179

coefficient corresponding to the power of 2k in Φ of Qkhard is proportional to the number of180

k-matchings in G, a known hard problem in parameterized/fine-grained complexity literature.181

Upper Bound Techniques. Our negative results (Table 1) indicate that c-TIDBs (even182

for c = 1) can not achieve comparable performance to deterministic databases for exact183

results (under complexity assumptions). In fact, under plausible hardness conjectures, one184

cannot (drastically) improve upon the trivial algorithm to exactly compute the expected185

multiplicities for 1-TIDBs. A natural followup is whether we can do better if we are willing186

to settle for an approximation to the expected multiplities.187

We adopt a two-step intensional model of query evaluation used in set-PDBs, as illustrated188

in Fig. 2: (i) Lineage Computation (LC): Given input D and Q, output every tuple t that189

possibly satisfies Q, annotated with its lineage polynomial (Φ(X) = Φ[Q,D, t] (X)); (ii)190

Expectation Computation (EC): Given Φ(X) for each tuple, compute EW∼P [Φ(W)]. Let191

TLC(Q,D, C) denote the runtime of LC when it outputs C (which is a representation of Φ as192

an arithmetic circuit — more on this representation in Sec. 2.3). Denote by TEC(C, ϵ) (recall193

C is the output of LC) the runtime of EC, which we can leverage Definition 1.3 and Lemma 1.4194

to address the next formal objective:195

▶ Problem 1.5 (c-TIDB linear time approximation). Given c-TIDB D, RA+ query Q,196

is there a (1 ± ϵ)-approximation of EW∼P [Q (W) (t)] for all result tuples t where ∃C :197

TLC(Q,D, C) + TEC(C, ϵ) ≤ Oϵ(Tdet (OPT (Q) , D, c))?198

We show in Appendix E.2.1 an O (Tdet (OPT (Q) , D, c)) algorithm for constructing the199

lineage polynomial for all result tuples of an RA+ query Q (or more more precisely, a single200

circuit C with one sink per tuple representing the tuple’s lineage). A key insight of this paper201

is that the representation of C matters. For example, if we insist that C represent the lineage202

polynomial in SMB, the answer to the above question in general is no, since then we will203

need |C| ≥ Ω
(

(Tdet (OPT (Q) , D, c))k
)

, and hence, just TLC(Q,D, C) will be too large.204

However, systems can directly emit compact, factorized representations of Φ(X) (e.g.,205

as a consequence of the standard projection push-down optimization [25]). For example,206

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:7

in Fig. 2, B(Y + Z) is a factorized representation of the SMB-form BY +BZ. Accordingly,207

this work uses (arithmetic) circuits6 as the representation system of Φ(X).208

Given that there exists a representation C∗ such that TLC(Q,D, C∗) ≤ O (Tdet (OPT (Q) , D, c)),209

we can now focus on the complexity of the EC step. We can represent the factorized lineage210

polynomial by its correspoding arithmetic circuit C (whose size we denote by |C|). As211

we also show in Appendix E.2.2, this size is also bounded by Tdet (OPT (Q) , D, c) (i.e.,212

|C∗| ≤ O (Tdet (OPT (Q) , D, c))). Thus, the question of approximation can be stated as the213

following stronger (since Problem 1.5 has access to all equivalent C representing Q (W) (t)),214

but sufficient condition:215

▶ Problem 1.6. Given one circuit C that encodes Φ[Q,D, t] for all result tuples t (one sink216

per t) for c-TIDB D and RA+ query Q, does there exist an algorithm that computes a217

(1± ϵ)-approximation of EW∼P [Q (W) (t)] (for all result tuples t) in O (|C|) time?218

For an upper bound on approximating the expected count, it is easy to check that if all219

the probabilties are constant then (with an additive adjustment) Φ (p1, . . . , pn)220

(i.e. evaluating the original lineage polynomial over the probability values) is a constant221

factor approximation . This is illustrated in the following example using Q2
1 from earlier. To222

aid in presentation we assume c = 2 for variable X and c = 1 for all other variables. Let pA223

denote Pr [A = 1]. In computing Φ̃, we have some cancellations to deal with:224

Φ2
1,R (X) = A2 (X2

1 + 4X1X2 + 4X2
2
)

B2 + B2Y 2E2 + B2Z2C2 + 2AX1B2Y E225

+ 2AX2B2Y E + 2AX1B2ZC + 2AX2B2ZC + 2B2Y EZC226

227228

This then implies229

Φ̃2 (X) = AX1B + 4AX2B + BY E + BZC + 2AX1BY E + 2AX2BY E + 2AX1BZC230

+ 2AX2BZC + 2BY EZC231

232233

Substituting p for X,234

Φ2
1,R (p) = p2

Ap2
X1 p2

B + 4p2
ApX1 pX2 p2

B + 4p2
Ap2

X2 p2
B + p2

Bp2
Y p2

E + p2
Bp2

Zp2
C + 2pApX1 p2

BpY pE + 2pApX2 p2
BpY pE235

+ 2pApX1 p2
BpZpC + 2pApX2 p2

BpZpC + 2p2
BpY pEpZpC236

≤ pApX1 pB + 4p2
ApX1 pX2 p2

B + 4pApX2 pb + pBpY pE + pBpZpC + 2pApX1 pBpY pE + 2pApX2 pBpY pE237

+ 2pApX1 pBpZpC + 2pApX2 pBpZpC + 2pBpY pEpZpC = Φ̃2
1 (p) + 4p2

ApX1 pX2 p2
B .238239

If we assume that all probability values are at least p0 > 0, then given access to Φ2
1,R (p)−240

4p2
ApX1pX2p

2
B we get that Φ2

1,R (p)− 4p2
ApX1pX2p

2
B is in the range

(
(p0)3 ·

(
Φ̃2

1p
)
, Φ̃2

1 (p)
]
.241

We can simulate sampling from Φ2
1,R (X) by sampling monomials from Φ2

1,R while ignoring242

any samples A2X1X2B
2. Note however, that this is not a tight approximation. In sec. 4 we243

demonstrate that a (1 ± ϵ) (multiplicative) approximation with competitive performance244

is achievable. To get an (1± ϵ)-multiplicative approximation and solve Problem 1.6, using245

C we uniformly sample monomials from the equivalent SMB representation of Φ (without246

materializing the SMB representation) and ‘adjust’ their contribution to Φ̃ (·).247

Applications. Recent work in heuristic data cleaning [49, 43, 40, 8, 43] emits a PDB when248

insufficient data exists to select the ‘correct’ data repair. Probabilistic data cleaning is a249

6 An arithmetic circuit is a DAG with variable and/or numeric source nodes and internal, each nodes
representing either an addition or multiplication operator.

CVIT 2016

23:8 Bag PDB Queries

crucial innovation, as the alternative is to arbitrarily select one repair and ‘hope’ that queries250

receive meaningful results. Although PDB queries instead convey the trustworthiness of251

results [35], they are impractically slow [19, 18], even in approximation (see Appendix G).252

Bags, as we consider, are sufficient for production use, where bag-relational algebra is already253

the default for performance reasons. Our results show that bag-PDBs can be competitive,254

laying the groundwork for probabilistic functionality in production database engines.255

Paper Organization. We present relevant background and notation in Sec. 2. We then256

prove our main hardness results in Sec. 3 and present our approximation algorithm in Sec. 4.257

Finally, we discuss related work in Sec. 5 and conclude in Sec. 6. All proofs are in the258

appendix.259

2 Background and Notation260

2.1 Polynomial Definition and Terminology261

Given an index set S over variables Xt for t ∈ S, a (general) polynomial ϕ over (Xt)t∈S with262

individual degree K <∞ is formally defined as:263

ϕ
(
(Xt)t∈S

)
=

∑
d∈{0,...,K}S

cd ·
∏
t∈S

Xdt
t where cd ∈ N. (1)264

265

▶ Definition 2.1 (Standard Monomial Basis). The term
∏
t∈S X

dt
t in Eq. (1) is a monomial.266

A polynomial ϕ (X) is in standard monomial basis (SMB) when we keep only the terms with267

cd ̸= 0 from Eq. (1).268

Unless othewise noted, we consider all polynomials to be in SMB representation. When it269

is unclear, we use SMB (ϕ) (SMB (Φ)) to denote the SMB form of a polynomial (lineage270

polynomial) ϕ (Φ).271

▶ Definition 2.2 (Degree). The degree of polynomial ϕ(X) is the largest
∑
t∈S dt for all272

d ∈ {0, . . . ,K}S such that c(d1,...,dn) ̸= 0. We denote the degree of ϕ as deg (ϕ).273

As an example, the degree of the polynomial X2 + 2XY 2 +Y 2 is 3. Product terms in lineage274

arise only from join operations (Fig. 1), so intuitively, the degree of a lineage polynomial is275

analogous to the largest number of joins needed to produce a result tuple.276

We call a polynomial Φ (X) a c-TIDB-lineage polynomial (or simply lineage polynomial),277

if it is clear from context that there exists an RA+ query Q, c-TIDB D, and result tuple t278

such that Φ (X) = Φ[Q,D, t] (X) .279

2.2 Binary-BIDB280

A block independent database BIDB D′ models a set of worlds each of which consists of281

a subset of the possible tuples D′, where D′ is partitioned into m blocks Bi and all Bi282

are independent random events. D′ further constrains that all t ∈ Bi for all i ∈ [m] of283

D′ be disjoint events. We refer to any monomial that includes XtXt′ for t ̸= t′ ∈ Bi as a284

cancellation. We define next a specific construction of BIDB that is useful for our work.285

▶ Definition 2.3 (Binary-BIDB). Define a Binary-BIDB to be the pair D′ =
(
×t∈D′ {0, ct} ,P ′

)
,286

where D′ is the set of possible tuples such that each t ∈ D′ has a multiplicity domain of {0, ct},287

with ct ∈ N. D′ is partitioned into m independent blocks Bi, for i ∈ [m], of disjoint tuples.288

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:9

Φ′
[
πA (Q) , D′

, tj

]
=

∑
tj′ ,

πA(tj′)=tj

Φ′
[
Q,D

′
, tj′

]
Φ′
[
Q1 ∪Q2, D

′
, tj

]
=Φ′

[
Q1, D

′
, tj

]
+ Φ′

[
Q2, D

′
, tj

]

Φ′
[
σθ (Q) , D′

, tj

]
=

θ = 1 Φ′
[
Q,D

′
, tj

]
θ = 0 0

Φ′
[
Q1⋊⋉Q2, D

′
, tj

]
=Φ′

[
Q1, D

′
, πattr(Q1) (tj)

]
· Φ′

[
Q2, D

′
, πattr(Q2) (tj)

]
Φ′
[
R,D

′
, tj

]
= j ·Xt,j .

Figure 3 Construction of the lineage (polynomial) for an RA+ query Q over D
′.

P ′ is characterized by the vector (pt)t∈D′ where for every block Bi,
∑
t∈Bi

pt ≤ 1. Given W ∈289

×t∈D′ {0, ct} and for i ∈ [m], let pi(W) =


1−

∑
t∈Bi

pt if Wt = 0 for all t ∈ Bi
0 if there exists t, t′ ∈ Bi,Wt,Wt′ ̸= 0
pt Wt ̸= 0 for the unique t ∈ Bi.

290

P ′ is the probability distribution across all worlds such that, given W ∈×t∈D′ {0, ct},291

Pr [W = W] =
∏
i∈[m] pi(W). 7

292

Fig. 3 shows the lineage construction of Φ′ (X) given RA+ query Q for arbitrary293

deterministic D′. Note that the semantics differ from Fig. 1 only in the base case.294

▶ Proposition 2.4 (c-TIDB reduction). Given c-TIDB D =
(
{0, . . . , c}D ,P

)
, let D′ =295 (

×t∈D′ {0, ct} ,P ′
)

be the Binary-BIDB obtained in the following manner: for each t ∈ D,296

create block Bt =
{
⟨t, j⟩j∈[c]

}
of disjoint tuples, for all j ∈ [c]. The probability distribution297

P ′ is the characterized by the vector p =
(

(pt,j)t∈D,j∈[c]

)
. Then, the distributions P and P ′

298

are equivalent.299

We now define the reduced polynomial Φ̃′ of a Binary-BIDB.300

▶ Definition 2.5 (Φ̃′). Given a polynomial Φ′ (X) generated from a Binary-BIDB and let301

Φ̃′ (X) denote the reduced form of Φ′ (X) derived as follows: i) compute SMB (Φ′ (X))302

eliminating all monomials with cross terms XtXt′ for t ̸= t′ ∈ Bi and ii) reduce all variable303

exponents e > 1 to 1.304

Then given W ∈ {0, 1}D
′

over the reduced Binary-BIDB of Proposition 2.4, the disjoint305

requirement and the semantics for constructing the lineage polynomial over a Binary-BIDB,306

Φ′ (W) is of the same structure as the reformulated polynomial ΦR (W) of step i) from Definition 1.3,307

which then implies that Φ̃′ is the reduced polynomial that results from step ii) of both Definition 1.3308

and Definition 2.5, and further that Lemma 1.4 immediately follows for Binary-BIDB309

polynomials.310

▶ Lemma 2.6. Given any Binary-BIDB D′, RA+ query Q, and lineage polynomial Φ′ (X) =311

Φ′ [Q,D′, t] (X), it holds that EW∼P′ [Φ′ (W)] = Φ̃′ (p) .312

Let |Φ| be the number of operators in Φ.313

7 We slightly abuse notation here, denoting a world vector as W rather than W to distinguish between
the random variable and the world instance. When there is no ambiguity, we will denote a world vector
as W.

CVIT 2016

23:10 Bag PDB Queries

▶ Corollary 2.7. If Φ is a 1-BIDB lineage polynomial already in SMB, then the expectation314

of Φ, i.e., E [Φ] = Φ̃ (p1, . . . , pn) can be computed in O (|Φ|) time.315

2.2.1 Possible World Semantics316

In this section, we show how the traditional possible worlds semantics corresponds to our317

setup. Readers can safely skip this part without missing anything vital to the results of this318

paper.319

Queries over probabilistic databases are traditionally viewed as being evaluated using the320

so-called possible world semantics. A general bag-PDB can be defined as the pair D = (Ω,P)321

where Ω is the set of possible worlds represented by D and P the probability distribution over322

Ω. Under the possible world semantics, the result of a query Q over an incomplete database323

Ω is the set of query answers produced by evaluating Q over each possible world ω ∈ Ω:324

{Q (ω) : ω ∈ Ω}. The result of a query is the pair (Q (Ω) ,P ′) where P ′ is a probability325

distribution that assigns to each possible query result the sum of the probabilites of the326

worlds that produce this answer: Pr [ω ∈ Ω] =
∑
ω′∈Ω,Q(ω′)=Q(ω) Pr [ω′].327

Suppose that D′ is a reduced Binary-BIDB from c-TIDB D as defined by ??. Instead of328

looking only at the possible worlds of D′, one can consider the set of all worlds, including329

those that cannot exist due to, e.g., disjointness. Since |D| = n the all worlds set can be330

modeled by W ∈ {0, 1}nc, such that Wt,j ∈W represents whether or not the multiplicity331

of t is j (here and later, especially in Sec. 4, we will rename the variables as X1, . . . , Xn′ ,332

where n′ =
∑
t∈D |Bt|). 8 We can denote a probability distribution over all W ∈ {0, 1}nc333

as P ′. When P ′ is the one induced from each pt,j while assigning Pr [W] = 0 for any W334

with Wt,j ,Wt,j′ ̸= 0 for j ̸= j′, we end up with a bijective mapping from P to P ′, such that335

each mapping is equivalent, implying the distributions are equivalent, and thus query results.336

Appendix B.2 has more details.337

We now make a meaningful connection between possible world semantics and world338

assignments on the lineage polynomial.339

▶ Proposition 2.8 (Expectation of polynomials). Given a bag-PDB D = (Ω,P), RA+ query340

Q, and lineage polynomial Φ[Q,D, t] for arbitrary result tuple t, we have (denoting D as the341

random variable over Ω): ED∼P [Q(D)(t)] = EW∼P [Φ[Q,D, t] (W)] .342

A formal proof of Proposition 2.8 is given in Appendix B.3.9343

2.3 Formalizing Problem 1.6344

We focus on the problem of computing EW∼P [Φ[Q,D, t] (W)] from now on, assume implicit345

Q,D, t, and drop them from Φ[Q,D, t] (i.e., Φ (X) will denote a polynomial).346

Problem 1.6 asks if there exists a linear time approximation algorithm in the size of a given347

circuit C which encodes Φ (X). Recall that in this work we represent lineage polynomials348

via arithmetic circuits [9], a standard way to represent polynomials over fields (particularly349

in the field of algebraic complexity) that we use for polynomials over N in the obvious way.350

Since we are specifically using circuits to model lineage polynomials, we can refer to these351

circuits as lineage circuits. However, when the meaning is clear, we will drop the term lineage352

and only refer to them as circuits.353

8 In this example, |Bt| = c for all t.
9 Although Proposition 2.8 follows, e.g., as an obvious consequence of [29]’s Theorem 7.1, we are unaware

of any formal proof for bag-probabilistic databases.

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:11

▶ Definition 2.9 (Circuit). A circuit C is a Directed Acyclic Graph (DAG) whose source354

gates (in degree of 0) consist of elements in either N or X = (X1, . . . , Xn). For each result355

tuple there exists one sink gate. The internal gates have binary input and are either sum356

(+) or product (×) gates. Each gate has the following members: type, input, val, partial,357

degree, Lweight, and Rweight, where type is the value type {+,×,var,num} and input358

the list of inputs. Source gates have an extra member val storing the value. CL (CR) denotes359

the left (right) input of C.360

When the underlying DAG is a tree (with edges pointing towards the root), the structure is361

an expression tree T. In such a case, the root of T is analogous to the sink of C. The fields362

partial, degree, Lweight, and Rweight are used in the proofs of Appendix D.363

The circuits in Fig. 2 encode their respective polynomials in column Φ. Note that the364

ciricuit C representing AX and the circuit C’ representing B (Y + Z) each encode a tree, with365

edges pointing towards the root.366

X 2 Y −1

× × ×

+ +

×

Figure 4 Circuit encoding of (X +
2Y)(2X − Y)

We next formally define the relationship of367

circuits with polynomials. While the definition368

assumes one sink for notational convenience, it369

easily generalizes to the multiple sinks case.370

▶ Definition 2.10 (poly(·)). poly(C) maps the371

sink of circuit C to its corresponding polynomial372

(in SMB). poly(·) is recursively defined on373

C as follows, with addition and multiplication374

following the standard interpretation for polynomials:375

poly(C) =


poly(CL) + poly(CR) if C.type = +
poly(CL) · poly(CR) if C.type = ×
C.val if C.type = var OR num.

376

C need not encode Φ (X) in the same, default SMB representation. For instance, C could377

encode the factorized representation (X + 2Y)(2X − Y) of Φ (X) = 2X2 + 3XY − 2Y 2, as378

shown in Fig. 4, while poly(C) = Φ (X) is always the equivalent SMB representation.379

▶ Definition 2.11 (Circuit Set). CSet (Φ (X)) is the set of all possible circuits C such that380

poly(C) = Φ (X).381

The circuit of Fig. 4 is an element of CSet
(
2X2 + 3XY − 2Y 2). One can think of382

CSet (Φ (X)) as the infinite set of circuits where for each element C, poly (C) = Φ (X).383

We are now ready to formally state the final version of Problem 1.6.384

▶ Definition 2.12 (The Expected Result Multiplicity Problem). Let D′ be an arbitrary c-TIDB385

and X be the set of variables annotating tuples in D′. Fix an RA+ query Q and a result386

tuple t. The Expected Result Multiplicity Problem is defined as follows:387
388

Input: C ∈ CSet (Φ (X)) for Φ′ (X) = Φ′ [Q,D′, t] Output: EW∼P [Φ′ [Q,D′, t] (W)]389

2.4 Relationship to Deterministic Query Runtimes390

In Sec. 1, we introduced the structure Tdet (·) to analyze the runtime complexity of Problem 1.1.391

To decouple our results from specific join algorithms, we first lower bound the cost of a join.392

CVIT 2016

23:12 Bag PDB Queries

▶ Definition 2.13 (Join Cost). Denote by Tjoin(R1, . . . , Rm) the runtime of an algorithm393

for computing the m-ary join R1 ▷◁ . . . ▷◁ Rm. We require only that the algorithm must394

enumerate its output, i.e., that Tjoin(R1, . . . , Rm) ≥ |R1 ▷◁ . . . ▷◁ Rm|. With this definition395

of Tjoin(·), worst-case optimal join algorithms are handled.396

Worst-case optimal join algorithms [37, 36] and query evaluation via factorized databases [39]397

(as well as work on FAQs [33]) can be modeled as RA+ queries (though the query size is398

data dependent). For these algorithms, Tjoin(R1, . . . , Rn) is linear in the AGM bound [6].399

Our cost model for general query evaluation follows from the join cost:400

Tdet
(
R,D, c

)
= |D.R| Tdet

(
σQ,D, c

)
= Tdet

(
Q,D

)
Tdet

(
πQ,D, c

)
= Tdet

(
Q,D, c

)
+
∣∣Q(D)

∣∣
Tdet

(
Q ∪Q′, D, c

)
= Tdet

(
Q,D, c

)
+ Tdet

(
Q′, D, c

)
+
∣∣Q (D)∣∣+

∣∣Q′ (D)∣∣
Tdet

(
Q1 ▷◁ . . . ▷◁ Qm, D, c

)
= Tdet

(
Q1, D, c

)
+ . . .+ Tdet

(
Qm, D, c

)
+ Tjoin(Q1(D), . . . , Qm(D))

401

402

Under this model, anRA+ queryQ evaluated over databaseD has runtimeO(Tdet
(
Q,D, c

)
).403

We assume that full table scans are used for every base relation access. We can model index404

scans by treating an index scan query σθ(R) as a base relation.405

Lemma E.2 and Lemma E.3 show that for any RA+ query Q and D, there exists a circuit406

C∗ such that TLC(Q,D, C∗) and |C∗| are both O(Tdet (OPT (Q) , D, c)). Recall we assumed407

these two bounds when we moved from Problem 1.5 to Problem 1.6. Lastly, we can handle408

FAQs and factorized databases by allowing for optimization, i.e. OPT (Q).409

3 Hardness of Exact Computation410

In this section, we will prove the hardness results claimed in Table 1 for a specific (family) of411

hard instance (Qhard,D) for Problem 1.2 where D is a 1-TIDB. Note that this implies hardness412

for c-TIDBs (c ≥ 1), showing Problem 1.2 cannot be done in O (Tdet (OPT (Q) , D, c))413

runtime. The results also apply to Binary-BIDB and other more general PDBs.414

3.1 Preliminaries415

Our hardness results are based on (exactly) counting the number of (not necessarily induced)416

subgraphs in G isomorphic to H. Let # (G,H) denote this quantity. We can think of H417

as being of constant size and G as growing. In particular, we will consider the problems of418

computing the following counts (given G in its adjacency list representation): # (G,) (the419

number of triangles), # (G,) (the number of 3-matchings), and the latter’s generalization420

#
(
G, · · · k

)
(the number of k-matchings). We use Tmatch (k,G) to denote the optimal421

runtime of computing #
(
G, · · · k

)
exactly. Our hardness results in Sec. 3.2 are based on422

the following hardness results/conjectures:423

▶ Theorem 3.1 ([12]). Given positive integer k and undirected graph G = (V,E) with424

no self-loops or parallel edges, Tmatch (k,G) ≥ ω (f(k) · |E|c) for any function f and any425

constant c independent of |E| and k (assuming #W[0] ̸= #W[1]).426

▶ Conjecture 3.2. There exists an absolute constant c0 > 0 such that for every G = (V,E),427

we have Tmatch (k,G) ≥ Ω
(
|E|c0·k) for large enough k.428

We note that the above conjecture is somewhat non-standard. In particular, the best known429

algorithm to compute #
(
G, · · · k

)
takes time Ω

(
|V |k/2) (i.e. if this is the best algorithm430

then c0 = 1
4) [12]. What the above conjecture is saying is that one can only hope for a431

polynomial improvement over the state of the art algorithm to compute #
(
G, · · · k

)
.432

Our hardness result in Section 3.3 is based on the following conjectured hardness result:433

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:13

▶ Conjecture 3.3. There exists a constant ϵ0 > 0 such that given an undirected graph434

G = (V,E), computing # (G,) exactly cannot be done in time o
(
|E|1+ϵ0

)
.435

The so called Triangle detection hypothesis (cf. [34]), which states that detecting the presence436

of triangles in G takes time Ω
(
|E|4/3), implies that in Conjecture 3.3 we can take ϵ0 ≥ 1

3 .437

All of our hardness results rely on a simple lineage polynomial encoding of the edges438

of a graph. To prove our hardness result, consider a graph G = (V,E), where |E| = m,439

V = [n]. Our lineage polynomial has a variable Xi for every i in [n]. Consider the polynomial440

ΦG(X) =
∑

(i,j)∈E
Xi ·Xj . The hard polynomial for our problem will be a suitable power k ≥ 3441

of the polynomial above:442

▶ Definition 3.4. For any graph G = (V,E) and k ≥ 1, define443

ΦkG(X1, . . . , Xn) =

 ∑
(i,j)∈E

Xi ·Xj

k

.444

Returning to Fig. 2, it can be seen that ΦkG(X) is the lineage polynomial from query Qkhard,445

which we define next (Q2 from Sec. 1 is the same query with k = 2). Let us alias446

447
SELECT DISTINCT 1 FROM T t1 , R r, T t2448

WHERE t1.Point = r.Point1 AND t2.Point = r.Point2449450

as R. The query Qkhard then becomes451

SELECT COUNT (*) FROM R JOIN R JOIN · · · JOIN R︸ ︷︷ ︸
k times

Consider again the c-TIDB instance D of Fig. 2 and, for our hard instance, let c = 1.452

D generalizes to one compatible to Definition 3.4 as follows. Relation T has n tuples453

corresponding to each vertex for i in [n], each with probability p andR has tuples corresponding454

to the edges E (each with probability of 1).10 In other words, this instance D contains455

the set of n unary tuples in T (which corresponds to V) and m binary tuples in R (which456

corresponds to E). Note that this implies that ΦkG is indeed a 1-TIDB lineage polynomial.457

Next, we note that the runtime for answering Qkhard on deterministic database D, as458

defined above, is Ok (m) (i.e. deterministic query processing is ‘easy’ for this query):459

▶ Lemma 3.5. Let Qkhard and D be as defined above. Then Tdet
(
Qkhard, D

)
is Ok (m).460

3.2 Multiple Distinct p Values461

We are now ready to present our main hardness result.462

▶ Theorem 3.6. Let p0, . . . , p2k be 2k + 1 distinct values in (0, 1]. Then computing463

Φ̃kG(pi, . . . , pi) (over all i ∈ [2k + 1]) for arbitrary G = (V,E) needs time Ω (Tmatch (k,G)),464

assuming Tmatch (k,G) ≥ ω (|E|).465

10 Technically, Φk
G(X) should have variables corresponding to tuples in R as well, but since they always

are present with probability 1, we drop those. Our argument also works when all the tuples in R also
are present with probability p but to simplify notation we assign probability 1 to edges.

CVIT 2016

23:14 Bag PDB Queries

Note that the second row of Table 1 follows from Proposition 2.8, Theorem 3.6, Lemma 3.5,466

and Theorem 3.1 while the third row is proved by Proposition 2.8, Theorem 3.6, Lemma 3.5,467

and Conjecture 3.2. Since Conjecture 3.2 is non-standard, the latter hardness result should468

be interpreted as follows. Any substantial polynomial improvement for Problem 1.2 (over the469

trivial algorithm that converts Φ into SMB and then uses Corollary 2.7 for EC) would lead470

to an improvement over the state of the art upper bounds on Tmatch (k,G). Finally, note471

that Theorem 3.6 needs one to be able to compute the expected multiplicities over (2k + 1)472

distinct values of pi, each of which corresponds to distinct P (for the same D), which explain473

the ‘Multiple’ entry in the second column in the second and third row in Table 1. Next, we474

argue how to get rid of this latter requirement.475

3.3 Single p value476

While Theorem 3.6 shows that computing Φ̃(p, . . . , p) for multiple values of p in general is477

hard it does not rule out the possibility that one can compute this value exactly for a fixed478

value of p. Indeed, it is easy to check that one can compute Φ̃(p, . . . , p) exactly in linear time479

for p ∈ {0, 1}. Next we show that these two are the only possibilities:480

▶ Theorem 3.7. Fix p ∈ (0, 1). Then assuming Conjecture 3.3 is true, any algorithm that481

computes Φ̃3
G(p, . . . , p) for arbitrary G = (V,E) exactly has to run in time Ω

(
|E|1+ϵ0

)
, where482

ϵ0 is as defined in Conjecture 3.3.483

Note that Proposition 2.8 and Theorem 3.7 above imply the hardness result in the first484

row of Table 1. We note that Theorem 3.1 and Conjecture 3.2 (and the lower bounds in the485

second and third row of Table 1) need k to be large enough (in particular, we need a family486

of hard queries). But the above Theorem 3.7 (and the lower bound in first row of Table 1)487

holds for k = 3 (and hence for a fixed query).488

4 1± ϵ Approximation Algorithm489

In Sec. 3, we showed that Problem 1.2 cannot be solved in O (Tdet (OPT (Q) , D, c)) runtime.490

In light of this, we desire to produce an approximation algorithm that runs in time491

O (Tdet (OPT (Q) , D, c)). We do this by showing the result via circuits, such that our492

approximation algorithm for this problem runs in O (|C|) for a very broad class of circuits,493

(thus affirming Problem 1.6); see the discussion after Lemma 4.9 for more. The following494

approximation algorithm applies to bag query semantics over both c-TIDB lineage polynomials495

and general BIDB lineage polynomials in practice, where for the latter we note that a 1-TIDB496

is equivalently a BIDB (blocks are size 1). Our experimental results (see Appendix D.11)497

which use queries from the PDBench benchmark [1] show a low γ (see Definition 4.6)498

supporting the notion that our bounds hold for general BIDB in practice.499

Corresponding proofs and pseudocode for all formal statements and algorithms can be500

found in Appendix D.501

4.1 Preliminaries and some more notation502

We now introduce definitions and notation related to circuits and polynomials that we will503

need to state our upper bound results. First we introduce the expansion E(C) of circuit C504

which is used in our auxiliary algorithm SampleMonomial for sampling monomials when505

computing the approximation.506

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:15

▶ Definition 4.1 (E(C)). For a circuit C, we define E(C) as a list of tuples (v, c), where v is a507

set of variables and c ∈ N. E(C) has the following recursive definition (◦ is list concatenation).508

E(C) =


E(CL) ◦ E(CR) if C.type = +
{(vL ∪ vR, cL · cR) | (vL, cL) ∈ E(CL), (vR, cR) ∈ E(CR)} if C.type = ×
List [(∅, C.val)] if C.type = num
List [({C.val}, 1)] if C.type = var.

509

Later on, we will denote the monomial composed of the variables in v as vm. As an example510

of E(C), consider C illustrated in Fig. 4. E(C) is then [(X, 2), (XY,−1), (XY, 4), (Y,−2)]. This511

helps us redefine Φ̃ (see Eq. (2)) in a way that makes our algorithm more transparent.512

▶ Definition 4.2 (|C|). For any circuit C, the corresponding positive circuit, denoted |C|, is513

obtained from C as follows. For each leaf node ℓ of C where ℓ.type is num, update ℓ.value514

to |ℓ.value|.515

We will overload notation and use |C| (X) to mean poly (|C|). Conveniently, |C| (1, . . . , 1)516

gives us
∑

(v,c)∈E(C)
|c|.517

▶ Definition 4.3 (size (·), depth (·)). The functions size and depth output the number of518

gates and levels respectively for input C.519

▶ Definition 4.4 (deg(·)). 11 deg(C) is defined recursively as follows:520

deg(C) =


max(deg(CL),deg(CR)) if C.type = +
deg(CL) + deg(CR) + 1 if C.type = ×
1 if C.type = var
0 otherwise.

521

Next, we use the following notation for the complexity of multiplying integers:522

▶ Definition 4.5 (M (·, ·)). 12 In a RAM model of word size of W -bits, M (M,W) denotes523

the complexity of multiplying two integers represented with M -bits. (We will assume that for524

input of size N , W = O(logN).)525

Finally, to get linear runtime results, we will need to define another parameter modeling526

the (weighted) number of monomials in E(C) that need to be ‘canceled’ when monomials with527

dependent variables are removed (Sec. 2.2). Let isInd (·) be a boolean function returning528

true if monomial vm is composed of independent variables and false otherwise; further, let 1θ529

also be a boolean function returning true if θ evaluates to true.530

▶ Definition 4.6 (Parameter γ). Given a Binary-BIDB circuit C define531

γ(C) =
∑

(v,c)∈E(C) |c| · 1¬isInd(vm)

|C| (1, . . . , 1) .532

11 Note that the degree of poly(|C|) is always upper bounded by deg(C) and the latter can be strictly
larger (e.g. consider the case when C multiplies two copies of the constant 1– here we have deg(C) = 1
but degree of poly(|C|) is 0).

12 We note that when doing arithmetic operations on the RAM model for input of size N , we have that
M (O(log N), O(log N)) = O(1). More generally we have M (N, O(log N)) = O(N log N log log N).

CVIT 2016

23:16 Bag PDB Queries

4.2 Our main result533

We solve Problem 1.6 for any fixed ϵ > 0 in what follows.534

Algorithm Idea. Our approximation algorithm (ApproximateΦ̃ pseudo code in Appendix D.1)535

is based on the following observation. Given a lineage polynomial Φ(X) = poly(C) for circuit C536

over Binary-BIDB (recall that all c-TIDB can be reduced to Binary-BIDB by Proposition 2.4),537

we have:538

Φ̃ (p1, . . . , pn) =
∑

(v,c)∈E(C)

1isInd(vm) · c ·
∏
Xi∈v

pi. (2)539

Given the above, the algorithm is a sampling based algorithm for the above sum: we540

sample (via SampleMonomial) (v, c) ∈ E(C) with probability proportional to |c| and541

compute Y = 1isInd(vm) ·
∏
Xi∈v pi. Repeating the sampling an appropriate number of times542

and computing the average of Y gives us our final estimate. OnePass is used to compute the543

sampling probabilities needed in SampleMonomial (details are in Appendix D).544

Runtime analysis. We can argue the following runtime for the algorithm outlined above:545

▶ Theorem 4.7. Let C be an arbitrary Binary-BIDB circuit, define Φ(X) = poly(C), let546

k = deg(C), and let γ = γ(C). Further let it be the case that pi ≥ p0 for all i ∈ [n]. Then an547

estimate E of Φ̃(p1, . . . , pn) satisfying548

Pr
(∣∣∣E − Φ̃(p1, . . . , pn)

∣∣∣ > ϵ′ · Φ̃(p1, . . . , pn)
)
≤ δ (3)549

can be computed in time550

O

((
size(C) +

log 1
δ · k · log k · depth(C))
(ϵ′)2 · (1− γ)2 · p2k

0

)
· M (log (|C| (1, . . . , 1)), log (size(C)))

)
. (4)551

In particular, if p0 > 0 and γ < 1 are absolute constants then the above runtime simplifies to552

Ok

((
1

(ϵ′)2 · size(C) · log 1
δ

)
· M (log (|C| (1, . . . , 1)), log (size(C)))

)
.553

The restriction on γ is satisfied by any 1-TIDB (where γ = 0 in the equivalent 1-BIDB554

of Proposition 2.4) as well as for all three queries of the PDBench BIDB benchmark (see555

Appendix D.11 for experimental results). Further, we can also argue the following result,556

recalling from Sec. 1 for c-TIDB D =
(
{0, . . . , c}D ,P

)
, where D is the set of possible tuples557

across all possible worlds of D.558

▶ Lemma 4.8. Given RA+ query Q and c-TIDB D, let C be the circuit computed by Q (D).559

Then, for the reduced Binary-BIDB D′ there exists an equivalent circuit C’ obtained from560

Q (D′), such that γ (C′) ≤ 1− (c)−(k−1) with size (C′) ≤ size (C) +O (nc) and depth (C′) =561

depth (C) +O (log c).562

We briefly connect the runtime in Eq. (4) to the algorithm outline earlier (where we563

ignore the dependence onM (·, ·), which is needed to handle the cost of arithmetic operations564

over integers). The size(C) comes from the time taken to run OnePass once (OnePass565

essentially computes |C| (1, . . . , 1) using the natural circuit evaluation algorithm on C). We566

make log 1
δ

(ϵ′)2·(1−γ)2·p2k
0

many calls to SampleMonomial (each of which essentially traces O(k)567

random sink to source paths in C all of which by definition have length at most depth(C)).568

Finally, we address the M (log (|C| (1, . . . , 1)), log (size(C))) term in the runtime.569

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:17

▶ Lemma 4.9. For any Binary-BIDB circuit C with deg(C) = k, we have |C| (1, . . . , 1) ≤570

22k·depth(C). Further, if C is a tree, then we have |C| (1, . . . , 1) ≤ size(C)O(k).571

Note that the above implies that with the assumption p0 > 0 and γ < 1 are absolute572

constants from Theorem 4.7, then the runtime there simplifies to Ok
(

1
(ϵ′)2 · size(C)2 · log 1

δ

)
573

for general circuits C. If C is a tree, then the runtime simplifies to Ok
(

1
(ϵ′)2 · size(C) · log 1

δ

)
,574

which then answers Problem 1.6 with yes for such circuits.575

Finally, note that by Proposition E.1 and Lemma E.2 for any RA+ query Q, there exists a576

circuit C∗ for Φ[Q,D, t] such that depth(C∗) ≤ O|Q|(logn) and size(C) ≤ Ok (Tdet (Q,D, c)).577

Using this along with Lemma 4.9, Theorem 4.7 and the fact that n ≤ Tdet (Q,D, c), we have578

the following corollary:579

▶ Corollary 4.10. Let Q be an RA+ query and D be a Binary-BIDB with p0 > 0 and γ < 1580

(where p0, γ as in Theorem 4.7) are absolute constants. Let Φ(X) = Φ[Q,D, t] for any result581

tuple t with deg(Φ) = k. Then one can compute an approximation satisfying Eq. (3) in time582

Ok,|Q|,ϵ′,δ (Tdet (OPT (Q) , D, c)) (given Q,D and pi for each i ∈ [n] that defines P).583

Next, we note that the above result along with Lemma 4.8 answers Problem 1.5 in the584

affirmative as follows:585

▶ Corollary 4.11. Let Q be an RA+ query and D be a c-TIDB with p0 > 0 (where p0586

as in Theorem 4.7) is an absolute constant. Let Φ(X) = Φ[Q,D, t] for any result tuple587

t with deg(Φ) = k. Then one can compute an approximation satisfying Eq. (3) in time588

Ok,|Q|,ϵ′,δ,c (Tdet (OPT (Q) , D, c)) (given Q,D and pt,j for each t ∈ D, j ∈ [c] that defines589

P).590

Proof of Corollary 4.11. The proof follows by Lemma 4.8, and Corollary 4.10. ◀591

If we want to approximate the expected multiplicities of all Z = O(nk) result tuples592

t simultaneously, we just need to run the above result with δ replaced by δ
Z . Note this593

increases the runtime by only a logarithmic factor.594

5 Related Work595

Probabilistic Databases (PDBs) have been studied predominantly for set semantics.596

Approaches for probabilistic query processing (i.e., computing marginal probabilities of597

tuples), fall into two broad categories. Intensional (or grounded) query evaluation computes598

the lineage of a tuple and then the probability of the lineage formula. It has been shown599

that computing the marginal probability of a tuple is #P-hard [46] (by reduction from600

weighted model counting). The second category, extensional query evaluation, is in PTIME,601

but is limited to certain classes of queries. Dalvi et al. [15] and Olteanu et al. [22] proved602

dichotomies for UCQs and two classes of queries with negation, respectively. Amarilli et al.603

investigated tractable classes of databases for more complex queries [3]. Another line of work604

studies which structural properties of lineage formulas lead to tractable cases [32, 41, 44]. In605

this paper we focus on intensional query evaluation with polynomials.606

Many data models have been proposed for encoding PDBs more compactly than as sets of607

possible worlds. These include tuple-independent databases [47] (TIDBs), block-independent608

databases (BIDBs) [42], and PC-tables [27]. Fink et al. [20] study aggregate queries over609

a probabilistic version of the extension of K-relations for aggregate queries proposed in [4]610

(pvc-tables) that supports bags, and has runtime complexity linear in the size of the lineage.611

However, this lineage is encoded as a tree; the size (and thus the runtime) are still superlinear612

CVIT 2016

23:18 Bag PDB Queries

in Tdet (Q,D, c). The runtime bound is also limited to a specific class of (hierarchical) queries,613

suggesting the possibility of a generalization of [15]’s dichotomy result to bag-PDBs.614

Several techniques for approximating tuple probabilities have been proposed in related615

work [21, 16, 38, 13], relying on Monte Carlo sampling, e.g., [13], or a branch-and-bound616

paradigm [38]. Our approximation algorithm is also based on sampling.617

Compressed Encodings are used for Boolean formulas (e.g, various types of circuits618

including OBDDs [30]) and polynomials (e.g., factorizations [39]) some of which have been619

utilized for probabilistic query processing, e.g., [30]. Compact representations for which620

probabilities can be computed in linear time include OBDDs, SDDs, d-DNNF, and FBDD.621

[17] studies circuits for absorptive semirings while [45] studies circuits that include negation622

(expressed as the monus operation). Algebraic Decision Diagrams [7] (ADDs) generalize623

BDDs to variables with more than two values. Chen et al. [10] introduced the generalized624

disjunctive normal form. Appendix H covers more related work on fine-grained complexity.625

6 Conclusions and Future Work626

We have studied the problem of calculating the expected multiplicity of a bag-query result627

tuple, a problem that has a practical application in probabilistic databases over multisets. We628

show that under various parameterized complexity hardness results/conjectures computing the629

expected multiplicities exactly is not possible in time linear in the corresponding deterministic630

query processing time. We prove that it is possible to approximate the expectation of a631

lineage polynomial in linear time in the deterministic query processing over TIDBs and BIDBs632

(assuming that there are few cancellations). Interesting directions for future work include633

development of a dichotomy for bag PDBs. While we can handle higher moments (this634

follows fairly easily from our existing results– see Appendix F), more general approximations635

are an interesting area for exploration, including those for more general data models.636

References637

1 pdbench. http://pdbench.sourceforge.net/. Accessed: 2020-12-15.638

2 Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha U. Nabar,639

Tomoe Sugihara, and Jennifer Widom. Trio: A system for data, uncertainty, and lineage. In640

VLDB, pages 1151–1154, 2006.641

3 Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Probabilities and provenance via tree642

decompositions. PODS, 2015.643

4 Yael Amsterdamer, Daniel Deutch, and Val Tannen. Provenance for aggregate queries. In644

PODS, pages 153–164, 2011.645

5 Lyublena Antova, Thomas Jansen, Christoph Koch, and Dan Olteanu. Fast and simple646

relational processing of uncertain data.647

6 Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for relational648

joins. SIAM J. Comput., 42(4):1737–1767, 2013. doi:10.1137/110859440.649

7 R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii, Abelardo650

Pardo, and Fabio Somenzi. Algebraic decision diagrams and their applications. In IEEE CAD,651

1993.652

8 George Beskales, Ihab F. Ilyas, and Lukasz Golab. Sampling the repairs of functional653

dependency violations under hard constraints. Proc. VLDB Endow., 3(1):197–207, 2010.654

9 Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. Algebraic complexity655

theory, volume 315. Springer, 1997.656

10 Hubie Chen and Martin Grohe. Constraint satisfaction with succinctly specified relations. J.657

Comput. Syst. Sci., 76(8):847–860, 2010.658

http://pdbench.sourceforge.net/
https://doi.org/10.1137/110859440

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:19

11 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds659

via parameterized complexity. Journal of Computer and System Sciences, 72(8):1346–1367,660

2006. URL: https://www.sciencedirect.com/science/article/pii/S0022000006000675,661

doi:https://doi.org/10.1016/j.jcss.2006.04.007.662

12 Radu Curticapean. Counting matchings of size k is w[1]-hard. In ICALP, volume 7965, pages663

352–363, 2013.664

13 N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. VLDB, 16(4):544,665

2007.666

14 Nilesh Dalvi and Dan Suciu. The dichotomy of conjunctive queries on probabilistic structures.667

In PODS, pages 293–302, 2007.668

15 Nilesh Dalvi and Dan Suciu. The dichotomy of probabilistic inference for unions of conjunctive669

queries. JACM, 59(6):30, 2012.670

16 Maarten Van den Heuvel, Peter Ivanov, Wolfgang Gatterbauer, Floris Geerts, and Martin671

Theobald. Anytime approximation in probabilistic databases via scaled dissociations. In672

SIGMOD, pages 1295–1312, 2019.673

17 Daniel Deutch, Tova Milo, Sudeepa Roy, and Val Tannen. Circuits for datalog provenance. In674

ICDT, pages 201–212, 2014.675

18 Su Feng, Boris Glavic, Aaron Huber, and Oliver Kennedy. Efficient uncertainty tracking for676

complex queries with attribute-level bounds. In SIGMOD, 2021.677

19 Su Feng, Aaron Huber, Boris Glavic, and Oliver Kennedy. Uncertainty annotated databases -678

a lightweight approach for approximating certain answers. In SIGMOD, 2019.679

20 Robert Fink, Larisa Han, and Dan Olteanu. Aggregation in probabilistic databases via680

knowledge compilation. PVLDB, 5(5):490–501, 2012.681

21 Robert Fink, Jiewen Huang, and Dan Olteanu. Anytime approximation in probabilistic682

databases. VLDBJ, 22(6):823–848, 2013.683

22 Robert Fink and Dan Olteanu. Dichotomies for queries with negation in probabilistic databases.684

TODS, 41(1):4:1–4:47, 2016.685

23 Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. In686

Proceedings of the 43rd Symposium on Foundations of Computer Science, FOCS ’02, page 538,687

USA, 2002. IEEE Computer Society.688

24 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical689

Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.690

25 Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database systems - the691

complete book (2. ed.). Pearson Education, 2009.692

26 Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance semirings. In PODS,693

pages 31–40, 2007.694

27 Todd J Green and Val Tannen. Models for incomplete and probabilistic information. In EDBT,695

pages 278–296. 2006.696

28 T. Imielinski and W. Lipski. Incomplete information in relational databases. 1989.697

29 Tomasz Imieliński and Witold Lipski Jr. Incomplete information in relational databases.698

JACM, 31(4):761–791, 1984.699

30 Abhay Kumar Jha and Dan Suciu. Probabilistic databases with markoviews. PVLDB,700

5(11):1160–1171, 2012.701

31 Richard M. Karp, Michael Luby, and Neal Madras. Monte-carlo approximation algorithms for702

enumeration problems. J. Algorithms, 10(3):429–448, 1989.703

32 Batya Kenig, Avigdor Gal, and Ofer Strichman. A new class of lineage expressions over704

probabilistic databases computable in p-time. In SUM, volume 8078, pages 219–232, 2013.705

33 Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. Faq: Questions asked frequently. In706

PODS, pages 13–28, 2016.707

34 Tsvi Kopelowitz and Virginia Vassilevska Williams. Towards optimal set-disjointness and708

set-intersection data structures. In ICALP, volume 168, pages 74:1–74:16, 2020.709

CVIT 2016

https://www.sciencedirect.com/science/article/pii/S0022000006000675
https://doi.org/https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1007/3-540-29953-X

23:20 Bag PDB Queries

35 Poonam Kumari, Said Achmiz, and Oliver Kennedy. Communicating data quality in on-demand710

curation. In QDB, 2016.711

36 Hung Q. Ngo. Worst-case optimal join algorithms: Techniques, results, and open problems.712

In PODS, 2018.713

37 Hung Q. Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: new developments in the714

theory of join algorithms. SIGMOD Rec., 42(4):5–16, 2013.715

38 Dan Olteanu, Jiewen Huang, and Christoph Koch. Approximate confidence computation in716

probabilistic databases. In ICDE, pages 145–156, 2010.717

39 Dan Olteanu and Maximilian Schleich. Factorized databases. SIGMOD Rec., 45(2):5–16, 2016.718

40 Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. Holoclean: Holistic data719

repairs with probabilistic inference. Proc. VLDB Endow., 10(11):1190–1201, 2017.720

41 Sudeepa Roy, Vittorio Perduca, and Val Tannen. Faster query answering in probabilistic721

databases using read-once functions. In ICDT, 2011.722

42 C. Ré and D. Suciu. Materialized views in probabilistic databases: for information exchange723

and query optimization. In VLDB, pages 51–62, 2007.724

43 Christopher De Sa, Alexander Ratner, Christopher Ré, Jaeho Shin, Feiran Wang, Sen Wu, and725

Ce Zhang. Incremental knowledge base construction using deepdive. VLDB J., 26(1):81–105,726

2017.727

44 Prithviraj Sen, Amol Deshpande, and Lise Getoor. Read-once functions and query evaluation728

in probabilistic databases. PVLDB, 3(1):1068–1079, 2010.729

45 Pierre Senellart. Provenance and probabilities in relational databases. SIGMOD Record,730

46(4):5–15, 2018.731

46 Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,732

8(3):410–421, 1979.733

47 Guy Van den Broeck and Dan Suciu. Query processing on probabilistic data: A survey. 2017.734

48 Virginia Vassilevska Williams. Some open problems in fine-grained complexity. SIGACT News,735

49(4):29–35, 2018. doi:10.1145/3300150.3300158.736

49 Ying Yang, Niccolò Meneghetti, Ronny Fehling, Zhen Hua Liu, Dieter Gawlick, and Oliver737

Kennedy. Lenses: An on-demand approach to etl. PVLDB, 8(12):1578–1589, 2015.738

7 Acknowledgements739

We thank Virginia Williams for showing us Eq. (20), which greatly simplified our earlier740

proof of Lemma 3.8, and for graciously allowing us to use it.741

https://doi.org/10.1145/3300150.3300158

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:21

A Generalizing Beyond Set Inputs742

A.1 TIDBs743

In our definition of TIDBs (Sec. 2.2), we assumed a model of TIDBs where each input tuple744

is assigned a probability p of having multiplicity 1. That is, we assumed inputs to be sets,745

but interpret queries under bag semantics. Other sensible generalizations of TIDBs from set746

semantics to bag semantics also exist.747

One very natural such generalization is to assign each input tuple t a multiplicity mt and748

probability p: the tuple has probability p to exists with multiplicity mt, and otherwise has749

multiplicity 0. If the maximal multiplicity of all input tuples in the TIDB is bounded by750

some constant, then a generalization of our hardness results and approximation algorithm751

can be achieved by changing the construction of lineage polynomials (in Fig. 1) as follows752

(all other cases remain the same as in fig. 1):753

Φ[R,DΩ, t] =
{
mtXt if DΩ.R (t) = mt

0 otherwise.
754

755

That is the variable representing a tuple is multiplied by mt to encode the tuple’s multiplicity756

mt. We note that our lower bounds still hold for this model since we only need mt = 1 for all757

tuples t. Further, it can be argued that our proofs (as is) for approximation algorithms also758

work for this model. The only change is that since we now allow mt > 1 some of the constants759

in the runtime analysis of our algorithms change but the overall asymptotic runtime bound760

remains the same.761

Yet another option would be to assign each tuple a probability distribution over multiplicities.762

It seems very unlikely that our results would extend to a model that allows arbitrary763

probability distributions over multiplicities (our current proof techniques definitely break764

down). However, we would like to note that the special case of a Poisson binomial distribution765

(sum of independent but not necessarily identical Bernoulli trials) over multiplicities can be766

handled as follows: we add an additional identifier attribute to each relation in the database.767

For a tuple t with maximal multiplicity mt, we create mt copies of t with different identifiers.768

To answer a query over this encoding, we first project away the identifier attribute (note that769

as per Fig. 1, in Φ this would add up all the variables corresponding to the same tuple t).770

A.2 BIDBs771

The approach described above works for BIDBs as well if we define the bag version of BIDBs772

to associate each tuple t a multiplicity mt. Recall that we associate each tuple in a block773

with a unique variable. Thus, the modified lineage polynomial construction shown above can774

be applied for BIDBs too (and our approximation results also hold).775

B Missing details from Section 2776

B.1 K-relations and N[X]-encoded PDBs777

We can use K-relations to model bags. A K-relation [26] is a relation whose tuples778

are annotated with elements from a commutative semiring K = {K,⊕K,⊗K,0K,1K}. A779

commutative semiring is a structure with a domain K and associative and commutative780

binary operations ⊕K and ⊗K such that ⊗K distributes over ⊕K, 0K is the identity of ⊕K,781

CVIT 2016

23:22 Bag PDB Queries

1K is the identity of ⊗K, and 0K annihilates all elements of K when combined by ⊗K. Let782

U be a countable domain of values. Formally, an n-ary K-relation R over U is a function783

R : Un → K with finite support supp(R) = {t | R(t) ̸= 0K}. A K-database is defined784

similarly, where we view the K-database (relation) as a function mapping tuples to their785

respective annotations. RA+ query semantics over K-relations are analogous to the lineage786

construction semantics of Fig. 1, with the exception of replacing + with ⊕K and · with ⊗K.787

Consider the semiring N = {N,+,×, 0, 1} of natural numbers. N-databases model bag788

semantics by annotating each tuple with its multiplicity. A probabilistic N-database (N-PDB)789

is a PDB where each possible world is an N-database. We study the problem of computing790

statistical moments for query results over such databases. Given an N-PDB D = (Ω,P),791

(RA+) query Q, and possible result tuple t, we sum Q(D)(t) ·P (D) for all D ∈ Ω to compute792

the expected multiplicity of t. Intuitively, the expectation of Q(D)(t) is the number of793

duplicates of t we expect to find in result of query Q.794

Let N[X] denote the set of polynomials over variables X = (X1, . . . , Xn) with natural795

number coefficients and exponents. Consider now the semiring (abusing notation) N[X] =796

{N[X],+, ·, 0, 1} whose domain is N[X], with the standard addition and multiplication of797

polynomials. We define an N[X]-encoded PDB DN[X] as the tuple (DN[X],P), where N[X]-798

database DN[X] is paired with the probability distribution P across the set of possible worlds799

represented by DN[X], i.e. the one induced from PN[X], the probability distribution over X.800

Note that the notation is slightly abused since the first element of the pair is an encoded801

set of possible worlds, i.e. DN[X] is the deterministic bounding database. We denote by802

Φ[Q,DN[X], t] the annotation of tuple t in the result of Q(DN[X])(t), and as before, interpret803

it as a function Φ[Q,DN[X], t] : {0, 1}|X| → N from vectors of variable assignments to the804

corresponding value of the annotating polynomial. N[X]-encoded PDBs and a function Mod805

(which transforms an N[X]-encoded PDB to an equivalent N-PDB) are both formalized next.806

To justify the use of N[X]-databases, we need to show that we can encode any N-PDB in807

this way and that the query semantics over this representation coincides with query semantics808

over its respective N-PDB. For that it will be opportune to define representation systems for809

N-PDBs.810

▶ Definition B.1 (Representation System). A representation system for N-PDBs is a tuple811

(M,Mod) where M is a set of representations and Mod associates with each M ∈ M an812

N-PDB D. We say that a representation system is closed under a class of queries Q if for813

any query Q ∈ Q and M ∈M we have:814

Mod(Q(M)) = Q(Mod(M))815

A representation system is complete if for every N-PDB D there exists M ∈ M such816

that:817

Mod(M) = D818

As mentioned above we will use N[X]-databases paired with a probability distribution819

as a representation system, referring to such databases as N[X]-encoded PDBs. Given820

N[X]-encoded PDB DN[X], one can think of the of P as the probability distribution across821

all worlds {0, 1}n. Denote a particular world to be w. For convenience let ψw : DN[X] → DN822

be a function that computes the corresponding N-PDB upon assigning all values wi ∈ w to823

Xi ∈ X of DN[X]. Note the one-to-one correspondence between elements w ∈ {0, 1}n to the824

worlds encoded by DN[X] when w is assigned to X (assuming a domain of {0, 1} for each Xi).825

We can think of ψw(DN[X]) (t) as the semiring homomorphism N[X]→ N that applies the826

assignment w to all variables X of a polynomial and evaluates the resulting expression in N.827

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:23

▶ Definition B.2 (Mod
(
DN[X]

)
). Given an N[X]-encoded PDB DN[X], we compute its828

equivalent N-PDB DN = Mod
(
DN[X]

)
= (Ω,P ′) as:829

Ω = {ψw(DN[X]) | w ∈ {0, 1}n}830

∀D ∈ Ω : Pr(D) =
∑

w∈{0,1}n:ψw(DN[X])=D

Pr(w)831

832

For instance, consider a DN[X] consisting of a single tuple t1 = (1) annotated with833

X1 + X2 with probability distribution Pr([0, 0]) = 0, Pr([0, 1]) = 0, Pr([1, 0]) = 0.3 and834

Pr([1, 1]) = 0.7. This N[X]-encoded PDB encodes two possible worlds (with non-zero835

probability) that we denote using their world vectors.836

D[0,1](t1) = 1 and D[1,1](t1) = 2837

Importantly, as the following proposition shows, any finite N-PDB can be encoded as an838

N[X]-encoded PDB and N[X]-encoded PDBs are closed under RA+[26].839

▶ Proposition B.3. N[X]-encoded PDBs are a complete representation system for N-PDBs840

that is closed under RA+ queries.841

Proof. To prove that N[X]-encoded PDBs are complete consider the following construction842

that for any N-PDB D = (Ω,P) produces an N[X]-encoded PDB DN[X] = (DN[X],P ′) such843

that Mod(DN[X]) = D. Let Ω = {D1, . . . , D|Ω|}. For each world Di we create a corresponding844

variable Xi. In DN[X] we assign each tuple t the polynomial:845

DN[X](t) =
|Ω|∑
i=1

Di(t) ·Xi846

The probability distribution P ′ assigns all world vectors zero probability except for |Ω| world847

vectors (representing the possible worlds) wi. All elements of wi are zero except for the848

position corresponding to variables Xi which is set to 1. Unfolding definitions it is trivial849

to show that Mod(DN[X]) = D. Thus, N[X]-encoded PDBs are a complete representation850

system.851

Since N[X] is the free object in the variety of semirings, Birkhoff’s HSP theorem implies852

that any assignment X→ N, which includes as a special case the assignments ψw used here,853

uniquely extends to the semiring homomorphism alluded to above, ψw
(
DN[X]

)
(t) : N[X]→ N.854

For a polynomial ψw
(
DN[X]

)
(t) substitutes variables based on w and then evaluates the855

resulting expression in N. For instance, consider the polynomial DN[X] (t) = Φ = X + Y856

and assignment w := X = 0, Y = 1. We get ψw
(
DN[X]

)
(t) = 0 + 1 = 1. Closure under857

RA+ queries follows from this and from [26]’s Proposition 3.5, which states that semiring858

homomorphisms commute with queries over K-relations. ◀859

B.2 TIDBs and BIDBs in the N[X]-encoded PDB model860

Two important subclasses of N[X]-encoded PDBs that are of interest to us are the bag861

versions of tuple-independent databases (TIDBs) and block-independent databases (BIDBs).862

Under set semantics, a TIDB is a deterministic database D where each tuple t is assigned863

a probability pt. The set of possible worlds represented by a TIDB D is all subsets of D.864

The probability of each world is the product of the probabilities of all tuples that exist with865

one minus the probability of all tuples of D that are not part of this world, i.e., tuples are866

treated as independent random events. In a BIDB, we also assign each tuple a probability,867

CVIT 2016

23:24 Bag PDB Queries

but additionally partition D into blocks. The possible worlds of a BIDB D are all subsets of868

D that contain at most one tuple from each block. Note then that the tuples sharing the869

same block are disjoint, and the sum of the probabilitites of all the tuples in the same block870

B is at most 1. The probability of such a world is the product of the probabilities of all871

tuples present in the world. For bag TIDBs and BIDBs, we define the probability of a tuple872

to be the probability that the tuple exists with multiplicity at least 1.873

In this work, we define TIDBs and BIDBs as subclasses of N[X]-encoded PDBs defined874

over variables X (Definition B.2) where X can be partitioned into blocks that satisfy the875

conditions of a TIDB or BIDB (stated formally in Sec. 2.2). In this work, we consider876

one further deviation from the standard: We use bag semantics for queries. Even though877

tuples cannot occur more than once in the input TIDB or BIDB, they can occur with a878

multiplicity larger than one in the result of a query. Since in TIDBs and BIDBs, there is a879

one-to-one correspondence between tuples in the database and variables, we can interpret a880

vector w ∈ {0, 1}n as denoting which tuples exist in the possible world ψw(DN[X]) (the ones881

where wi = 1). For BIDBs specifically, note that at most one of the bits corresponding to882

tuples in each block will be set (i.e., for any pair of bits wj , wj′ that are part of the same883

block bi ⊇ {ti,j , ti,j′}, at most one of them will be set). Denote the vector p to be a vector884

whose elements are the individual probabilities pi of each tuple ti. Given PDB Dt P is the885

distribution induced by p, which we will denote P(p).886

E
W∼P(p)

[Φ(W)] =
∑

w∈{0,1}n

s.t.wj ,wj′ =1↛∃bi⊇{ti,j ,ti′,j}

Φ(w)
∏
j∈[n]

s.t.wj=1

pj
∏
j∈[n]

s.t.wj=0

(1− pi) (5)887

888

Recall that tuple blocks in a TIDB always have size 1, so the outer summation of eq. (5) is889

over the full set of vectors.890

B.3 Proof of Proposition 2.8891

Proof. We need to prove for N-PDB D = (Ω,P) and N[X]-encoded PDB DN[X] = (D′
N[X],P

′)892

where Mod(DN[X]) = D that ED∼P [Q(D)(t)] = EW∼P′
[
Φ[Q,DN[X], t](W)

]
By expanding893

Φ[Q,DN[X], t] and the expectation we have:894

E
W∼P′

[Φ(W)] =
∑

w∈{0,1}n

Pr(w) ·Q(DN[X])(t)(w)895

896

From Mod(DN[X]) = D, we have that the range of ψw(DN[X]) is Ω, so897

=
∑
D∈Ω

∑
w∈{0,1}n:ψw(DN[X])=D

Pr(w) ·Q(DN[X])(t)(w)898

899

The inner sum is only over w where ψw(DN[X]) = D (i.e., Q(DN[X])(t)(w) = Q(D)(t))900

=
∑
D∈Ω

∑
w∈{0,1}n:ψw(DN[X])=D

Pr(w) ·Q(D)(t)901

902

By distributivity of + over ×903

=
∑
D∈Ω

Q(D)(t)
∑

w∈{0,1}n:ψw(DN[X])=D

Pr(w)904

905

From the definition of P in definition B.2, given Mod(DN[X]) = D, we get906

=
∑
D∈Ω

Q(D)(t) · Pr(D) = E
D∼P

[Q(D)(t)]907

908

◀909

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:25

B.4 Proposition B.4910

Note the following fact:911

▶ Proposition B.4. For any BIDB-lineage polynomial Φ(X1, . . . , Xn) and all w such that912

Pr[W = w] > 0, it holds that Φ(w) = Φ̃(w).913

Proof. Note that any Φ in factorized form is equivalent to its SMB expansion. For each914

term in the expanded form, further note that for all b ∈ {0, 1} and all e ≥ 1, be = b.915

Finally, note that there are exactly three cases where the expectation of a monomial term916

E
[
cd
∏
i=n s.t. di≥1 Xi

]
is zero: (i) when cd = 0, (ii) when pi = 0 for some i where di ≥ 1,917

and (iii) when Xi and Xj are in the same block for some i, j where di,dj ≥ 1. ◀918

B.5 Proof for Lemma 1.4919

Proof. Let Φ be a polynomial of n variables with highest degree = K, defined as follows:920

Φ(X1, . . . , Xn) =
∑

d∈{0,...,K}n

cd ·
n∏
i=1

s.t.di≥1

Xdi
i .921

Let the boolean function isInd (·) take d as input and return true if there does not exist any922

dependent variables in d, i.e., ̸ ∃ B, i ̸= j | dB,i, dB,j ≥ 1.13. Then in expectation we have923

E
W

[Φ(W)] = E
W

 ∑
d∈{0,...,K}n

∧ isInd(d)

cd ·
n∏
i=1

s.t.di≥1

W di
i +

∑
d∈{0,...,K}n

∧ ¬isInd(d)

cd ·
n∏
i=1

s.t.di≥1

W di
i

 (6)924

=
∑

d∈{0,...,K}n

∧ isInd(d)

cd · E
W

 n∏
i=1

s.t.di≥1

W di
i

+
∑

d∈{0,...,K}n

∧ ¬isInd(d)

cd · E
W

 n∏
i=1

s.t.di≥1

W di
i

 (7)925

=
∑

d∈{0,...,K}n

∧isInd(d)

cd · E
W

 n∏
i=1

s.t.di≥1

W di
i

 (8)926

=
∑

d∈{0,...,K}n

∧ isInd(d)

cd ·
n∏
i=1

s.t.di≥1

E
W

[
W di
i

]
(9)927

=
∑

d∈{0,...,K}n

∧ isInd(d)

cd ·
n∏
i=1

s.t.di≥1

E
W

[Wi] (10)928

=
∑

d∈{0,...,K}n

∧ isInd(d)

cd ·
n∏
i=1

s.t.di≥1

pi (11)929

= Φ̃(p1, . . . , pn). (12)930
931

13 This BIDB notation is used and discussed in sec. 2.2

CVIT 2016

23:26 Bag PDB Queries

Eq. (6) is the result of substituting in the definition of Φ given above. Then we arrive at932

eq. (7) by linearity of expectation. Next, eq. (8) is the result of the independence constraint933

of BIDBs, specifically that any monomial composed of dependent variables, i.e., variables934

from the same block B, has a probability of 0. Eq. (9) is obtained by the fact that all935

variables in each monomial are independent, which allows for the expectation to be pushed936

through the product. In eq. (10), since Wi ∈ {0, 1} it is the case that for any exponent e ≥ 1,937

W e
i = Wi. Next, in eq. (11) the expectation of a tuple is indeed its probability.938

Finally, it can be verified that Eq. (12) follows since eq. (11) satisfies the construction of939

Φ̃(p1, . . . , pn) in Definition 1.3. ◀940

B.6 Proof For Corollary 2.7941

Proof. Note that Lemma 1.4 shows that E [Φ] = Φ̃(p1, . . . , pn). Therefore, if Φ is already942

in SMB form, one only needs to compute Φ(p1, . . . , pn) ignoring exponent terms (note that943

such a polynomial is Φ̃(p1, . . . , pn)), which indeed has O (|Φ|) computations. ◀944

C Missing details from Section 3945

C.1 Lemma C.1946

▶ Lemma C.1. Assuming that each v ∈ V has degree ≥ 1,14 the PDB relations encoding the947

edges for ΦkG of Definition 3.4 can be computed in O (m) time.948

Proof of Lemma C.1. Only two relations need be constructed, one for the set V and one for949

the set E. By a simple linear scan, each can be constructed in time O (m+ n). Given that950

the degree of each v ∈ V is at least 1, we have that m ≥ Ω(n), and this yields the claimed951

runtime. ◀952

C.2 Proof of Lemma 3.5953

Proof. By the recursive defintion of Tdet (·, ·) (see Sec. 2.4), we have the following equation954

for our hard query Q when k = 1, (we denote this as Q1).955

Tdet
(
Q1, D

)
= |D.V |+ |D.E|+ |D.V |+ Tjoin(D.V,D.E,D.V).956

We argue that Tjoin(D.V,D.E,D.V) is at most O(m) by noting that there exists an957

algorithm that computes D.V⋊⋉D.E⋊⋉D.V in the same runtime15. Then by the assumption958

of Lemma C.1 (each v ∈ V has degree ≥ 1), the sum of the first three terms is O (m). We959

then obtain that Tdet
(
Q1, D

)
= O (m) +O (m) = O (m). For Qk = Q1

1 × · · · ×Q1
k, we have960

the recurrence Tdet
(
Qk, D

)
= Tdet

(
Q1

1, D
)

+ · · ·+ Tdet
(
Q1
k, D

)
+ Tjoin(Q1

1, · · · , Q1
k). Since961

Q1 outputs a count, computing the join Q1
1⋊⋉ · · ·⋊⋉Q1

k is just multiplying k numbers, which962

takes O(k) time. Thus, we have963

Tdet
(
Qk, D

)
≤ k ·O(m) +O(k) ≤ O(km),964

as desired. ◀965

14 This is WLOG, since any vertex with degree 0 can be dropped without affecting the result of our hard
query.

15 Indeed the trivial algorithm that computes the obvious pair-wise joins has the claimed runtime. That is,
we first compute D.V ⋊⋉D.E, which takes O(m) (assuming D.V is stored in hash map) since tuples in
D.V can only filter tuples in D.E. The resulting subset of tuples in D.E are then again joined (on the
right) with D.V , which by the same argument as before also takes O(m) time, as desried.

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:27

C.3 Lemma C.2966

The following lemma reduces the problem of counting k-matchings in a graph to our problem967

(and proves Theorem 3.6):968

▶ Lemma C.2. Let p0, . . . , p2k be distinct values in (0, 1]. Then given the values Φ̃kG(pi, . . . , pi)969

for 0 ≤ i ≤ 2k, the number of k-matchings in G can be computed in O
(
k3) time.970

C.4 Proof of Lemma C.2971

Proof. We first argue that Φ̃kG(p, . . . , p) =
2k∑
i=0

ci · pi. First, since ΦG(X) has degree 2, it972

follows that ΦkG(X) has degree 2k. By definition, Φ̃kG(X) sets every exponent e > 1 to e = 1,973

which means that deg(Φ̃kG) ≤ deg(Φk
G) = 2k. Thus, if we think of p as a variable, then974

Φ̃kG(p, . . . , p) is a univariate polynomial of degree at most deg(Φ̃kG) ≤ 2k. Thus, we can write975

Φ̃kG(p, . . . , p) =
2k∑
i=0

cip
i

976

We note that ci is exactly the number of monomials in the SMB expansion of ΦkG(X) composed977

of i distinct variables.16
978

Given that we then have 2k + 1 distinct values of Φ̃kG(p, . . . , p) for 0 ≤ i ≤ 2k, it follows979

that we have a linear system of the form M · c = b where the ith row of M is
(
p0
i . . . p

2k
i

)
,980

c is the coefficient vector (c0, . . . , c2k), and b is the vector such that b[i] = Φ̃kG(pi, . . . , pi).981

In other words, matrix M is the Vandermonde matrix, from which it follows that we have982

a matrix with full rank (the pi’s are distinct), and we can solve the linear system in O(k3)983

time (e.g., using Gaussian Elimination) to determine c exactly. Thus, after O(k3) work, we984

know c and in particular, c2k exactly.985

Next, we show why we can compute #
(
G, · · · k

)
from c2k in O(1) additional time. We986

claim that c2k is k! ·#
(
G, · · · k

)
. This can be seen intuitively by looking at the expansion987

of the original factorized representation988

ΦkG(X) =
∑

(i1,j1),··· ,(ik,jk)∈E

Xi1Xj1 · · ·XikXjk
,989

where a unique k-matching in the multi-set of product terms can be selected
∏k
i=1 i = k!990

times. Indeed, note that each k-matching (i1, j1) . . . (ik, jk) in G corresponds to the monomial991 ∏k
ℓ=1 XiℓXjℓ

in ΦkG(X), with distinct indexes, and this implies that each distinct k-matching992

appears the exact number of permutations that exist for its particular set of k edges, or k!.993

Since, as noted earlier, c2k represents the number of monomials with 2k distinct variables,994

then it must be that c2k is the overall number of k-matchings. And since we have k! copies995

of each distinct k-matching, it follows that c2k = k! ·#
(
G, · · · k

)
. Thus, simply dividing996

c2k by k! gives us #
(
G, · · · k

)
, as needed. ◀997

C.5 Proof of Theorem 3.6998

Proof. For the sake of contradiction, assume we can solve our problem in o (Tmatch (k,G))999

time. Given a graph G by Lemma C.1 we can compute the PDB encoding in O (m) time. Then1000

16 Since Φ̃k
G(X) does not have any monomial with degree < 2, it is the case that c0 = c1 = 0 but for the

sake of simplcity we will ignore this observation.

CVIT 2016

23:28 Bag PDB Queries

after we run our algorithm on Φ̃kG, we get Φ̃kG(pi, . . . , pi) for every 0 ≤ i ≤ 2k in additional1001

O (k) · o (Tmatch (k,G)) time. Lemma C.2 then computes the number of k-matchings in G in1002

O(k3) time. Adding the runtime of all of these steps, we have an algorithm for computing1003

the number of k-matchings that runs in time1004

O (m) +O (k) · o (Tmatch (k,G)) +O(k3) (13)1005

≤ o (Tmatch (k,G)) . (14)1006
1007

We obtain Eq. (14) from the facts that k is fixed (related to m) and the assumption that1008

Tmatch (k,G) ≥ ω(m). Thus we obtain the contradiction that we can achieve a runtime1009

o (Tmatch (k,G)) that is better than the optimal time Tmatch (k,G) required to compute1010

k-matchings. ◀1011

C.6 Subgraph Notation and O(1) Closed Formulas1012

We need all the possible edge patterns in an arbitrary G with at most three distinct edges.1013

We have already seen , and , so we define the remaining patterns:1014

Single Edge ()1015

2-path ()1016

2-matching ()1017

3-star ()–this is the graph that results when all three edges share exactly one common1018

endpoint. The remaining endpoint for each edge is disconnected from any endpoint of1019

the remaining two edges.1020

Disjoint Two-Path ()–this subgraph consists of a two-path and a remaining disjoint1021

edge.1022

For any graph G, the following formulas for # (G,H) compute their respective patterns1023

exactly in O(m) time, with di representing the degree of vertex i (proofs are in Appendix C.7):1024

(G,) = m, (15)1025

(G,) =
∑
i∈V

(
di
2

)
(16)1026

(G,) =
∑

(i,j)∈E

m− di − dj + 1
2 (17)1027

(G,) =
∑
i∈V

(
di
3

)
(18)1028

(G,) + 3# (G,) =
∑

(i,j)∈E

(
m− di − dj + 1

2

)
(19)1029

(G,) + 3# (G,) =
∑

(i,j)∈E

(di − 1) · (dj − 1) (20)1030

1031

1032

C.7 Proofs of Eq. (15)-Eq. (20)1033

The proofs for Eq. (15), Eq. (16) and Eq. (18) are immediate.1034

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:29

Proof of Eq. (17). For edge (i, j) connecting arbitrary vertices i and j, finding all other1035

edges in G disjoint to (i, j) is equivalent to finding all edges that are not connected to either1036

vertex i or j. The number of such edges is m− di − dj + 1, where we add 1 since edge (i, j)1037

is removed twice when subtracting both di and dj . Since the summation is iterating over1038

all edges such that a pair ((i, j), (k, ℓ)) will also be counted as ((k, ℓ), (i, j)), division by 21039

then eliminates this double counting. Note that m and di for all i ∈ V can be computed in1040

one pass over the set of edges by simply maintaining counts for each quantity. Finally, the1041

summation is also one traversal through the set of edges where each operation is either a1042

lookup (O(1) time) or an addition operation (also O(1)) time. ◀1043

Proof of Eq. (19). Eq. (19) is true for similar reasons. For edge (i, j), it is necessary to find1044

two additional edges, disjoint or connected. As in our argument for Eq. (17), once the number1045

of edges disjoint to (i, j) have been computed, then we only need to consider all possible1046

combinations of two edges from the set of disjoint edges, since it doesn’t matter if the two1047

edges are connected or not. Note, the factor 3 of is necessary to account for the triple1048

counting of 3-matchings, since it is indistinguishable to the closed form expression which of1049

the remaining edges are either disjoint or connected to each of the edges in the initial set of1050

edges disjoint to the edge under consideration. Observe that the disjoint case will be counted1051

3 times since each edge of a 3-path is visited once, and the same 3-path counted in each1052

visitation. For the latter case however, it is true that since the two path in is connected,1053

there will be no multiple counting by the fact that the summation automatically disconnects1054

the current edge, meaning that a two matching at the current vertex under consideration1055

will not be counted. Thus, will only be counted once, precisely when the single disjoint1056

edge is visited in the summation. The sum over all such edge combinations is precisely then1057

(G,) + 3# (G,). Note that all factorials can be computed in O(m) time, and then1058

each combination
(
n
2
)

can be performed with constant time operations, yielding the claimed1059

O(m) run time. ◀1060

Proof of Eq. (20). To compute # (G,), note that for an arbitrary edge (i, j), a 3-path1061

exists for edge pair (i, ℓ) and (j, k) where i, j, k, ℓ are distinct. Further, the quantity (di −1062

1) · (dj − 1) represents the number of 3-edge subgraphs with middle edge (i, j) and outer1063

edges (i, ℓ), (j, k) such that ℓ ̸= j and k ̸= i. When k = ℓ, the resulting subgraph is a triangle,1064

and when k ̸= ℓ, the subgraph is a 3-path. Summing over all edges (i, j) gives Eq. (20) by1065

observing that each triangle is counted thrice, while each 3-path is counted just once. For1066

reasons similar to Eq. (17), all di can be computed in O(m) time and each summand can1067

then be computed in O(1) time, yielding an overall O(m) run time. ◀1068

C.8 Tools to prove Theorem 3.71069

Note that Φ̃3
G(p, . . . , p) as a polynomial in p has degree at most six. Next, we figure out the1070

exact coefficients since this would be useful in our arguments:1071

▶ Lemma C.3. For any p, we have:1072

Φ̃3
G(p, . . . , p) = # (G,) p2 + 6# (G,) p3 + 6# (G,) p4 + 6# (G,) p3

1073

+ 6# (G,) p4 + 6# (G,) p4 + 6# (G,) p5 + 6# (G,) p6. (21)10741075

CVIT 2016

23:30 Bag PDB Queries

C.8.1 Proof for Lemma C.31076

Proof. By definition we have that1077

Φ3
G(X) =

∑
(i1,j1),(i2,j2),(i3,j3)∈E

3∏
ℓ=1

XiℓXjℓ
.1078

Hence Φ̃3
G(X) has degree six. Note that the monomial

∏3
ℓ=1 XiℓXjℓ

will contribute to the1079

coefficient of pν in Φ̃3
G(X), where ν is the number of distinct variables in the monomial. Let1080

e1 = (i1, j1), e2 = (i2, j2), and e3 = (i3, j3). We compute Φ̃3
G(X) by considering each of the1081

three forms that the triple (e1, e2, e3) can take.1082

case 1: e1 = e2 = e3 (all edges are the same). When we have that e1 = e2 = e3, then1083

the monomial corresponds to # (G,). There are exactly m such triples, each with a p2
1084

factor in Φ̃3
G (p, . . . , p).1085

case 2: This case occurs when there are two distinct edges of the three, call them e and1086

e′. When there are two distinct edges, there is then the occurence when 2 variables in the1087

triple (e1, e2, e3) are bound to e. There are three combinations for this occurrence in Φ3
G(X).1088

Analogusly, there are three such occurrences in Φ3
G(X) when there is only one occurrence of1089

e, i.e. 2 of the variables in (e1, e2, e3) are e′. This implies that all 3 + 3 = 6 combinations of1090

two distinct edges e and e′ contribute to the same monomial in Φ̃3
G. Since e ̸= e′, this case1091

produces the following edge patterns: , , which contribute 6p3 and 6p4 respectively to1092

Φ̃3
G (p, . . . , p).1093

case 3: All e1, e2 and e3 are distinct. For this case, we have 3! = 6 permutations1094

of (e1, e2, e3), each of which contribute to the same monomial in the SMB representation1095

of Φ3
G(X). This case consists of the following edge patterns: , , , , , which1096

contribute 6p3, 6p4, 6p4, 6p5 and 6p6 respectively to Φ̃3
G (p, . . . , p). ◀1097

Since p is fixed, Lemma C.3 gives us one linear equation in # (G,) and # (G,) (we1098

can handle the other counts due to equations (15)-(20)). However, we need to generate1099

one more independent linear equation in these two variables. Towards this end we generate1100

another graph related to G:1101

▶ Definition C.4. For ℓ ≥ 1, let graph G(ℓ) be a graph generated from an arbitrary graph1102

G, by replacing every edge e of G with an ℓ-path, such that all inner vertexes of an ℓ-path1103

replacement edge are disjoint from all other vertexes.17.1104

We will prove Theorem 3.7 by the following reduction:1105

▶ Theorem C.5. Fix p ∈ (0, 1). Let G be a graph on m edges. If we can compute Φ̃3
G(p, . . . , p)1106

exactly in T (m) time, then we can exactly compute # (G,) in O (T (m) +m) time.1107

For clarity, we repeat the notion of # (G,H) to mean the count of subgraphs in G isomorphic1108

to H. The following lemmas relate these counts in G(2) to G(1) (G). The lemmas are used1109

to prove Lemma C.8.1110

▶ Lemma C.6. The 3-matchings in graph G(2) satisfy the identity:1111

#
(
G(2),

)
= 8 ·#

(
G(1),

)
+ 6 ·#

(
G(1),

)
1112

+ 4 ·#
(
G(1),

)
+ 4 ·#

(
G(1),

)
+ 2 ·#

(
G(1),

)
.1113

1114

17 Note that G ≡ G(1).

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:31

▶ Lemma C.7. For ℓ > 1 and any graph G(ℓ), #
(
G(ℓ),

)
= 0.1115

Finally, the following result immediately implies Theorem C.5:1116

▶ Lemma C.8. Fix p ∈ (0, 1). Given Φ̃3
G(ℓ)(p, . . . , p) for ℓ ∈ [2], we can compute in O(m)1117

time a vector b ∈ R3 such that1118 (
1− 3p −(3p2 − p3)

10(3p2 − p3) 10(3p2 − p3)

)
·
(

(G,)]
(G,)

)
= b,1119

allowing us to compute # (G,) and # (G,) in O(1) time.1120

C.9 Proofs for Lemma C.6, Lemma C.7, and Lemma C.81121

Before proceeding, let us introduce a few more helpful definitions.1122

▶ Definition C.9 (E(ℓ)). For ℓ > 1, we use E(ℓ) to denote the set of edges in G(ℓ). For1123

any graph G(ℓ), its edges are denoted by the a pair (e, b), such that b ∈ {0, . . . , ℓ− 1} where1124

(e, 0), . . . , (e, ℓ− 1) is the ℓ-path that replaces the edge e for e ∈ E(1).1125

▶ Definition C.10 (E(ℓ)
S). Given an arbitrary subgraph S(1) of G(1), let E(1)

S denote the set1126

of edges in S(1). Define then E
(ℓ)
S for ℓ > 1 as the set of edges in the generated subgraph S(ℓ)

1127

(i.e. when we apply Definition C.4 to S to generate S(ℓ)).1128

For example, consider S(1) with edges E(1)
S = {e1}. Then the edge set of S(2) is defined1129

as E(2)
S = {(e1, 0), (e1, 1)}.1130

▶ Definition C.11 (
(
E
t

)
and

(
E
≤t
)
). Let

(
E
t

)
denote the set of subsets in E with exactly t1131

edges. In a similar manner,
(
E
≤t
)

is used to mean the subsets of E with t or fewer edges.1132

The following function fℓ is a mapping from every 3-edge shape in G(ℓ) to its ‘projection’1133

in G(1).1134

▶ Definition C.12. Let fℓ :
(
E(ℓ)

3
)
→
(
E(1)

≤3
)

be defined as follows. For any element s ∈
(
E(ℓ)

3
)

1135

such that s = {(e1, b1), (e2, b2), (e3, b3)}, define:1136

fℓ ({(e1, b1), (e2, b2), (e3, b3)}) = {e1, e2, e3} .1137

▶ Definition C.13 (f−1
ℓ). For an arbitrary subgraph S(1) of G(1) with at most m ≤ 3 edges,1138

the inverse function f−1
ℓ :

(
E(1)

≤3
)
→ 2(E(ℓ)

3) takes E(1)
S and outputs the set of all elements1139

s ∈
(E(ℓ)

S
3
)

such that fℓ(s) = E
(1)
S .1140

Note, importantly, that when we discuss f−1
ℓ , that each edge present in E(1)

S must have an1141

edge in s ∈ f−1
ℓ (E(1)

S) that projects down to it. In particular, if |E(1)
S | = 3, then it must be the1142

case that each s ∈ f−1
ℓ (E(1)

S) consists of the following set of edges: {(ei, b), (ej , b′), (em, b′′)},1143

where i, j and m are distinct.1144

We are now ready to prove the structural lemmas. To prove the structural lemmas, we1145

will count the number of occurrences of and in G(ℓ) we count for each S ∈
(
E1
≤3
)
, how1146

many and subgraphs appear in f−1
ℓ (E(1)

S).1147

CVIT 2016

23:32 Bag PDB Queries

C.9.1 Proof of Lemma C.61148

Proof. For each subset E(1)
S ∈

(
E1
≤3
)
, we count the number of 3-matchings in the 3-edge1149

subgraphs of G(2) in f−1
2 (E(1)

S). We first consider the case of E(1)
S ∈

(
E1
3
)
, where E

(1)
S1150

is composed of the edges e1, e2, e3 and f−1
2 (E(1)

S) is the set of all 3-edge subsets s ∈1151

{(e1, 0), (e1, 1), (e2, 0), (e2, 1), (e3, 0), (e3, 1)} such that fℓ(s) = {e1, e2, e3}. The size of1152

the output is denoted
∣∣f−1

2 (E(1))
∣∣. For the case where each set of edges of the form1153

{(e1, b1), (e2, b2), (e3, b3)} for bi ∈ [2], i ∈ [3] is present, we have
∣∣f−1

2 (E(1))
∣∣ = 8. We count1154

the number of 3-matchings from the set f−1
2 (E(1)

S).1155

We do a case analysis based on the subgraph S(1) induced by E(1)
S .1156

3-matching ()1157

When S(1) is isomorphic to , it is the case that edges in E(2)
S are not disjoint only for the1158

pairs (ei, 0), (ei, 1) for i ∈ {1, 2, 3}. By definition, each set of edges in f−1
2

(
E

(1)
S

)
is a three1159

matching and
∣∣∣f−1

2

(
E

(1)
S

)∣∣∣ = 8 possible 3-matchings.1160

Disjoint Two-Path ()1161

For S(1) isomorphic to edges e2, e3 form a 2-path with e1 being disjoint. This means1162

that in S(2) edges (e2, 0), (e2, 1), (e3, 0), (e3, 1) form a 4-path while (e1, 0), (e1, 1) is its own1163

disjoint 2-path. We can pick either (e1, 0) or (e1, 1) for the first edge in the 3-matching, while1164

it is necessary to have a 2-matching from path (e2, 0), . . . (e3, 1). Note that the 4-path allows1165

for three possible 2-matchings, specifically,1166

{(e2, 0), (e3, 0)} , {(e2, 0), (e3, 1)} , {(e2, 1), (e3, 1)} .1167

Since these two selections can be made independently,
∣∣∣f−1

2

(
E

(1)
S

)∣∣∣ = 2 · 3 = 6 distinct1168

3-matchings in f−1
2 (E(1)

S).1169

3-star ()1170

When S(1) is isomorphic to , the inner edges (ei, 1) of S(2) are all connected, and the1171

outer edges (ei, 0) are all disjoint. Note that for a valid 3-matching it must be the case that1172

at most one inner edge can be part of the set of disjoint edges. For the case of when exactly1173

one inner edge is chosen, there exist 3 possiblities, based on which inner edge is chosen.1174

Note that if (ei, 1) is chosen, the matching has to choose (ej , 0) for j ̸= i and (ej′ , 0) for1175

j′ ̸= i, j′ ̸= j. The remaining possible 3-matching occurs when all 3 outer edges are chosen,1176

and
∣∣∣f−1

2

(
E

(1)
S

)∣∣∣ = 4.1177

3-path ()1178

When S(1) is isomorphic to it is the case that all edges beginning with e1 and ending with e31179

are successively connected. This means that the edges of E(2)
S form a 6-path. For a 3-matching1180

to exist in f−1
2 (E(1)

S), we cannot pick both (ei, 0) and (ei, 1) or both (ei, 1) and (ej , 0) where1181

j = i+ 1. There are four such possibilities: {(e1, 0), (e2, 0), (e3, 0)}, {(e1, 0), (e2, 0), (e3, 1)},1182

{(e1, 0), (e2, 1), (e3, 1)} , {(e1, 1), (e2, 1), (e3, 1)} and
∣∣∣f−1

2

(
E

(1)
S

)∣∣∣ = 4.1183

Triangle ()1184

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:33

For S(1) isomorphic to , note that it is the case that the edges in E
(2)
S are connected in a1185

successive manner, but this time in a cycle, such that (e1, 0) and (e3, 1) are also connected.1186

While this is similar to the discussion of the three path above, the first and last edges are1187

not disjoint. This rules out both subsets of (e1, 0), (e2, 0), (e3, 1) and (e1, 0), (e2, 1), (e3, 1), so1188

that
∣∣∣f−1

2

(
E

(1)
S

)∣∣∣ = 2.1189

Let us now consider when E
(1)
S ∈

(
E1
≤2
)
, i.e. fixed subgraphs among1190

2-matching (), 2-path (), 1 edge ()1191

When |E(1)
S | = 2, we can only pick one from each of two pairs, {(e1, 0), (e1, 1)} and1192

{(e2, 0), (e2, 1)}. The third edge choice in E
(2)
S will break the disjoint property of a 3-1193

matching. Thus, a 3-matching cannot exist in f−1
2 (E(1)

S). A similar argument holds for1194

|E(1)
S | = 1, where the output of f−1

2 is {∅} since there are not enough edges in the input to1195

produce any other output.1196

Observe that all of the arguments above focused solely on the property of subgraph S(1)
1197

being isomorphmic. In other words, all E(1)
S of a given “shape” yield the same number of1198

3-matchings in f−1
2 (E(1)

S), and this is why we get the required identity using the above case1199

analysis. ◀1200

C.9.2 Proof of Lemma C.71201

Proof. The number of triangles in G(ℓ) for ℓ ≥ 2 will always be 0 for the simple fact that all1202

cycles in G(ℓ) will have at least six edges. ◀1203

C.9.3 Proof of Lemma C.81204

Proof. The proof consists of two parts. First we need to show that a vector b satisfying the1205

linear system exists and further can be computed in O(m) time. Second we need to show1206

that # (G,) ,# (G,) can indeed be computed in time O(1).1207

The lemma claims that for M =
(

1− 3p −(3p2 − p3)
10(3p2 − p3) 10(3p2 − p3)

)
, x =

(
(G,)]
(G,)

)
1208

satisfies the linear system M · x = b.1209

To prove the first step, we use Lemma C.3 to derive the following equality (dropping the1210

superscript and referring to G(1) as G):1211

(G,) p2 + 6# (G,) p3 + 6# (G,) p4 + 6# (G,) p3 + 6# (G,) p4
1212

+ 6# (G,) p4 + 6# (G,) p5 + 6# (G,) p6 = Φ̃3
G(p, . . . , p)

(22)
1213

(G,) + # (G,) p+ # (G,) p2 + # (G,) p3
1214

= Φ̃3
G(p, . . . , p)

6p3 − # (G,)
6p −# (G,)−# (G,) p−# (G,) p

(23)

1215

(G,) (1− 3p)−# (G,) (3p2 − p3) =1216

Φ̃3
G(p, . . . , p)

6p3 − # (G,)
6p −# (G,)−# (G,) p−# (G,) p1217

− [# (G,) p+ 3# (G,) p]−
[
(G,) p2 + 3# (G,) p2]

(24)
1218

1219

CVIT 2016

23:34 Bag PDB Queries

Eq. (22) is the result of Lemma C.3. We obtain the remaining equations through standard1220

algebraic manipulations.1221

Note that the LHS of Eq. (24) is obtained using eq. (19) and eq. (20) and is indeed the1222

product M[1] · x[1]. Further note that this product is equal to the RHS of Eq. (24), where1223

every term is computable in O(m) time (by equations (15)-(20)). We set b[1] to the RHS of1224

Eq. (24).1225

We follow the same process in deriving an equality for G(2). Replacing occurrences of1226

G with G(2), we obtain an equation (below) of the form of eq. (24) for G(2). Substituting1227

identities from lemma C.6 and Lemma C.7 we obtain1228

0− (8# (G,) +6# (G,) + 4# (G,) + 4# (G,) + 2# (G,)) (3p2 − p3) =1229

Φ̃3
G(2)(p, . . . , p)

6p3 −
#
(
G(2),

)
6p −#

(
G(2),

)
−#

(
G(2),

)
p−#

(
G(2),

)
p1230

−
[
#
(
G(2),

)
p2 + 3#

(
G(2),

)
p2
]
−
[
#
(
G(2),

)
p+ 3#

(
G(2),

)
p
]

(25)
1231

(10# (G,) + 10G)(3p2 − p3) =1232

Φ̃3
G(2)(p, . . . , p)

6p3 −
#
(
G(2),

)
6p −#

(
G(2),

)
−#

(
G(2),

)
p−#

(
G(2),

)
p1233

−
[
#
(
G(2),

)
p+ 3#

(
G(2),

)
p
]
−
[
#
(
G(2),

)
p2 − 3#

(
G(2),

)
p2
]

1234

+ (4# (G,) + [6# (G,) + 18# (G,)] + [4# (G,) + 12# (G,)]) (3p2 − p3)
(26)

1235

1236

The steps to obtaining eq. (26) are analogous to the derivation immediately preceding. As in1237

the previous derivation, note that the LHS of Eq. (26) is the same as M[2] · x[2]. The RHS1238

of Eq. (26) has terms all computable (by equations (15)-(20)) in O(m) time. Setting b[2] to1239

the RHS then completes the proof of step 1.1240

Note that if M has full rank then one can compute # (G,) and # (G,) in O(1)1241

using Gaussian elimination.1242

To show that M indeed has full rank, we show in what follows that Det (M) ̸= 0 for1243

every p ∈ (0, 1). Det (M) =1244 ∣∣∣∣ 1− 3p −(3p2 − p3)
10(3p2 − p3) 10(3p2 − p3)

∣∣∣∣ = (1− 3p) · 10(3p2 − p3) + 10(3p2 − p3) · (3p2 − p3)1245

= 10(3p2 − p3) · (1− 3p+ 3p2 − p3) = 10(3p2 − p3) · (−p3 + 3p2 − 3p+ 1)1246

= 10p2(3− p) · (1− p)3 (27)1247
1248

From Eq. (27) it can easily be seen that the roots of Det (M) are 0, 1, and 3. Hence there1249

are no roots in (0, 1) and Lemma C.8 follows. ◀1250

C.10 Proof of Theorem C.51251

Proof. We can compute G(2) from G(1) in O(m) time. Additionally, if in time O(T (m)), we1252

have Φ̃3
G(ℓ)(p, . . . , p) for ℓ ∈ [2], then the theorem follows by Lemma C.8. ◀1253

In other words, if Theorem C.5 holds, then so must Theorem 3.7.1254

C.11 Proof of Theorem 3.71255

Proof. For the sake of contradiction, assume that for any G, we can compute Φ̃3
G(p, . . . , p) in1256

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:35

o
(
m1+ϵ0

)
time. Let G be the input graph. Then by Theorem C.5 we can compute # (G,)1257

in further time o
(
m1+ϵ0

)
+O(m). Thus, the overall, reduction takes o

(
m1+ϵ0

)
+O(m) =1258

o
(
m1+ϵ0

)
time, which violates Conjecture 3.3. ◀1259

D Missing Details from Section 41260

In the following definitions and examples, we use the following polynomial as an example:1261

Φ(X,Y) = 2X2 + 3XY − 2Y 2. (28)1262

▶ Definition D.1 (Pure Expansion). The pure expansion of a polynomial Φ is formed by1263

computing all product of sums occurring in Φ, without combining like monomials. The pure1264

expansion of Φ generalizes Definition 2.1 by allowing monomials mi = mj for i ̸= j.1265

Note that similar in spirit to ??, E(C) Definition 4.1 reduces all variable exponents e > 1 to1266

e = 1. Further, it is true that E(C) is the pure expansion of C.1267

▶ Example D.2 (Example of Pure Expansion). Consider the factorized representation (X +1268

2Y)(2X − Y) of the polynomial in Eq. (28). Its circuit C is illustrated in Fig. 4. The1269

pure expansion of the product is 2X2 − XY + 4XY − 2Y 2. As an additional example of1270

Definition 4.1, E(C) = [(X, 2), (XY,−1), (XY, 4), (Y,−2)].1271

E(C) effectively18 encodes the reduced form of poly (C), decoupling each monomial into a1272

set of variables v and a real coefficient c. However, unlike the constraint on the input Φ to1273

compute Φ̃, the input circuit C does not need to be in SMB/SOP form.1274

▶ Example D.3 (Example for Definition 4.2). Using the same factorization from Example D.2,1275

poly(|C|) = (X + 2Y)(2X + Y) = 2X2 +XY + 4XY + 2Y 2 = 2X2 + 5XY + 2Y 2. Note that1276

this is not the same as the polynomial from Eq. (28). As an example of the slight abuse of1277

notation we alluded to, poly (|C| (1, . . . , 1)) = 2 (1)2 + 5 (1) (1) + 2 (1)2 = 9.1278

▶ Definition D.4 (Subcircuit). A subcircuit of a circuit C is a circuit S such that S is a DAG1279

subgraph of the DAG representing C. The sink of S has exactly one gate g.1280

The following results assume input circuit C computed from an arbitrary RA+ query Q1281

and arbitrary BIDB D. We refer to C as a BIDB circuit.1282

▶ Theorem D.5. Let C be an arbitrary BIDB circuit and define Φ(X) = poly(C) and let1283

k = deg(C). Then an estimate E of Φ̃(p1, . . . , pn) can be computed in time1284

O

((
size(C) +

log 1
δ

· |C|2 (1, . . . , 1) · k · log k · depth(C))
(ϵ)2 · Φ̃2(p1, . . . , pn)

)
· M (log (|C| (1, . . . , 1)), log (size(C)))

)
1285

such that1286

Pr
(∣∣∣E − Φ̃(p1, . . . , pn)

∣∣∣ > ϵ · Φ̃(p1, . . . , pn)
)
≤ δ. (29)1287

The slight abuse of notation seen in |C| (1, . . . , 1) is explained after Definition 4.2 and1288

an example is given in Example D.3. The only difference in the use of this notation in1289

Theorem D.5 is that we include an additional exponent to square the quantity.1290

CVIT 2016

23:36 Bag PDB Queries

Algorithm 1 ApproximateΦ̃(C, p, δ, ϵ)

Input: C: Circuit
Input: p = (p1, . . . , pn) ∈ [0, 1]N
Input: δ ∈ [0, 1]
Input: ϵ ∈ [0, 1]
Output: acc ∈ R

1: acc← 0
2: N←

⌈
2 log 2

δ

ϵ2

⌉
3: (Cmod, size)← OnePass (C) ▷ OnePass is Algorithm 2
4: for i ∈ 1 to N do ▷ Perform the required number of samples
5: (M, sgni)← SampleMonomial (Cmod) ▷ SampleMonomial is Algorithm 3. Note

that sgni is the sign of the monomial’s coefficient and not the coefficient itself
6: if M has at most one variable from each block then
7: Yi ←

∏
Xj∈M pj▷ M is the sampled monomial’s set of variables (cref. appendix D.9)

8: Yi ← Yi × sgni
9: acc← acc + Yi ▷ Store the sum over all samples

10: end if
11: end for
12: acc← acc× size

N
13: return acc

D.1 Proof of Theorem D.51291

We prove Theorem D.5 constructively by presenting an algorithm ApproximateΦ̃ (Algorithm 1)1292

which has the desired runtime and computes an approximation with the desired approximation1293

guarantee. Algorithm ApproximateΦ̃ uses Algorithm OnePass to compute weights on the1294

edges of a circuits. These weights are then used to sample a set of monomials of Φ(C) from1295

the circuit C by traversing the circuit using the weights to ensure that monomials are sampled1296

with an appropriate probability. The correctness of ApproximateΦ̃ relies on the correctness1297

(and runtime behavior) of auxiliary algorithms OnePass and SampleMonomial that we1298

state in the following lemmas (and prove later in this part of the appendix).1299

▶ Lemma D.6. The OnePass function completes in time:

O
(
size(C) · M (log (|C(1 . . . , 1)|), log size(C))

)
OnePass guarantees two post-conditions: First, for each subcircuit S of C, we have that1300

S.partial is set to |S| (1, . . . , 1). Second, when S.type = +, S.Lweight = |SL|(1,...,1)
|S|(1,...,1) and1301

likewise for S.Rweight.1302

To prove correctness of Algorithm 1, we only use the following fact that follows from the above1303

lemma: for the modified circuit (Cmod) output by OnePass, Cmod.partial = |C| (1, . . . , 1).1304

▶ Lemma D.7. The function SampleMonomial completes in time

O(log k · k · depth(C) · M (log (|C| (1, . . . , 1)), log size(C)))

where k = deg(C). The function returns every (v, sign(c)) for (v, c) ∈ E(C) with probability1305
|c|

|C|(1,...,1) .1306

18 The minor difference here is that E(C) encodes the reduced form over the SOP pure expansion of the
compressed representation, as opposed to the SMB representation

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:37

With the above two lemmas, we are ready to argue the following result:1307

▶ Theorem D.8. For any C with deg(poly(|C|)) = k, algorithm 1 outputs an estimate acc1308

of Φ̃(p1, . . . , pn) such that1309

Pr
(∣∣∣acc− Φ̃(p1, . . . , pn)

∣∣∣ > ϵ · |C| (1, . . . , 1)
)
≤ δ,1310

in O
((

size(C) + log 1
δ

ϵ2 · k · log k · depth(C)
)
· M (log (|C| (1, . . . , 1)), log size(C))

)
time.1311

Before proving Theorem D.8, we use it to argue the claimed runtime of our main result,1312

Theorem D.5.1313

Proof of Theorem D.5. Set E = ApproximateΦ̃(C, (p1, . . . , pn), δ, ϵ′), where1314

ϵ′ = ϵ · Φ̃(p1, . . . , pn)
|C| (1, . . . , 1) ,1315

which achieves the claimed error bound on E (acc) trivially due to the assignment to ϵ′ and1316

theorem D.8, since ϵ′ · |C| (1, . . . , 1) = ϵ · Φ̃(1,...,1)
|C|(1,...,1) · |C| (1, . . . , 1) = ϵ · Φ̃(1, . . . , 1).1317

The claim on the runtime follows from Theorem D.8 since1318

1
(ϵ′)2 · log

(
1
δ

)
=

log 1
δ

ϵ2
(

Φ̃(p1,...,pN)
|C|(1,...,1)

)21319

=
log 1

δ · |C|
2 (1, . . . , 1)

ϵ2 · Φ̃2(p1, . . . , pn)
.1320

1321

◀1322

Let us now prove Theorem D.8:1323

D.2 Proof of Theorem D.81324

Proof. Consider now the random variables Y1, . . . , YN, where each Yi is the value of Yi in1325

algorithm 1 after line 8 is executed. Overloading isInd (·) to receive monomial input (recall1326

vm is the monomial composed of the variables in the set v), we have1327

Yi = 1(isInd(vm)) ·
∏

Xi∈var(v)

pi,1328

where the indicator variable handles the check in Line 6 Then for random variable Yi, it is1329

the case that1330

E [Yi] =
∑

(v,c)∈E(C)

1(isInd(vm)) · c ·
∏
Xi∈var(v) pi

|C| (1, . . . , 1)1331

= Φ̃(p1, . . . , pn)
|C| (1, . . . , 1) ,1332

1333

where in the first equality we use the fact that sgni · |c| = c and the second equality follows1334

from Eq. (2) with Xi substituted by pi.1335

Let Y = 1
N

∑N
i=1 Yi. It is also true that1336

CVIT 2016

23:38 Bag PDB Queries

E [Y] = 1
N

N∑
i=1

E [Yi] = Φ̃(p1, . . . , pn)
|C| (1, . . . , 1) .1337

Hoeffding’s inequality states that if we know that each Yi (which are all independent)1338

always lie in the intervals [ai, bi], then it is true that1339

Pr (|Y− E [Y]| ≥ ϵ) ≤ 2 exp
(
− 2N2ϵ2∑N

i=1(bi − ai)2

)
.1340

Line 5 shows that sgni has a value in {−1, 1} that is multiplied with O(k) pi ∈ [0, 1],1341

which implies the range for each Yi is [−1, 1]. Using Hoeffding’s inequality, we then get:1342

Pr (|Y− E [Y] | ≥ ϵ) ≤ 2 exp
(
−2N2ϵ2

22N

)
= 2 exp

(
−Nϵ

2

2

)
≤ δ,1343

where the last inequality dictates our choice of N in Line 2.1344

For the claimed probability bound of Pr
(∣∣∣acc− Φ̃(p1, . . . , pn)

∣∣∣ > ϵ · |C| (1, . . . , 1)
)
≤ δ,1345

note that in the algorithm, acc is exactly Y · |C| (1, . . . , 1). Multiplying the rest of the terms1346

by the additional factor |C| (1, . . . , 1) yields the said bound.1347

This concludes the proof for the first claim of theorem D.8. Next, we prove the claim on1348

the runtime.1349

Run-time Analysis1350

The runtime of the algorithm is dominated first by Line 3 (which by Lemma D.6 takes time1351

O
(
size(C) · M (log (|C| (1, . . . , 1)), log (size(C)))

)
) and then by N iterations of the loop in1352

Line 4. Each iteration’s run time is dominated by the call to SampleMonomial in Line 51353

(which by Lemma D.7 takes O
(
log k · k · depth(C) · M (log (|C| (1, . . . , 1)), log (size(C)))

)
)1354

and the check Line 6, which by the subsequent argument takes O(k log k) time. We sort1355

the O(k) variables by their block IDs and then check if there is a duplicate block ID or not.1356

Combining all the times discussed here gives us the desired overall runtime. ◀1357

D.3 Proof of Theorem 4.71358

Proof. The result follows by first noting that by definition of γ, we have1359

Φ̃(1, . . . , 1) = (1− γ) · |C| (1, . . . , 1).1360

Further, since each pi ≥ p0 and Φ(X) (and hence Φ̃(X)) has degree at most k, we have that1361

Φ̃(1, . . . , 1) ≥ pk0 · Φ̃(1, . . . , 1).1362

The above two inequalities implies Φ̃(1, . . . , 1) ≥ pk0 · (1 − γ) · |C| (1, . . . , 1). Applying this1363

bound in the runtime bound in Theorem D.5 gives the first claimed runtime. The final1364

runtime of Ok
(1
ϵ2 · size(C) · log 1

δ · M (log (|C| (1, . . . , 1)), log (size(C)))
)

follows by noting1365

that depth(C) ≤ size(C) and absorbing all factors that just depend on k. ◀1366

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:39

D.4 Proof of Lemma 4.81367

Proof. The circuit C’ is built from C in the following manner. For each input gate gi1368

with gi.val = Xt, replace gi with the circuit S encoding the sum
∑c
j=1 j · Xt,j . We1369

argue that C’ is a valid circuit by the following facts. Let D =
(
{0, . . . , c}D ,P

)
be the1370

original c-TIDB C was generated from. Then, by Proposition 2.4 there exists a Binary-BIDB1371

D′ =
(
×t∈D′ {0, ct} ,P ′

)
, with D′ = {⟨t, j⟩ | t ∈ D, j ∈ [c]}, from which the conversion from1372

C to C’ follows. Both poly (C) and poly (C′) have the same expected multiplicity since1373

(by Proposition 2.4) the distributions P and P ′ are equivalent and each j ·W′
t,j = Wt for1374

W′ ∈ {0, 1}cn and W ∈ {0, . . . , c}D. Finally, note that because there exists a (sub) circuit1375

encoding
∑c
j=1 j ·Xt,j that is a balanced binary tree, the above conversion implies the claimed1376

size and depth bounds of the lemma.1377

Next we argue the claim on γ (C′). Consider the list of expanded monomials E(C)1378

for c-TIDB circuit C. Let v be an arbitrary monomial such that the set of variables in1379

v is vm = Xd1
t1 , . . . , X

dℓ
tℓ

with ℓ variables. Then v yields the set of monomials Ev (C′) =1380 {
jd1

1 ·X
d1
t,j1
× · · · × jdℓ

ℓ ·X
dℓ
t,jℓ

}
j1,...,jℓ∈[0,c]

in E(C′). Recall that a cancellation occurs when1381

we have a monomial v’ such that there exists t ̸= t′ in the same block B where variables1382

Xt, Xt′ are in the set of variables v′
m of v’. Observe that cancellations can only occur for1383

each Xdt
t ∈ vm, where the expansion

(∑c
j=1 j ·Xt,j

)dt

represents the monomial Xdt
t in D′.1384

Consider the number of cancellations for
(∑c

j=1 j ·X
dt
t,j

)dℓ

. Then γ ≤ 1− cdt−1, since for1385

each element in the set of cross products
{
×i∈[dt],ji∈[c] Xt,ji

}
there are exactly c surviving1386

elements with j1 = · · · = jdt
, i.e. Xdt

j for each j ∈ [c]. The rest of the (c)dt−1 cross1387

terms cancel. Regarding the whole monomial v’, it is the case that the proportion of non-1388

cancellations across each Xdt
t ∈ v′

m multiply because non-cancelling terms for Xt can only1389

be joined with non-cancelling terms of Xdt′
t′ ∈ v′

m for t ̸= t′. This then yields the fraction1390

of cancelled monomials 1 −
∏ℓ
i=1 c

di−1 ≤ γ ≤ 1 − c−(k−1) where the inequalities take into1391

account the fact that
∑ℓ
i=1 di ≤ k.1392

Since this is true for arbitrary v, the bound follows for poly (C′). ◀1393

D.5 Proof of Lemma 4.91394

We will prove Lemma 4.9 by considering the two cases separately. We start by considering1395

the case when C is a tree:1396

▶ Lemma D.9. Let C be a tree (i.e. the sub-circuits corresponding to two children of a node1397

in C are completely disjoint). Then we have1398

|C| (1, . . . , 1) ≤ (size(C))deg(C)+1
.1399

Proof of Lemma D.9. For notational simplicity define N = size(C) and k = deg(C). We1400

use induction on depth(C) to show that |C| (1, . . . , 1) ≤ Nk+1. For the base case, we have1401

that depth (C) = 0, and there can only be one node which must contain a coefficient or1402

constant. In this case, |C| (1, . . . , 1) = 1, and size (C) = 1, and by Definition 4.4 it is the1403

case that 0 ≤ k = deg (C) ≤ 1, and it is true that |C| (1, . . . , 1) = 1 ≤ Nk+1 = 1k+1 = 1 for1404

k ∈ {0, 1}.1405

Assume for ℓ > 0 an arbitrary circuit C of depth(C) ≤ ℓ that it is true that |C| (1, . . . , 1) ≤1406

Nk+1.1407

CVIT 2016

23:40 Bag PDB Queries

For the inductive step we consider a circuit C such that depth(C) = ℓ+ 1. The sink can1408

only be either a × or + gate. Let kL, kR denote deg (CL) and deg (CR) respectively. Consider1409

when sink node is ×. Then note that1410

|C| (1, . . . , 1) = |CL| (1, . . . , 1) · |CR| (1, . . . , 1)1411

≤ (N − 1)kL+1 · (N − 1)kR+1
1412

= (N − 1)k+1 (30)1413

≤ Nk+1.1414
1415

In the above the first inequality follows from the inductive hypothesis (and the fact that the1416

size of either subtree is at most N − 1) and Eq. (30) follows by definition 4.4 which states1417

that for k = deg(C) we have k = kL + kR + 1.1418

For the case when the sink gate is a + gate, then for NL = size(CL) and NR = size(CR)1419

we have1420

|C| (1, . . . , 1) = |CL| (1, . . . , 1) + |CR| (1, . . . , 1)1421

≤ Nk+1
L +Nk+1

R1422

≤ (N − 1)k+1 (31)1423

≤ Nk+1.1424
1425

In the above, the first inequality follows from the inductive hypothes and definition 4.41426

(which implies the fact that kL, kR ≤ k). Note that the RHS of this inequality is maximized1427

when the base and exponent of one of the terms is maximized. The second inequality follows1428

from this fact as well as the fact that since C is a tree we have NL +NR = N − 1 and, lastly,1429

the fact that k ≥ 0. This completes the proof.1430

The upper bound in Lemma 4.9 for the general case is a simple variant of the above proof1431

(but we present a proof sketch of the bound below for completeness):1432

▶ Lemma D.10. Let C be a (general) circuit. Then we have1433

|C| (1, . . . , 1) ≤ 22deg(C)·depth(C).1434

Proof Sketch of Lemma D.10. We use the same notation as in the proof of Lemma D.9 and1435

further define d = depth(C). We will prove by induction on depth(C) that |C| (1, . . . , 1) ≤1436

22k·d. The base case argument is similar to that in the proof of Lemma D.9. In the inductive1437

case we have that dL, dR ≤ d− 1.1438

For the case when the sink node is ×, we get that1439

|C| (1, . . . , 1) = |CL| (1, . . . , 1)× |CR| (1, . . . , 1)1440

≤ 22kL ·dL × 22kR ·dR1441

≤ 22·2k−1·(d−1)
1442

≤ 22kd.1443
1444

In the above the first inequality follows from inductive hypothesis while the second inequality1445

follows from the fact that kL, kR ≤ k − 1 and dL, dR ≤ d − 1, where we substitute the1446

upperbound into every respective term.1447

Now consider the case when the sink node is +, we get that1448

|C| (1, . . . , 1) = |CL| (1, . . . , 1) + |CR| (1, . . . , 1)1449

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:41

≤ 22kL ·dL + 22kR ·dR1450

≤ 2 · 22k(d−1)
1451

≤ 22kd.1452
1453

In the above the first inequality follows from the inductive hypothesis while the second1454

inequality follows from the facts that kL, kR ≤ k and dL, dR ≤ d − 1. The final inequality1455

follows from the fact that k ≥ 0. ◀1456

D.6 OnePass Remarks1457

Please note that it is assumed that the original call to OnePass consists of a call on an1458

input circuit C such that the values of members partial, Lweight and Rweight have been1459

initialized to Null across all gates.1460

The evaluation of |C| (1, . . . , 1) can be defined recursively, as follows (where CL and CR are1461

the ‘left’ and ‘right’ inputs of C if they exist):1462

|C| (1, . . . , 1) =


|CL| (1, . . . , 1) · |CR| (1, . . . , 1) if C.type = ×
|CL| (1, . . . , 1) + |CR| (1, . . . , 1) if C.type = +
|C.val| if C.type = num
1 if C.type = var.

(32)1463

1464

1465

It turns out that for proof of Lemma D.7, we need to argue that when C.type = +, we1466

indeed have1467

C.Lweight← |CL| (1, . . . , 1)
|CL| (1, . . . , 1) + |CR| (1, . . . , 1) ; (33)1468

C.Rweight← |CR| (1, . . . , 1)
|CL| (1, . . . , 1) + |CR| (1, . . . , 1) (34)1469

1470

1471

D.7 OnePass Example1472

▶ Example D.11. Let T encode the expression (X + Y)(X − Y) + Y 2. After one pass,1473

Algorithm 2 would have computed the following weight distribution. For the two inputs of the1474

sink gate C, C.Lweight = 4
5 and C.Rweight = 1

5 . Similarly, for S denoting the left input of1475

CL, S.Lweight = S.Rweight = 1
2 . This is depicted in Fig. 5.1476

D.8 Proof of OnePass (Lemma D.6)1477

Proof. We prove the correct computation of partial, Lweight, Rweight values on C by1478

induction over the number of iterations in the topological order TopOrd (line 1) of the1479

input circuit C. TopOrd follows the standard definition of a topological ordering over the1480

DAG structure of C.1481

For the base case, we have only one gate, which by definition is a source gate and must be1482

either var or num. In this case, as per eq. (32), lines 3 and 5 correctly compute C.partial1483

as 1.1484

For the inductive hypothesis, assume that OnePass correctly computes S.partial,1485

S.Lweight, and S.Rweight for all gates g in C with k ≥ 0 iterations over TopOrd. We now1486

CVIT 2016

23:42 Bag PDB Queries

Y −1X

× ×

+ +

×
+

C

1
2

1
2 1

2

1
2

1
5

4
5

Figure 5 Weights computed by OnePass in Example D.11.

Algorithm 2 OnePass (C)

Input: C: Circuit
Output: C: Annotated Circuit
Output: sum ∈ N

1: for g in TopOrd (C) do ▷ TopOrd (·) is the topological order of C
2: if g.type = var then
3: g.partial ← 1
4: else if g.type = num then
5: g.partial ← |g.val|
6: else if g.type = × then
7: g.partial ← gL.partial× gR.partial
8: else
9: g.partial ← gL.partial + gR.partial

10: g.Lweight ← gL.partial
g.partial

11: g.Rweight ← gR.partial
g.partial

12: end if
13: sum ← g.partial
14: end for
15: return (sum, C)

prove for k + 1 iterations that OnePass correctly computes the partial, Lweight, and1487

Rweight values for each gate gi in C for i ∈ [k + 1]. The gk + 1 must be in the last ordering1488

of all gates gi. When size (C) > 1, if gk+1 is a leaf node, we are back to the base case.1489

Otherwise gk+1 is an internal node which requires binary input.1490

When gk+1.type = +, then by line 9 gk+1.partial = gk+1L
.partial +gk+1R

.partial,1491

a correct computation, as per eq. (32). Further, lines 10 and 11 compute gk+1.Lweight =1492

gk+1L
.partial

gk+1.partial and analogously for gk+1.Rweight. All values needed for each computation have1493

been correctly computed by the inductive hypothesis.1494

When gk+1.type = ×, then line 7 computes gk+1.partial = gk+1L.partial×gk+1R
.partial,1495

which indeed by eq. (32) is correct. This concludes the proof of correctness.1496

Runtime Analysis1497

It is known that TopOrd(G) is computable in linear time. There are size(C) iterations, each1498

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:43

Algorithm 3 SampleMonomial (C)

Input: C: Circuit
Output: vars: TreeSet
Output: sgn ∈ {−1, 1} ▷ Algorithm 2 should have been run before this one

1: vars← ∅
2: if C.type = + then ▷ Sample at every + node
3: Csamp ← Sample from left input (CL) and right input (CR) w.p. C.Lweight and

C.Rweight. ▷ Each call to SampleMonomial uses fresh randomness
4: (v, s)← SampleMonomial(Csamp)
5: return (v, s)
6: else if C.type = × then ▷ Multiply the sampled values of all inputs
7: sgn← 1
8: for input in C.input do
9: (v, s)← SampleMonomial(input)

10: vars← vars ∪ {v}
11: sgn← sgn× s
12: end for
13: return (vars, sgn)
14: else if C.type = num then ▷ The leaf is a coefficient
15: return ({}, sgn(C.val)) ▷ sgn(·) outputs −1 for C.val ≥ 1 and −1 for C.val ≤ −1
16: else if C.type = var then
17: return ({C.val}, 1)
18: end if

of which takes O
(
M (log (|C(1 . . . , 1)|), log (size(C)))

)
time. This can be seen since each of1499

all the numbers which the algorithm computes is at most |C| (1, . . . , 1). Hence, by definition1500

each such operation takes M (log (|C(1 . . . , 1)|), log size(C)) time, which proves the claimed1501

runtime. ◀1502

D.9 SampleMonomial Remarks1503

We briefly describe the top-down traversal of SampleMonomial. When C.type = +, the1504

input to be visited is sampled from the weighted distribution precomputed by OnePass.1505

When a C.type = × node is visited, both inputs are visited. The algorithm computes two1506

properties: the set of all variable leaf nodes visited, and the product of the signs of visited1507

coefficient leaf nodes. We will assume the TreeSet data structure to maintain sets with1508

logarithmic time insertion and linear time traversal of its elements. While we would like to1509

take advantage of the space efficiency gained in using a circuit C instead an expression tree T,1510

we do not know that such a method exists when computing a sample of the input polynomial1511

representation.1512

The efficiency gains of circuits over trees is found in the capability of circuits to only1513

require space for each distinct term in the compressed representation. This saves space1514

in such polynomials containing non-distinct terms multiplied or added to each other, e.g.,1515

x4. However, to avoid biased sampling, it is imperative to sample from both inputs of a1516

multiplication gate, independently, which is indeed the approach of SampleMonomial.1517

CVIT 2016

23:44 Bag PDB Queries

D.10 Proof of SampleMonomial (Lemma D.7)1518

Proof. We first need to show that SampleMonomial samples a valid monomial vm by1519

sampling and returning a set of variables v, such that (v, c) is in E(C) and vm is indeed a1520

monomial of the Φ̃ (X) encoded in C. We show this via induction over the depth of C. For1521

the base case, let the depth d of C be 0. We have that the single gate is either a constant c1522

for which by line 15 we return { }, or we have that C.type = var and C.val = x, and by1523

line 17 we return {x}. By definition 4.1, both cases return a valid v for some (v, c) from1524

E(C), and the base case is proven.1525

For the inductive hypothesis, assume that for d ≤ k for some k ≥ 0, that it is indeed the1526

case that SampleMonomial returns a valid monomial.1527

For the inductive step, let us take a circuit C with d = k + 1. Note that each input1528

has depth d− 1 ≤ k, and by inductive hypothesis both of them sample a valid monomial.1529

Then the sink can be either a + or × gate. For the case when C.type = +, line 3 of1530

SampleMonomial will choose one of the inputs of the source. By inductive hypothesis it is1531

the case that some valid monomial is being randomly sampled from each of the inputs. Then1532

it follows when C.type = + that a valid monomial is sampled by SampleMonomial. When1533

the C.type = ×, line 10 computes the set union of the monomials returned by the two inputs1534

of the sink, and it is trivial to see by definition 4.1 that vm is a valid monomial encoded by1535

some (v, c) of E(C).1536

We will next prove by induction on the depth d of C that for (v, c) ∈ E(C), v is sampled1537

with a probability |c|
|C|(1,...,1) .1538

For the base case d = 0, by definition 2.9 we know that the size (C) = 1 and C.type =1539

num or var. For either case, the probability of the value returned is 1 since there is only1540

one value to sample from. When C.val = x, the algorithm always return the variable set1541

{x}. When C.type = num, SampleMonomial will always return ∅.1542

For the inductive hypothesis, assume that for d ≤ k and k ≥ 0 SampleMonomial indeed1543

returns v in (v, c) of E(C) with probability |c|
|C|(1,...,1) .1544

We prove now for d = k + 1 the inductive step holds. It is the case that the sink of C has1545

two inputs CL and CR. Since CL and CR are both depth d− 1 ≤ k, by inductive hypothesis,1546

SampleMonomial will return vL in (vL, cL) of E(CL) and vR in (vR, cR) of E(CR), from CL and1547

CR with probability |cL|
|CL|(1,...,1) and |cR|

|CR|(1,...,1) .1548

Consider the case when C.type = ×. For the term (v, c) from E(C) that is being sampled1549

it is the case that v = vL ∪ vR, where vL is coming from CL and vR from CR. The probability1550

that SampleMonomial (CL) returns vL is |cvL |
|CL|(1,...,1) and |cvR |

|CR|(1,...,1) for vR. Since both vL1551

and vR are sampled with independent randomness, the final probability for sample v is1552

then |cvL |·|cvR |
|CL|(1,...,1)·|CR|(1,...,1) . For (v, c) in E(C), by definition 4.1 it is indeed the case that1553

|c| = |cvL | · |cvR | and that (as shown in eq. (32)) |C| (1, . . . , 1) = |CL|(1, . . . , 1) · |CR|(1, . . . , 1),1554

and therefore v is sampled with correct probability |c|
|C|(1,...,1) .1555

For the case when C.type = +, SampleMonomial will sample v from one of its inputs.1556

By inductive hypothesis we know that any vL in E(CL) and any vR in E(CR) will both be1557

sampled with correct probability |cvL |
|CL|(1,...,1) and |cvR |

|CR|(1,...,1) , where either vL or vR will equal v,1558

depending on whether CL or CR is sampled. Assume that v is sampled from CL, and note that1559

a symmetric argument holds for the case when v is sampled from CR. Notice also that the1560

probability of choosing CL from C is |CL|(1,...,1)
|CL|(1,...,1)+|CR|(1,...,1) as computed by OnePass. Then,1561

since SampleMonomial goes top-down, and each sampling choice is independent (which1562

follows from the randomness in the root of C being independent from the randomness used1563

in its subtrees), the probability for v to be sampled from C is equal to the product of the1564

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:45

probability that CL is sampled from C and v is sampled in CL, and1565

Pr(SampleMonomial(C) = v) =1566

Pr(SampleMonomial(CL) = v) · Pr(SampledChild(C) = CL)1567

= |cv|
|CL|(1, . . . , 1) ·

|CL| (1, . . . , 1)
|CL|(1, . . . , 1) + |CR|(1, . . . , 1)1568

= |cv|
|C| (1, . . . , 1) ,1569

1570

and we obtain the desired result.1571

Lastly, we show by simple induction of the depth d of C that SampleMonomial indeed1572

returns the correct sign value of c in (v, c).1573

In the base case, C.type = num or var. For the former, SampleMonomial correctly1574

returns the sign value of the gate. For the latter, SampleMonomial returns the correct1575

sign of 1, since a variable is a neutral element, and 1 is the multiplicative identity, whose1576

product with another sign element will not change that sign element.1577

For the inductive hypothesis, we assume for a circuit of depth d ≤ k and k ≥ 0 that the1578

algorithm correctly returns the sign value of c.1579

Similar to before, for a depth d ≤ k + 1, it is true that CL and CR both return the correct1580

sign of c. For the case that C.type = ×, the sign value of both inputs are multiplied, which1581

is the correct behavior by definition 4.1. When C.type = +, only one input of C is sampled,1582

and the algorithm returns the correct sign value of c by inductive hyptothesis.1583

Run-time Analysis1584

It is easy to check that except for lines 3 and 10, all lines take O(1) time. Consider an1585

execution of line 10. We note that we will be adding a given set of variables to some set at1586

most once: since the sum of the sizes of the sets at a given level is at most deg(C), each gate1587

visited takes O(log deg(C)). For Line 3, note that we pick CL with probability a
a+b where1588

a = C.Lweight and b = C.Rweight. We can implement this step by picking a random number1589

r ∈ [a + b] and then checking if r ≤ a. It is easy to check that a + b ≤ |C| (1, . . . , 1). This1590

means we need to add and compare log |C| (1, . . . , 1)-bit numbers, which can certainly be done1591

in time M (log (|C(1 . . . , 1)|), log size(C)) (note that this is an over-estimate). Denote Cost1592

(C) (Eq. (35)) to be an upper bound of the number of gates visited by SampleMonomial.1593

Then the runtime is O
(
Cost(C) · log deg(C) · M (log (|C(1 . . . , 1)|), log size(C))

)
.1594

We now bound the number of recursive calls in SampleMonomial by O ((deg(C) + 1) ·1595

depth(C)), which by the above will prove the claimed runtime.1596

Let Cost (·) be a function that models an upper bound on the number of gates that can1597

be visited in the run of SampleMonomial. We define Cost (·) recursively as follows.1598

Cost(C) =


1 + Cost(CL) + Cost(CR) if C.type = ×
1 + max (Cost(CL),Cost(CR)) if C.type = +
1 otherwise

(35)1599

First note that the number of gates visited in SampleMonomial is ≤ Cost(C). To show1600

that eq. (35) upper bounds the number of nodes visited by SampleMonomial, note that1601

when SampleMonomial visits a gate such that C.type = ×, line 8 visits each input of C, as1602

defined in (35). For the case when C.type = +, line 3 visits exactly one of the input gates,1603

CVIT 2016

23:46 Bag PDB Queries

which may or may not be the subcircuit with the maximum number of gates traversed, which1604

makes Cost (·) an upperbound. Finally, it is trivial to see that when C.type ∈ {var,num},1605

i.e., a source gate, that only one gate is visited.1606

We prove the following inequality holds.1607

2 (deg(C) + 1) · depth(C) + 1 ≥ Cost(C) (36)1608

Note that eq. (36) implies the claimed runtime. We prove eq. (36) for the number of1609

gates traversed in SampleMonomial using induction over depth(C). Recall how degree is1610

defined in definition 4.4.1611

For the base case deg(C) = {0, 1} ,depth(C) = 0, Cost(C) = 1, and it is trivial to see1612

that the inequality 2deg(C) · depth(C) + 1 ≥ Cost(C) holds.1613

For the inductive hypothesis, we assume the bound holds for any circuit where ℓ ≥1614

depth(C) ≥ 0. Now consider the case when SampleMonomial has an arbitrary circuit C1615

input with depth(C) = ℓ+ 1. By definition C.type ∈ {+,×}. Note that since depth(C) ≥ 1,1616

C must have input(s). Further we know that by the inductive hypothesis the inputs Ci for1617

i ∈ {L, R} of the sink gate C uphold the bound1618

2 (deg(Ci) + 1) · depth(Ci) + 1 ≥ Cost(Ci). (37)1619

In particular, since for any i, eq. (37) holds, then it immediately follows that an inequality1620

whose operands consist of a sum of the aforementioned inequalities must also hold. This is1621

readily seen in the inequality of eq. (39) and eq. (40), where 2 (deg(CL) + 1) · depth(CL) ≥1622

Cost(CL), likewise for CR, and 1 ≥ 1. It is also true that depth(CL) ≤ depth(C) − 1 and1623

depth(CR) ≤ depth(C)− 1.1624

If C.type = +, then deg(C) = max (deg(CL),deg(CR)). Otherwise C.type = × and1625

deg(C) = deg(CL)+deg(CR)+1. In either case it is true that depth(C) = max (depth(CL),depth(CR))+1626

1.1627

If C.type = ×, then, by eq. (35), substituting values, the following should hold,1628

2 (deg(CL) + deg(CR) + 2) · (max(depth(CL),depth(CR)) + 1) + 1 (38)1629

≥ 2 (deg(CL) + 1) · depth(CL) + 2 (deg(CR) + 1) · depth(CR) + 3 (39)1630

≥ 1 + Cost(CL) + Cost(CR) = Cost(C). (40)1631
1632

To prove (39), first, eq. (38) expands to,1633

2deg(CL)·depthmax+2deg(CR)·depthmax+4depthmax+2deg(CL)+2deg(CR)+4+1 (41)1634

where depthmax is used to denote the maximum depth of the two input subcircuits. Eq. (39)1635

expands to1636

2deg(CL) · depth(CL) + 2depth(CL) + 2deg(CR) · depth(CR) + 2depth(CR) + 3 (42)1637

Putting Eq. (41) and Eq. (42) together we get1638

2deg(CL) · depthmax + 2deg(CR) · depthmax + 4depthmax + 2deg(CL) + 2deg(CR) + 51639

≥ 2deg(CL) · depth(CL) + 2deg(CR) · depth(CR) + 2depth(CL) + 2depth(CR) + 3
(43)

1640

1641

Since the following is always true,1642

2deg(CL) · depthmax + 2deg(CR) · depthmax + 4depthmax + 51643

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:47

≥ 2deg(CL) · depth(CL) + 2deg(CR) · depth(CR) + 2depth(CL) + 2depth(CR) + 3,1644
1645

then it is the case that Eq. (43) is always true.1646

Now to justify (40) which holds for the following reasons. First, eq. (40) is the result of1647

Eq. (35) when C.type = ×. Eq. (39) is then produced by substituting the upperbound of1648

(37) for each Cost(Ci), trivially establishing the upper bound of (40). This proves eq. (36)1649

for the × case.1650

For the case when C.type = +, substituting values yields1651

2 (max(deg(CL),deg(CR)) + 1) · (max(depth(CL),depth(CR)) + 1) + 1 (44)1652

≥ max (2 (deg(CL) + 1) · depth(CL) + 1, 2 (deg(CR) + 1) · depth(CR) + 1) + 1 (45)1653

≥ 1 + max(Cost(CL),Cost(CR)) = Cost(C) (46)1654
1655

To prove (45), eq. (44) expands to1656

2degmaxdepthmax + 2degmax + 2depthmax + 2 + 1. (47)1657

Since degmax · depthmax ≥ deg(Ci) · depth(Ci), the following upper bound holds for the1658

expansion of eq. (45):1659

2degmaxdepthmax + 2depthmax + 2 (48)1660

Putting it together we obtain the following for (45):1661

2degmaxdepthmax + 2degmax + 2depthmax + 31662

≥ 2degmaxdepthmax + 2depthmax + 2, (49)1663
1664

where it can be readily seen that the inequality stands and (49) follows. This proves (45).1665

Similar to the case of C.type = ×, (46) follows by equations (35) and (37).1666

This proves (36) as desired. ◀1667

D.11 Experimental Results1668

Recall that by definition of BIDB, a query result cannot be derived by a self-join between1669

non-identical tuples belonging to the same block. Note, that by Theorem 4.7, γ must be1670

a constant in order for Algorithm 1 to acheive linear time. We would like to determine1671

experimentally whether queries over BIDB instances in practice generate a constant number1672

of cancellations or not. Such an experiment would ideally use a database instance with1673

queries both considered to be typical representations of what is seen in practice.1674

We ran our experiments using Windows 10 WSL Operating System with an Intel Core i71675

2.40GHz processor and 16GB RAM. All experiments used the PostgreSQL 13.0 database1676

system.1677

For the data we used the MayBMS data generator [1] tool to randomly generate uncertain1678

versions of TPCH tables. The queries computed over the database instance are Q1, Q2, and1679

Q3 from [5], all of which are modified versions of TPC-H queries Q3, Q6, and Q7 where all1680

aggregations have been dropped.1681

As written, the queries disallow BIDB cross terms. We first ran all queries, noting the1682

result size for each. Next the queries were rewritten so as not to filter out the cross terms.1683

The comparison of the sizes of both result sets should then suggest in one way or another1684

whether or not there exist many cross terms in practice. As seen, the experimental query1685

results contain little to no cancelling terms. Fig. 6 shows the result sizes of the queries,1686

CVIT 2016

23:48 Bag PDB Queries

where column CF is the result size when all cross terms are filtered out, column CI shows1687

the number of output tuples when the cancelled tuples are included in the result, and the1688

last column is the value of γ. The experiments show γ to be in a range between [0, 0.1]%,1689

indicating that only a negligible or constant (compare the result sizes of Q1 < Q2 and their1690

respective γ values) amount of tuples are cancelled in practice when running queries over a1691

typical BIDB instance. Interestingly, only one of the three queries had tuples that violated1692

the BIDB constraint.1693

To conclude, the results in Fig. 6 show experimentally that γ is negligible in practice for1694

BIDB queries. We also observe that (i) tuple presence is independent across blocks, so the1695

corresponding probabilities (and hence p0) are independent of the number of blocks, and (ii)1696

BIDBs model uncertain attributes, so block size (and hence γ) is a function of the “messiness”1697

of a dataset, rather than its size. Thus, we expect Theorem 4.7 to hold in general.1698

Query CF CI γ

Q1 46, 714 46, 768 0.1%
Q2 179.917 179, 917 0%
Q3 11, 535 11, 535 0%

Figure 6 Number of Cancellations for Queries Over BIDB.

E Circuits1699

E.1 Representing Polynomials with Circuits1700

E.1.1 Circuits for query plans1701

We now formalize circuits and the construction of circuits for RA+ queries. As mentioned1702

earlier, we represent lineage polynomials as arithmetic circuits over N-valued variables with1703

+, ×. A circuit for query Q and N[X]-encoded PDB DN[X] is a directed acyclic graph1704 〈
VQ,DN[X] , EQ,DN[X] , ϕQ,DN[X] , ℓQ,DN[X]

〉
with vertices VQ,DN[X] and directed edges EQ,DN[X] ⊂1705

VQ,DN[X]
2. The sink function ϕQ,DN[X] : Un → VQ,DN[X] is a partial function that maps the1706

tuples of the n-ary relationQ(DN[X]) to vertices. We require that ϕQ,DN[X] ’s range be limited to1707

sink vertices (i.e., vertices with out-degree 0). A function ℓQ,DN[X] : VQ,DN[X] → { +,× }∪N∪X1708

assigns a label to each node: Source nodes (i.e., vertices with in-degree 0) are labeled with1709

constants or variables (i.e., N ∪X), while the remaining nodes are labeled with the symbol +1710

or ×. We require that vertices have an in-degree of at most two. Note that we can construct1711

circuits for BIDBs in time linear in the time required for deterministic query processing over1712

a possible world of the BIDB under the aforementioned assumption that
∣∣DN[X]

∣∣ ≤ c · |D|.1713

E.2 Modeling Circuit Construction1714

We now connect the size of a circuit (where the size of a circuit is the number of vertices1715

in the corresponding DAG) for a given RA+ query Q and N[X]-encoded PDB DN[X] to the1716

runtime Tdet (Q,DΩ) of the PDB’s deterministic bounding database DΩ. We do this formally1717

by showing that the size of the circuit is asymptotically no worse than the corresponding1718

runtime of a large class of deterministic query processing algorithms.1719

Each vertex v ∈ VQ,DN[X] in the arithmetic circuit for1720

〈
VQ,DN[X] , EQ,DN[X] , ϕQ,DN[X] , ℓQ,DN[X]

〉
1721

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:49

encodes a polynomial, realized as1722

lin (v) =


∑
v′:(v′,v)∈EQ,DN[X]

lin (v′) if ℓ(v) = +∏
v′:(v′,v)∈EQ,DN[X]

lin (v′) if ℓ(v) = ×

ℓ(v) otherwise

1723

We define the circuit for a RA+ query Q recursively by cases as follows. In each case, let1724 〈
VQi,DN[X] , EQi,DN[X] , ϕQi,DN[X] , ℓQi,DN[X]

〉
denote the circuit for subquery Qi. We implicitly1725

include in all circuits a global zero node v0 s.t., ℓQ,DN[X](v0) = 0 for any Q,DN[X].1726

Algorithm 4 defines how the circuit for a query result is constructed. We quickly review1727

the number of vertices emitted in each case.1728

Base Relation. This circuit has |DΩ.R| vertices.1729

Selection. If we assume dead sinks are iteratively garbage collected, this circuit has at1730

most |VQ1,DN[X] | vertices.1731

Projection. This formulation will produce vertices with an in-degree greater than two, a1732

problem that we correct by replacing every vertex with an in-degree over two by an equivalent1733

fan-in two tree. The resulting structure has at most |Q1| − 1 new vertices. The corrected1734

circuit thus has at most |VQ1,DN[X] |+ |Q1| vertices.1735

Union. This circuit has |VQ1,DN[X] |+ |VQ2,DN[X] |+ |Q1 ∩Q2| vertices.1736

k-ary Join. As in projection, newly created vertices will have an in-degree of k, and a1737

fan-in two tree is required. There are |Q1 ▷◁ . . . ▷◁ Qk| such vertices, so the corrected circuit1738

has |VQ1,DN[X] |+ . . .+ |VQk,DN[X] |+ (k − 1)|Q1 ▷◁ . . . ▷◁ Qk| vertices.1739

E.2.1 Bounding circuit depth1740

We first show that the depth of the circuit (depth; Definition 4.3) is bounded by the size1741

of the query. Denote by |Q| the number of relational operators in query Q, which recall we1742

assume is a constant.1743

▶ Proposition E.1 (Circuit depth is bounded). Let Q be a relational query and DΩ be a1744

deterministic bounding database with n tuples. There exists a (lineage) circuit C∗ encoding1745

the lineage of all tuples t ∈ Q(DΩ) for which depth(C∗) ≤ O(k|Q| log(n)).1746

Proof. We show that the bound of Proposition E.1 holds for the circuit constructed by1747

Algorithm 4. First, observe that Algorithm 4 is (recursively) invoked exactly once for every1748

relational operator or base relation in Q; It thus suffices to show that a call to Algorithm 41749

adds at most Ok(log(n)) to the depth of a circuit produced by any recursive invocation.1750

Second, observe that modulo the logarithmic fan-in of the projection and join cases, the1751

depth of the output is at most one greater than the depth of any input (or at most 1 in the1752

base case of relation atoms). For the join case, the number of in-edges can be no greater than1753

the join width, which itself is bounded by k. The depth thus increases by at most a constant1754

factor of ⌈log(k)⌉ = Ok(1). For the projection case, observe that the fan-in is bounded by1755

|Q′(DΩ)|, which is in turn bounded by nk. The depth increase for any projection node is1756

thus at most ⌈log(nk)⌉ = O(k log(n)), as desired. ◀1757

E.2.2 Circuit size vs. runtime1758

CVIT 2016

23:50 Bag PDB Queries

Algorithm 4 LC (Q, DΩ, E, V, ℓ)

Input: Q: query
Input: DΩ: a deterministic bounding database
Input: E, V, ℓ: accumulators for the edge list, vertex list, and vertex label list.
Output: C = ⟨E, V, ϕ, ℓ⟩: a circuit encoding the lineage of each tuple in Q(DΩ)

1: if Q is R then ▷ Case 1: Q is a relation atom
2: for t ∈ DΩ.R do
3: V ← V ∪ {vt}; ℓ← ℓ ∪ {(vt, R(t))} ▷ Allocate a fresh node vt
4: ϕ(t)← vt
5: end for
6: else if Q is σθ(Q′) then ▷ Case 2: Q is a Selection
7: ⟨V,E, ϕ′, ℓ⟩ ← LC(Q′, DΩ, V, E, ℓ)
8: for t ∈ Dom(ϕ′) do
9: if θ(t) then ϕ(t)← ϕ′(t) else ϕ(t)← v0

10: end for
11: else if Q is πA⃗(Q′) then ▷ Case 3: Q is a Projection
12: ⟨V,E, ϕ′, ℓ⟩ ← LC(Q′, DΩ, V, E, ℓ)
13: for t ∈ πA⃗(Q′(DΩ)) do
14: V ← V ∪ {vt}; ℓ← ℓ ∪ {(vt,+)} ▷ Allocate a fresh node vt
15: ϕ(t)← vt
16: end for
17: for t ∈ Q′(DΩ) do
18: E ← E ∪ {(ϕ′(t), ϕ(πA⃗t))}
19: end for
20: Correct nodes with in-degrees > 2 by appending an equivalent fan-in two tree instead
21: else if Q is Q1 ∪Q2 then ▷ Case 4: Q is a Bag Union
22: ⟨V,E, ϕ1, ℓ⟩ ← LC(Q1, DΩ, V, E, ℓ)
23: ⟨V,E, ϕ2, ℓ⟩ ← LC(Q2, DΩ, V, E, ℓ)
24: ϕ← ϕ1 ∪ ϕ2
25: for t ∈ Dom(ϕ1) ∩Dom(ϕ2) do
26: V ← V ∪ {vt}; ℓ← ℓ ∪ {(vt,+)} ▷ Allocate a fresh node vt
27: ϕ(t)← vt
28: E ← E ∪ {(ϕ1(t), vt), (ϕ2(t), vt)}
29: end for
30: else if Q is Q1 ▷◁ . . . ▷◁ Qm then ▷ Case 5: Q is a m-ary Join
31: for i ∈ [m] do
32: ⟨V,E, ϕi, ℓ⟩ ← LC(Qi, DΩ, V, E, ℓ)
33: end for
34: for t ∈ Dom(ϕ1) ▷◁ . . . ▷◁ Dom(ϕm) do
35: V ← V ∪ {vt}; ℓ← ℓ ∪ {(vt,×)} ▷ Allocate a fresh node vt
36: ϕ(t)← vt
37: E ← E ∪

{
(ϕi(πsch(Qi(DΩ))(t)), vt) | i ∈ [n]

}
38: end for
39: Correct nodes with in-degrees > 2 by appending an equivalent fan-in two tree instead
40: end if

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:51

▶ Lemma E.2. Given a N[X]-encoded PDB DN[X] with deterministic bounding database DΩ,1759

and an RA+ query Q, the runtime of Q over DΩ has the same or greater complexity as the1760

size of the lineage of Q(DN[X]). That is, we have
∣∣VQ,DN[X]

∣∣ ≤ kTdet (Q,DΩ) + 1, where k ≥ 11761

is the maximal degree of any polynomial in Q(DN[X]).1762

Proof. We prove by induction that
∣∣VQ,DN[X] \ {v0}

∣∣ ≤ kTdet (Q,DΩ). For clarity, we1763

implicitly exclude v0 in the proof below.1764

The base case is a base relation: Q = R and is trivially true since |VR,DN[X] | = |DΩ.R| =1765

Tdet (R,DΩ) (note that here the degree k = 1). For the inductive step, we assume that we1766

have circuits for subqueries Q1, . . . , Qm such that |VQi,DN[X] | ≤ kiTdet (Qi, DΩ) where ki is1767

the degree of Qi.1768

Selection. Assume that Q = σθ(Q1). In the circuit for Q, |VQ,DN[X] | = |VQ1,DΩ | vertices,1769

so from the inductive assumption and Tdet (Q,DΩ) = Tdet (Q1, DΩ) by definition, we have1770

|VQ,DN[X] | ≤ kTdet (Q,DΩ).1771

Projection. Assume that Q = πA(Q1). The circuit for Q has at most |VQ1,DN[X] |+ |Q1|1772

vertices.1773

|VQ,DN[X] | ≤ |VQ1,DN[X] |+ |Q1|1774
1775

(From the inductive assumption)1776

≤ kTdet (Q1, DΩ) + |Q1|1777
1778

(By definition of Tdet (Q,DΩ))1779

≤ kTdet (Q,DΩ) .1780
1781

Union. Assume that Q = Q1∪Q2. The circuit for Q has |VQ1,DN[X] |+ |VQ2,DN[X] |+ |Q1∩Q2|1782

vertices.1783

|VQ,DN[X] | ≤ |VQ1,DN[X] |+ |VQ2,DN[X] |+ |Q1|+ |Q2|1784
1785

(From the inductive assumption)1786

≤ k(Tdet (Q1, DΩ) + Tdet (Q2, DΩ)) + (|Q1|+ |Q2|)1787
1788

(By definition of Tdet (Q,DΩ))1789

≤ k(Tdet (Q,DΩ)).1790
1791

m-ary Join. Assume that Q = Q1 ▷◁ . . . ▷◁ Qm. Note that k =
∑m
i=1 ki ≥ m. The circuit1792

for Q has |VQ1,DN[X] |+ . . .+ |VQk,DN[X] |+ (m− 1)|Q1 ▷◁ . . . ▷◁ Qk| vertices.1793

|VQ,DN[X] | = |VQ1,DN[X] |+ . . .+ |VQk,DN[X] |+ (m− 1)|Q1 ▷◁ . . . ▷◁ Qk|1794
1795

From the inductive assumption and noting ∀i : ki ≤ k and m ≤ k1796

≤ kTdet (Q1, DΩ) + . . .+ kTdet (Qk, DΩ) +1797

(m− 1)|Q1 ▷◁ . . . ▷◁ Qm|1798

≤ k(Tdet (Q1, DΩ) + . . .+ Tdet (Qm, DΩ) +1799

|Q1 ▷◁ . . . ▷◁ Qm|)1800
1801

(By definition of Tdet (Q,DΩ) and assumption on Tjoin(·))1802

≤ kTdet (Q,DΩ) .1803
1804

The property holds for all recursive queries, and the proof holds. ◀1805

CVIT 2016

23:52 Bag PDB Queries

E.2.3 Runtime of LC1806

We next need to show that we can construct the circuit in time linear in the deterministic1807

runtime.1808

▶ Lemma E.3. Given a query Q over a deterministic bounding database DΩ and the C∗
1809

output by Algorithm 4, the runtime TLC(Q,DΩ, C∗) ≤ O(Tdet (Q,DΩ)).1810

Proof. By analysis of Algorithm 4, invoked as C∗ ← LC(Q,DΩ, {v0}, ∅, {(v0, 0)}).1811

We assume that the vertex list V , edge list E, and vertex label list ℓ are mutable1812

accumulators with O(1) ammortized append. We assume that the tuple to sink mapping ϕ is1813

a linked hashmap, with O(1) insertions and retrievals, and O(n) iteration over the domain of1814

keys. We assume that the n-ary join Dom(ϕ1) ▷◁ . . . ▷◁ Dom(ϕn) can be computed in time1815

Tjoin(Dom(ϕ1), . . . ,Dom(ϕn)) (Definition 2.13) and that an intersection Dom(ϕ1)∩Dom(ϕ2)1816

can be computed in time O(|Dom(ϕ1)|+ |Dom(ϕ2)|) (e.g., with a hash table).1817

Before proving our runtime bound, we first observe that Tdet (Q,D) ≥ Ω(|Q(D)|). This1818

is true by construction for the relation, projection, and union cases, by Definition 2.13 for1819

joins, and by the observation that |σ(R)| ≤ |R|.1820

We showthat Tdet (Q,DΩ) is an upper-bound for the runtime of Algorithm 4 by recursion.1821

The base case of a relation atom requires only an O(|DΩ.R|) iteration over the source tuples.1822

For the remaining cases, we make the recursive assumption that for every subquery Q′, it1823

holds that O(Tdet (Q′, DΩ)) bounds the runtime of Algorithm 4.1824

Selection. Selection requires a recursive call to Algorithm 4, which by the recursive1825

assumption is bounded by O(Tdet (Q′, DΩ)). Algorithm 4 requires a loop over every element1826

of Q′(DΩ). By the observation above that Tdet (Q,D) ≥ Ω(|Q(D)|), this iteration is also1827

bounded by O(Tdet (Q′, DΩ)).1828

Projection. Projection requires a recursive call to Algorithm 4, which by the recursive1829

assumption is bounded by O(Tdet (Q′, DΩ)), which in turn is a term in Tdet
(
πA⃗Q

′, DΩ
)
.1830

What remains is an iteration over πA⃗(Q(DΩ)) (lines 13–16), an iteration over Q′(DΩ) (lines1831

17–19), and the construction of a fan-in tree (line 20). The first iteration is O(|Q(DΩ)|) ≤1832

O(Tdet (Q,DΩ)). The second iteration and the construction of the bounded fan-in tree are1833

both O(|Q′(DΩ)|) ≤ O(Tdet (Q′, DΩ)) ≤ O(Tdet (Q,DΩ)), by the the observation above that1834

Tdet (Q,D) ≥ Ω(|Q(D)|).1835

Bag Union. As above, the recursive calls explicitly correspond to terms in the expansion of1836

Tdet (Q1 ∪Q2, DΩ). Initializing ϕ (line 24) can be accomplished in O(Dom(ϕ1)+Dom(ϕ2)) =1837

O(|Q1(DΩ)| + |Q2(DΩ)|) ≤ O(Tdet (Q1, DΩ) + Tdet (Q2, DΩ)). The remainder requires1838

computing Q1 ∪Q2 (line 25) and iterating over it (lines 25–29), which is O(|Q1|+ |Q2|) as1839

noted above — this directly corresponds to terms in Tdet (Q1 ∪Q2, DΩ).1840

m-ary Join. As in the prior cases, recursive calls explicitly correspond to terms in our1841

target runtime. The remaining logic involves (i) computing Dom(ϕ1) ▷◁ . . . ▷◁ Dom(ϕm), (ii)1842

iterating over the results, and (iii) creating a fan-in tree. Respectively, these are:1843

(i) Tjoin(Dom(ϕ1), . . . ,Dom(ϕm))1844

(ii) O(|Q1(DΩ) ▷◁ . . . ▷◁ Qm(DΩ)|) ≤ O(Tjoin(Dom(ϕ1), . . . ,Dom(ϕm))) (Definition 2.13)1845

(iii) O(m|Q1(DΩ) ▷◁ . . . ▷◁ Qm(DΩ)|) (as (ii), noting that m ≤ k = O(1)) ◀1846

F Higher Moments1847

We make a simple observation to conclude the presentation of our results. So far we have only1848

focused on the expectation of Φ. In addition, we could e.g. prove bounds of the probability1849

S. Feng, B. Glavic, A. Huber, O. Kennedy, A. Rudra 23:53

of a tuple’s multiplicity being at least 1. Progress can be made on this as follows: For any1850

positive integer m we can compute the m-th moment of the multiplicities, allowing us to e.g.1851

use the Chebyschev inequality or other high moment based probability bounds on the events1852

we might be interested in. We leave further investigations for future work.1853

G The Karp-Luby Estimator1854

Computing the marginal probability of a tuple in the output of a set-probabilistic database1855

query has been studied extensively. To the best of our knowledge, the current state of1856

the art approximation algorithm for this problem is the Karp-Luby estimator [31], which1857

first appeared in MayBMS/Sprout [38], and more recently as part of an online “anytime”1858

approximation algorithm [21, 16].1859

The estimator works by observing that for any ℓ random binary (but not necessarily
independent) events W1, . . . ,Wℓ, the probability of at least one event occurring (i.e.,
Pr (W1 ∨ . . . ∨Wℓ)) is bounded from above by the sum of the independent event probabilities
(i.e., Pr (W1 ∨ . . . ∨Wℓ) ≤ Pr (W1)+. . .+Pr (Wℓ)). Starting from this (‘easily’ computable
and large) value, the estimator proceeds to correct the estimate by estimating how much
of an over-estimate it is. Specifically, if P is the joint distribution over W, the estimator
computes an approximation of:

O = E
W∼P

[
|{ i |Wi = 1, i ∈ [ℓ] }|

]
.

The accuracy of this estimate is improved by conditioning P on a Wi chosen uniformly at
random (which ensures that the sampled count will be at least 1) and correcting the resulting
estimate by Pr (Wi). With an estimate of O, it can easily be verified that the probability of
the disjunction can be computed as:

Pr (W1 ∨ . . . ∨Wℓ) = Pr (W1) + . . .+ Pr (Wℓ)−O

The Karp-Luby estimator is employed on the SMB representation19 of C (to solve the1860

set-PDB version of Problem 1.6), where each Wi represents the event that one monomial1861

is true. By simple inspection, if there are ℓ monomials, this estimator has runtime Ω(ℓ).1862

Further, a minimum of
⌈

3·ℓ·log(2
δ)

ϵ2

⌉
invocations of the estimator are required to achieve 1± ϵ1863

approximation with probability at least 1− δ [38], entailing a runtime at least quadratic in ℓ.1864

As an arbitrary lineage circuit C may encode Ω
(
|C|k
)

monomials, the worst case runtime is1865

at least Ω
(
|C|2k

)
(where k is the ‘degree’ of lineage polynomial encoded by C). By contrast1866

note that by the discussion after Lemma 4.9 we can solve Problem 1.6 in time O
(
|C|2
)

for1867

all BIDB circuits independent of the degree k.1868

H Parameterized Complexity1869

In Sec. 3, we utilized common conjectures from fine-grained complexity theory. The notion of1870

#W[1]− hard is a standard notion in parameterized complexity, which by now is a standard1871

complexity tool in providing data complexity bounds on query processing results [24]. E.g.1872

the fact that k-matching is #W[1] − hard implies that we cannot have an nΩ(1) runtime.1873

However, these results do not carefully track the exponent in the hardness result. E.g.1874

19 Note that since we are in the set semantics, in the lineage polynomial/formula, addition is logical OR
and multiplication is logical AND.

CVIT 2016

23:54 Bag PDB Queries

#W[1]− hard for the general k-matching problem does not imply anything specific for the1875

3-matching problem. Similar questions have led to intense research into the new sub-field1876

of fine-grained complexity (see [48]), where we care about the exponent in our hardness1877

assumptions as well– e.g. Conjecture 3.3 is based on the popular Triangle detection hypothesis1878

in this area (cf. [34]).1879

	1 Introduction
	1.1 Polynomial Equivalence
	1.2 Our Techniques

	2 Background and Notation
	2.1 Polynomial Definition and Terminology
	2.2 Binary-BIDB
	2.2.1 Possible World Semantics

	2.3 Formalizing prob:intro-stmt
	2.4 Relationship to Deterministic Query Runtimes

	3 Hardness of Exact Computation
	3.1 Preliminaries
	3.2 Multiple Distinct p Values
	3.3 Single p value

	4 1 Approximation Algorithm
	4.1 Preliminaries and some more notation
	4.2 Our main result

	5 Related Work
	6 Conclusions and Future Work
	7 Acknowledgements
	A Generalizing Beyond Set Inputs
	A.1 TIDBs
	A.2 BIDBs

	B Missing details from Section 2
	B.1 K-relations and N[X]-encoded PDB s
	B.2 TIDBs and BIDBs in the N[X]-encoded PDB model
	B.3 Proof of prop:expection-of-polynom
	B.4 Proposition B.4
	B.5 Proof for Lemma 1.4
	B.6 Proof For Corollary 2.7

	C Missing details from Section 3
	C.1 lem:pdb-for-def-qk
	C.2 Proof of lem:tdet-om
	C.3 lem:qEk-multi-p
	C.4 Proof of Lemma C.2
	C.5 Proof of Theorem 3.6
	C.6 Subgraph Notation and O(1) Closed Formulas
	C.7 Proofs of eq:1e-eq:3p-3tri
	C.8 Tools to prove th:single-p-hard
	C.8.1 Proof for lem:qE3-exp

	C.9 Proofs for lem:3m-G2, lem:tri, and lem:lin-sys
	C.9.1 Proof of Lemma C.6
	C.9.2 Proof of lem:tri
	C.9.3 Proof of lem:lin-sys

	C.10 Proof of th:single-p
	C.11 Proof of th:single-p-hard

	D Missing Details from Section 4
	D.1 Proof of Theorem D.5
	D.2 Proof of Theorem D.8
	D.3 Proof of cor:approx-algo-const-p
	D.4 Proof of lem:ctidb-gamma
	D.5 Proof of lem:val-ub
	D.6 OnePass Remarks
	D.7 OnePass Example
	D.8 Proof of OnePass (lem:one-pass)
	D.9 SampleMonomial Remarks
	D.10 Proof of SampleMonomial (lem:sample)
	D.11 Experimental Results

	E Circuits
	E.1 Representing Polynomials with Circuits
	E.1.1 Circuits for query plans

	E.2 Modeling Circuit Construction
	E.2.1 Bounding circuit depth
	E.2.2 Circuit size vs. runtime
	E.2.3 Runtime of LC

	F Higher Moments
	G The Karp-Luby Estimator
	H Parameterized Complexity

