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» Definition 4.6 (Parameter v). Given a Binary-BIDB circuit C define (}3 m 2
Z(v c)€E(C) ‘C‘ . 1—\ISIND(’UM) ,\fm x
c) = = ,
10 (L. 1) £

4.2 Our main result 5(@ Q .
Algorithm Idea. Our approximation algorithm (APPROXIMATE:I; pseudo code in Appendix D.1)
is based on the following observation. Given a lineage polynomial ®(X) = PoOLY/(C) for circuit C

over Binary-BIDB (recall that all ¢-TIDB can be reduced to Binary-BIDB by Proposition 2.4),
we have:

We solve Problem 1.6 for any fixed ¢ > 0 in what follows.

é <p17 s 7pn) = Z 1ISIND(vm) - C le

(v,c)€E(C) X;€v

Given the above, the algorithm is a sampling based algorithm for the above sum: we
sample (via SAMPLEMONOMIAL) (v,c) € E(C) with probability propgrtional to |c| and
compute Y = Liginn(v,) - [ ] x,ev Pi- Repeating the sampling an appropriate number of times
and computing the average of Y gives us our final estimate. ONEPASS is used to compute the
sampling probabilities needed in SAMPLEMONOMIAL (details are in Appendix D).

Runtime analysis. We can argue the following runtime for the algorithm outlined above:

» Theorem 4.7. Let C be an arbitrary Binary-BIDB circuit, defin
k = DEG(C), and let v = (C). Further let it be the case that p; > po

Ili € [n]. Then an
estimate £ of ®(p1,...,pn) satisfying m ’W\/\‘S ())
ok f
- (k-0 @mft '

3

Pr <‘S—§>(p1,...,pn) >e/-(5(P1,...,pn)> <4

can be computed in time

logi-k-logk- DEPTH(C))\ ——

NE
In particular, if po > 0 and v < 1 are absolute congtants then the above runtime simplifies to (OY\

Ou (e - s176(0) -10g 3 ) - M (l0g (161 (1, .., 1)), o (s125())) ) D.\a; -

(Ic(1,...,1)),log (SIZE(C)))) . (4) (./’)@ h

(e')?

eries of the PDBench BIDB benchmark (s
ther, we can alo argue the following result:

of Proposition 2.4) as well as for all three
Appendix D.10 for experimental results).

» Lemma 4.8. Given RA" query c-TIDB D, let C be the circuit computed by Q

Then, for the reduced Binary- exists an equivalent circuit_C obtained fro M ﬂl‘é
Q(D'), such that v (C') < 1/~ (c ‘ ?h s1ze (C') < s1ze(C) @ 0 [(7’\

Proof of Lemma 4.8. The circuit C’ is built from C in the following manner. For each input 2 DM
gate g, with g,.val = X;, replace g, with the circuit S encoding the sum Z;le - Xy ;. We D
argue that C’ is a valid circuit by the following facts. Let D = ({07 o ,c}D e the

original ¢-TIDB C was generated from. Then, by Proposition 2.4 there exists a redwreedt

Li'rowy - BIDB
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D = ( o {O,@ ,I?) om which the conversion from C to/C’ follows. Both PoLY (C

POLY (C") have the same expected multiplicity since (by Proposition 2.4) the disteibti / ‘Z’

P and P’ are equivalent and each j - W} ; = W, for W’

v
s E(C'). Observe that fcancellations|can only occur for each X € vy. L—e
s—eancettations for X, Then~y < 1—(c + 1)“~! since for each element in Xicldal.jiclo.d X, (‘L ' {\\n(,{/
/5797) there are exactly c+ 1 surviving elements with j;, = -- - =44 _ ,Mj ¢t for each j €70, ¢f S
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rest of the (¢ + 1% cross terms cancel Rﬂgardmg the whole monomial v it is the case\that /’d‘ Ty
the proportion of non-cancellations across each X € v, multiply as non-cancelling ter\ns
for X; can only be Jomed with non-cancelling terms of X, ' This then yields the i

- 1(C+1)i <y<1—(c+1)” "V

fact that ZZ 1di <k Y1
Since this is true for arbitrary v, the bound follows for POLY (C’). ’%co/\ X
We briefly connect the runtime in Eq. (4) to the algorithm outline earlier (where we
ignore the dependence on M (-, -), which is needed to handle the cost of arithmetic operations
over integers). The SIZE(C) comes from the time taken to run ONEPASS once (ONEPASS

essentially computes |C| (1,...,1) using the natural circuit evaluation algorithm on C). We

make % many calls to SAMPLEMONOMIAL (each of which essentially traces O(k) VJ%

random sink to source paths in C all of which by definition have length at most DEPTH(C }\O’fe
Finally, we address the M (log (|C| (1,...,1)),log (sIZE(C))) term in the runtime. A’fib

» Lemma 4.9. For any Binary-BIDB circuit C 'wzth DEG(C) = k, we have |C| (1,.

'ﬁy\o‘\
92"-DEPTH(C) Further if Cis a treg, them, we h <SIZE O(’m 'I/&Q YY\O"'\O k\
AL o K

tion

Note that the above implies that with t e assum po > 0 and v < 1 are absolute ay\g(‘br
constants from Theorem 4.7, then the runtime there simplifies to Oy, < (6,1) - 81ZE(C)? - log 3> 3 i

for general circuits C. If C is a tree, then the runtime simplifies to Oy (6,1 ; 5(C) - log %), éjs X{; 3
which then answers Problem 1.6 with yes for such circuits. I
Finally, note that by Proposition E.1 and Lemma E.2 for any RA" quepy Q, there exists a \‘ =
reuit C* for ®[Q, D, t] such that DEPTH(C*) < O|g)legn) and S1ZE(C) < Oy, (Taet (Q, D, c)). LoC (ﬁﬁ'e
Using this along with Lemma 4.9, Theorem 4:7and the fact that n < Ty (Q, D, ¢), we have

the following corottary: W\Wm‘({

» Corollary 4.10. Let Q be an RA" query and D be a Binary-BIDB with pg > 0 and v < 1

(where po,~ as in Theorem 4.7) are absolute constants. Let ®(X) = ®[Q, D, t] for any result _7<-t)J
tuple t with deg(®) = k. Then one can compute an approrimation satisfying Eq. (3) in time

Or,10l,e',6 (Taet (OPT(Q), D, c)) (given Q, D and p; for each i € [n] that defines P).

~
Next, we note that the above result along with Lemma 4.8 answers Problem 1 0 ip the .I. VW\QS

affirmative as follows: CC emyv\ V‘Zj
AT
/ﬁ A

ere po

¢
» Corollary 4.11. Let Q be an RAT query and%? be @ c-T with
as in Theorem 4.7) zgén absolute constant. Let ®(X) = CD[Q,D, for any result tuple

Co T ‘
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