%root: main.tex \subsubsection{Proof of~\cref{lem:lin-sys}} Note that our goal is to compute $\vct{b}[i]$ for $i\in [3]$ in $O(m)$such that \begin{align} \label{eq:lin-eq-1} &\numocc{G}{\tri} +\numocc{G}{\threepath}\cdot p - \numocc{G}{\threedis}\cdot (3p^2-p^3) =\vct{b}[1]\\ \label{eq:lin-eq-2} &-2\numocc{G}{\tri}\cdot (3p^2-p^3) -4\numocc{G}{\threepath}\cdot (3p^2-p^3) \nonumber\\ &+ 10\cdot \numocc{G}{\threedis}\cdot (3p^2-p^3) =\vct{b}[2]\\ \label{eq:lin-eq-3} &-18\numocc{G}{\tri}\cdot (3p^2-p^3) -21\numocc{G}{\threepath}\cdot (3p^2-p^3) \nonumber\\ &+45 \numocc{G}{\threedis}\cdot (3p^2-p^3) =\vct{b}[3] \end{align} %Our goal is to build a linear system $M \cdot (x~y~z)^T = \vct{b}$, such that, assuming an indexing starting at $1$, each $i^{th}$ row in $M$ corresponds to the RHS of ~\cref{eq:LS-subtract} for $\graph{i}$ \textit{in} terms of $\graph{1}$. The vector $\vct{b}$ analogously has the terms computable in $O(\numedge)$ time for each $\graph{i}$ at its corresponing $i^{th}$ entry for the LHS of ~\cref{eq:LS-subtract}. Lemma ~\ref{lem:qE3-exp} gives the identity for $\rpoly_{G}(\prob,\ldots, \prob)$ when $\poly_{G}(\vct{X}) = q_E(X_1,\ldots, X_\numvar)^3$, and using Towards that end, we first state the values in $\vct{b}$ (where $\graph{1}=G$ while $\graph{2}$ and $\graph{3}$ follow from~\cref{def:Gk}): \begin{align*} &\vct{b}[1] = \frac{\rpoly_{\graph{1}}^3(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{\graph{1}}}{\ed}}{6\prob} - \numocc{\graph{1}}{\twopath} - \numocc{\graph{1}}{\twodis}\prob \nonumber\\ &- \numocc{\graph{1}}{\oneint}\prob - \big(\numocc{\graph{1}}{\twopathdis} + 3\numocc{\graph{1}}{\threedis}\big)\prob^2 \end{align*} \begin{align*} &\vct{b}[2] = \frac{\rpoly^3_{\graph{2}}(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{2}}{\ed}}{6\prob} - \numocc{\graph{2}}{\twopath} - \numocc{\graph{2}}{\twodis}\prob \nonumber\\ &- \numocc{\graph{2}}{\oneint}\prob- \left(\numocc{\graph{2}}{\twopathdis} + 3\numocc{\graph{2}}{\threedis}\right)\prob^2 \\ &- 2\cdot \numocc{\graph{1}}{\twopath}\prob+ \left(4\cdot\numocc{\graph{1}}{\oneint}+ 6\cdot\left(\numocc{\graph{1}}{\twopathdis}\right.\right.\nonumber\\ &\left.\left. + 3\cdot\numocc{\graph{1}}{\threedis}\right)\right)\left(3\prob^2 - \prob^3\right). \end{align*} \begin{align*} &\vct{b}[3] = \frac{\rpoly^3_{\graph{3}}(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{3}}{\ed}}{6\prob} - \numocc{\graph{3}}{\twopath} - \numocc{\graph{3}}{\twodis}\prob \nonumber\\ & - \numocc{\graph{3}}{\oneint}\prob - \big(\numocc{\graph{3}}{\twopathdis} + 3\numocc{\graph{3}}{\threedis}\big)\prob^2\\ & - \pbrace{\numocc{\graph{1}}{\ed} + 2 \cdot \numocc{\graph{1}}{\twopath}}\prob + \left\{24 \cdot \left(\numocc{\graph{1}}{\twopathdis} \right. \right.\nonumber\\ &\left.\left.+ 3\numocc{\graph{1}}{\threedis}\right) + 20 \cdot \numocc{\graph{1}}{\oneint} + 4\cdot \numocc{\graph{1}}{\twopath}\right.\\ &\left.+ 6 \cdot \numocc{\graph{1}}{\twodis}\right\}\cdot\left(3\prob^2 - \prob^3\right) \end{align*} Further, note that by~\cref{eq:1e} to~\cref{eq:2pd-3d} (and the fact that each of those quantities can be computed in $O(m)$ time) means that $\vct{b}$ can be computed in $O(m)$ time as needed. We first verify that all of~\cref{eq:lin-eq-1} to~\cref{eq:lin-eq-3} indeed hold. Note that~\cref{eq:lin-eq-1} follows from~\cref{lem:qE3-exp} and the definition of $\vct{b}$. Next, we derive~\cref{eq:lin-eq-2} and~\cref{eq:lin-eq-3}. %As previously outlined, assume graph $\graph{1}$ to be an arbitrary graph, with $\graph{2}, \graph{3}$ constructed from $\graph{1}$ as defined in \cref{def:Gk}. \paragraph*{Derivation of~\cref{eq:lin-eq-2}} %Let us call the linear equation for graph $\graph{2}$ $\linsys{2}$. Using the hard to compute terms of the RHS in ~\cref{lem:qE3-exp}, let us consider the RHS, Consider the following relations: \begin{align} & \numocc{\graph{2}}{\tri} + \numocc{\graph{2}}{\threepath}\prob - \numocc{\graph{2}}{\threedis}\left(3\prob^2 - \prob^3\right)\nonumber\\ = &\numocc{\graph{2}}{\threepath}\prob - \numocc{\graph{2}}{\threedis}\left(3\prob^2 - \prob^3\right)\label{eq:ls-2-1}\\ = &2 \cdot \numocc{\graph{1}}{\twopath}\prob - \left(8 \cdot \numocc{\graph{1}}{\threedis} + 6 \cdot \numocc{\graph{1}}{\twopathdis} \right.\nonumber\\ &\left.+ 4 \cdot \numocc{\graph{1}}{\oneint} + 4 \cdot \numocc{\graph{1}}{\threepath} + 2 \cdot \numocc{\graph{1}}{\tri}\right)\left(3\prob^2 - \prob^3\right)\label{eq:ls-2-2}\\ = &\left(-2\cdot\numocc{\graph{1}}{\tri} - 4\cdot\numocc{\graph{1}}{\threepath} - 8\cdot\numocc{\graph{1}}{\threedis}\right.\nonumber\\ &\left.- 6\cdot\numocc{\graph{1}}{\twopathdis}\right)\cdot\left(3\prob^2 - p^3\right) + 2\cdot\numocc{\graph{1}}{\twopath}\prob\nonumber \\ &- 4\cdot\numocc{\graph{1}}{\oneint}\cdot\left(3\prob^2 - \prob^3\right).\label{eq:ls-2-3} \end{align} %define $\linsys{2} = \numocc{\graph{2}}{\tri} + \numocc{\graph{2}}{\threepath}\prob - \numocc{\graph{2}}{\threedis}\left(3\prob^2 - \prob^3\right)$. By \cref{claim:four-two} we can compute $\linsys{2}$ in $O(T(\numedge) + \numedge)$ time with $\numedge = |E_2|$, and more generally, $\numedge = |E_k|$ for a graph $\graph{k}$. In the above,~\cref{eq:ls-2-1} follows by \cref{lem:tri}. Similarly ~\cref{eq:ls-2-2} follows by both \cref{lem:3m-G2} and \cref{lem:3p-G2}. Finally, ~\cref{eq:ls-2-3} follows by a simple rearrangement of terms. Now, rearranging the terms in the identity of~\cref{lem:qE3-exp} and recalling $\prob\ne 0$ we deduce the following identities: \begin{align} &\frac{\rpoly^3_{\graph{2}}(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{2}}{\ed}}{6\prob} - \numocc{\graph{2}}{\twopath} - \numocc{\graph{2}}{\twodis}\prob \nonumber\\ &- \numocc{\graph{2}}{\oneint}\prob - \big(\numocc{\graph{2}}{\twopathdis} + 3\numocc{\graph{2}}{\threedis}\big)\prob^2 \nonumber\\ &=\left(-2\cdot\numocc{\graph{1}}{\tri} - 4\cdot\numocc{\graph{1}}{\threepath}\right.\nonumber\\ &\left. - 8\cdot\numocc{\graph{1}}{\threedis} - 6\cdot\numocc{\graph{1}}{\twopathdis}\right)\cdot\left(3\prob^2 - p^3\right) + 2\cdot\numocc{\graph{1}}{\twopath}\prob\nonumber\\ &- 4\cdot\numocc{\graph{1}}{\oneint}\cdot\left(3\prob^2 - \prob^3\right)\label{eq:lem3-G2-1}\\ &\frac{\rpoly^3_{\graph{2}}(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{2}}{\ed}}{6\prob} - \numocc{\graph{2}}{\twopath} - \numocc{\graph{2}}{\twodis}\prob \nonumber\\ &- \numocc{\graph{2}}{\oneint}\prob- \big(\numocc{\graph{2}}{\twopathdis} + 3\numocc{\graph{2}}{\threedis}\big)\prob^2 \nonumber\\ &- 2\cdot\numocc{\graph{1}}{\twopath}\prob+ 4\cdot\numocc{\graph{1}}{\oneint}\left(3\prob^2 - \prob^3\right)\nonumber\\ &=\left(-2\cdot\numocc{\graph{1}}{\tri} - 4\cdot\numocc{\graph{1}}{\threepath} - 8\cdot\numocc{\graph{1}}{\threedis}\right. \nonumber\\ &\left.- 6\cdot\numocc{\graph{1}}{\twopathdis}\right)\cdot\left(3\prob^2 - p^3\right)\label{eq:lem3-G2-2}\\ &\frac{\rpoly^3_{\graph{2}}(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{2}}{\ed}}{6\prob} - \numocc{\graph{2}}{\twopath} - \numocc{\graph{2}}{\twodis}\prob\nonumber\\ &- \numocc{\graph{2}}{\oneint}\prob - \big(\numocc{\graph{2}}{\twopathdis} + 3\numocc{\graph{2}}{\threedis}\big)\prob^2\nonumber\\ &- 2\cdot\numocc{\graph{1}}{\twopath}\prob + \left(4\cdot\numocc{\graph{1}}{\oneint}+ 6\cdot\left(\numocc{\graph{1}}{\twopathdis}\right.\right. \nonumber\\ &\left.\left.+ 3\cdot\numocc{\graph{1}}{\threedis}\right)\right)\left(3\prob^2 - \prob^3\right)\nonumber\\ &=\left(-2\cdot\numocc{\graph{1}}{\tri} - 4\cdot\numocc{\graph{1}}{\threepath} + 10\cdot\numocc{\graph{1}}{\threedis}\right)\cdot\left(3\prob^2 - \prob^3\right)\label{eq:lem3-G2-3} \end{align} In the above,~\cref{eq:lem3-G2-1} follows by substituting ~\cref{eq:ls-2-3} in the RHS. We then arrive with ~\cref{eq:lem3-G2-2} by adding the inverse of the last 3 terms of ~\cref{eq:ls-2-3} to both sides. Finally, we arrive at ~\cref{eq:lem3-G2-3} by adding term $6\left(\cdot\numocc{\graph{1}}{\twopathdis} + 3\cdot\numocc{\graph{1}}{\threedis}\right)$ to both sides. Note that the LHS of~\cref{eq:lem3-G2-3} is $\vct{b}[2]$ and that~\cref{eq:lem3-G2-3} is the same as~\cref{eq:lin-eq-2}. %Denote the matrix of the linear system as $\mtrix{\rpoly_{G}}$, where $\mtrix{\rpoly_{G}}[i]$ is the $i^{\text{th}}$ row of $\mtrix{\rpoly_{G}}$. From ~\cref{eq:lem3-G2-3} it follows that $\mtrix{\rpoly_{\graph{2}}}[2] = $ %\begin{equation*} %\left(-2 \cdot \numocc{\graph{1}}{\tri} - 4 \cdot \numocc{\graph{1}}{\threepath} + 10 \cdot \numocc{\graph{1}}{\threedis}\right)\cdot \left(3\prob^2 - \prob^3\right) %\end{equation*} %and %By \cref{lem:tri}, the first term of $\linsys{2}$ is $0$, and then $\linsys{2} = \numocc{\graph{2}}{\threepath}\prob - \numocc{\graph{2}}{\threedis}\left(3\prob^2 - \prob^3\right)$. % %Replace the next term with the identity of \cref{lem:3p-G2} and the last term with the identity of \cref{lem:3m-G2}, %\begin{equation*} %\linsys{2} = 2 \cdot \numocc{\graph{1}}{\twopath}\prob - \pbrace{8 \cdot \numocc{\graph{1}}{\threedis} + 6 \cdot \numocc{\graph{1}}{\twopathdis} + 4 \cdot \numocc{\graph{1}}{\oneint} + 4 \cdot \numocc{\graph{1}}{\threepath} + 2 \cdot \numocc{\graph{1}}{\tri}}\left(3\prob^2 - \prob^3\right). %\end{equation*} %Rearrange terms into groups of those patterns that are 'hard' to compute and those that can be computed in $O(\numedge)$, %\begin{equation*} %\linsys{2} = -\pbrace{2 \cdot \numocc{\graph{1}}{\tri} + 4 \cdot \numocc{\graph{1}}{\threepath} + \left(8 \cdot \numocc{\graph{1}}{\threedis} + 6 \cdot \numocc{\graph{1}}{\twopathdis}\right)}\left(3\prob^2 - \prob^3\right) + \pbrace{2 \cdot \numocc{\graph{1}}{\twopath}\prob - 4 \cdot \numocc{\graph{1}}{\oneint}\left(3\prob^2 - \prob^3\right)}. %\end{equation*} % %Note that there are terms computable in $O(\numedge)$ time which can be subtracted from $\linsys{2}$ and added to the other side of \cref{eq:LS-subtract}, i.e., $\vct{b}[2]$. This leaves us with %\begin{align} %&\linsys{2} = \left(-2 \cdot \numocc{\graph{1}}{\tri} - 4 \cdot \numocc{\graph{1}}{\threepath} - 2 \cdot \numocc{\graph{1}}{\threedis} - 4\cdot \numocc{\graph{1}}{\twopathdis}\right) \cdot \left(3\prob^2 - \prob^3\right)\label{eq:LS-G2'}\\ %&\linsys{2} = \left(-2 \cdot \numocc{\graph{1}}{\tri} - 4 \cdot \numocc{\graph{1}}{\threepath} - 2 \cdot \numocc{\graph{1}}{\threedis} + 12 \cdot \numocc{\graph{1}}{\threedis}\right)\cdot \left(3\prob^2 - \prob^3\right)\label{eq:LS-G2'-1}\\ %&\linsys{2} = \left(-2 \cdot \numocc{\graph{1}}{\tri} - 4 \cdot \numocc{\graph{1}}{\threepath} + 10 \cdot \numocc{\graph{1}}{\threedis}\right)\cdot \left(3\prob^2 - \prob^3\right)\label{eq:LS-G2'-2} %\end{align} % %Equation ~\ref{eq:LS-G2'} is the result of collecting $2\cdot\left(\numocc{\graph{1}}{\twopathdis} + 3\numocc{\graph{1}}{\threedis}\right)$ and moving them to the other side. Then ~\cref{eq:LS-G2'-1} results from adding $4\cdot\left(\numocc{\graph{1}}{\twopathdis} + 3\numocc{\graph{1}}{\threedis}\right)$ to both sides. Equation ~\ref{eq:LS-G2'-2} is the result of simplifying terms. % %For the left hand side, following the above steps, we obtain %We now have a linear equation in terms of $\graph{1}$ for $\graph{2}$. Note that by ~\cref{eq:2pd-3d}, it is the case that any term of the form $x \cdot \left(\numocc{\graph{i}}{\twopathdis}\right.$ + $\left.3\cdot \numocc{\graph{i}}{\threedis}\right)$ is computable in linear time. By ~\cref{eq:1e}, ~\cref{eq:2p}, ~\cref{eq:2m}, and ~\cref{eq:3s} the same is true for $\numocc{\graph{i}}{\ed}$, $\numocc{\graph{i}}{\twopath}$, $\numocc{\graph{i}}{\twodis}$, and $\numocc{\graph{i}}{\oneint}$ respectively. \paragraph*{Derivation of~\cref{eq:lin-eq-3}} %Following the same reasoning for $\graph{3}$, Using \cref{lem:3m-G3}, \cref{lem:3p-G3}, and \cref{lem:tri}, we derive % starting with the RHS of ~\cref{eq:LS-subtract}, we derive \begin{align} &\numocc{\graph{3}}{\tri} + \numocc{\graph{3}}{\threepath}\prob - \numocc{\graph{3}}{\threedis}\left(3\prob^2 - \prob^3\right)\nonumber\\ =& \pbrace{\numocc{\graph{1}}{\ed} + 2 \cdot \numocc{\graph{1}}{\twopath}}\prob - \left\{4 \cdot \numocc{\graph{1}}{\twopath} + 6 \cdot \numocc{\graph{1}}{\twodis}\right.\nonumber\\ &\left.+ 18 \cdot \numocc{\graph{1}}{\tri} + 21 \cdot \numocc{\graph{1}}{\threepath} + 24 \cdot \numocc{\graph{1}}{\twopathdis} +\right.\nonumber\\ &\left.20 \cdot \numocc{\graph{1}}{\oneint} + 27 \cdot \numocc{\graph{1}}{\threedis}\right\}\left(3\prob^2 - \prob^3\right)\label{eq:LS-G3-sub}\\ =&\left\{ -18\numocc{\graph{1}}{\tri} - 21 \cdot \numocc{\graph{1}}{\threepath} - 24 \cdot \numocc{\graph{1}}{\twopathdis}\right. \nonumber\\ &\qquad\left.- 27 \cdot \numocc{\graph{1}}{\threedis}\right\}\left(3\prob^2 - \prob^3\right) \nonumber\\ &+ \pbrace{-20 \cdot \numocc{\graph{1}}{\oneint} - 4\cdot \numocc{\graph{1}}{\twopath} - 6 \cdot \numocc{\graph{1}}{\twodis}}\left(3\prob^2 - \prob^3\right)\nonumber\\ &+ \numocc{\graph{1}}{\ed}\prob + 2 \cdot \numocc{\graph{1}}{\twopath}\prob. \label{eq:lem3-G3-1} \end{align} By the identity in~\cref{lem:qE3-exp} (along with the fact that $\prob\ne 0$), we get: \begin{align} &\frac{\rpoly_{\graph{3}}(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{3}}{\ed}}{6\prob} - \numocc{\graph{3}}{\twopath} - \numocc{\graph{3}}{\twodis}\prob \nonumber\\ & - \numocc{\graph{3}}{\oneint}\prob - \big(\numocc{\graph{3}}{\twopathdis} + 3\numocc{\graph{3}}{\threedis}\big)\prob^2\nonumber\\ &= \left\{ -18\numocc{\graph{1}}{\tri} - 21 \cdot \numocc{\graph{1}}{\threepath} - 24 \cdot \numocc{\graph{1}}{\twopathdis}\right. \nonumber\\ &\left.- 27 \cdot \numocc{\graph{1}}{\threedis}\right\}\left(3\prob^2 - \prob^3\right) \nonumber\\ &+ \pbrace{-20 \cdot \numocc{\graph{1}}{\oneint} - 4\cdot \numocc{\graph{1}}{\twopath} - 6 \cdot \numocc{\graph{1}}{\twodis}}\left(3\prob^2 - \prob^3\right)\nonumber\\ &+ \numocc{\graph{1}}{\ed}\prob + 2 \cdot \numocc{\graph{1}}{\twopath}\prob. \label{eq:lem3-G3-2}\\ &\frac{\rpoly_{\graph{3}}(\prob,\ldots, \prob)}{6\prob^3} - \frac{\numocc{\graph{3}}{\ed}}{6\prob} - \numocc{\graph{3}}{\twopath} - \numocc{\graph{3}}{\twodis}\prob \nonumber\\ &- \numocc{\graph{3}}{\oneint}\prob - \big(\numocc{\graph{3}}{\twopathdis} + 3\numocc{\graph{3}}{\threedis}\big)\prob^2 - \left(\numocc{\graph{1}}{\ed}\right.\nonumber\\ &\left.+ \numocc{\graph{1}}{\twopath}\right)\prob+ \left(24\left(\numocc{\graph{1}}{\twopathdis} + 3\cdot\numocc{\graph{1}}{\threedis}\right) \right.\nonumber\\ &\left.+ 20\cdot\numocc{\graph{1}}{\oneint} + 4\cdot\numocc{\graph{1}}{\twopath}+ 6\cdot\numocc{\graph{1}}{\twodis}\right)\left(3\prob^2 - \prob^3\right)\nonumber\\ &= \pbrace{- 18 \cdot \numocc{\graph{1}}{\tri} - 21 \cdot \numocc{\graph{1}}{\threepath} + 45 \cdot \numocc{\graph{1}}{\threedis}}\nonumber\\ &\cdot\left(3p^2 - p^3\right)\label{eq:lem3-G3-3} \end{align} %Equation ~\ref{eq:lem3-G3-2} follows from substituting ~\cref{eq:lem3-G3-2} in for the RHS of ~\cref{eq:LS-subtract}. In the above,~\cref{eq:lem3-G3-3} follows by moving terms and adding the term $24\cdot\left(\numocc{\graph{1}}{\twopathdis} + \numocc{\graph{1}}{\threedis}\right)$ to both sides. Note that the LHS of~\cref{eq:lem3-G3-3} is $\vct{b}[3]$ and that~\cref{eq:lem3-G3-3} is indeed~\cref{eq:lin-eq-3}. %Equation \ref{eq:LS-G3-sub} follows from simple substitution of all lemma identities in ~\cref{lem:3m-G3}, ~\cref{lem:3p-G3}, and ~\cref{lem:tri}. We then get \cref{eq:LS-G3-rearrange} by simply rearranging the operands. %It then follows that %Removing $O(\numedge)$ computable terms to the other side of \cref{eq:LS-subtract}, we get %\begin{align} %&\mtrix{\rpoly_{G}}[3] = \pbrace{- 18 \cdot \numocc{\graph{1}}{\tri} - 21 \cdot \numocc{\graph{1}}{\threepath} + 45 \cdot \numocc{\graph{1}}{\threedis}}\nonumber\\ %&\cdot\left(3p^2 - p^3\right)\label{eq:LS-G3'} %\end{align} %and %The same justification for the derivation of $\linsys{2}$ applies to the derivation above of $\linsys{3}$. To arrive at ~\cref{eq:LS-G3'}, we move $O(\numedge)$ computable terms to the left hand side. For the term $-24\cdot\numocc{\graph{1}}{\twopathdis}$ we need to add the inverse to both sides AND $72\cdot\numocc{\graph{1}}{\threedis}$ to both sides, in order to satisfy the constraint of $\cref{eq:2pd-3d}$. % %For the LHS we get \paragraph*{Wrapping it up.} %We now have a linear system consisting of three linear combinations, for $\graph{1}, \graph{2}, \graph{3}$ in terms of $\graph{1}$. Note that the constants for $\graph{1}$ follow the RHS of ~\cref{eq:LS-subtract}. To make it easier, For notational convenience, define $x = \numocc{\graph{1}}{\tri}$, $y = \numocc{\graph{1}}{\threepath}, z = \numocc{\graph{1}}{\threedis}$. % Using $\linsys{2}$ and $\linsys{3}$, the following matrix is obtained, If we denote \[ \mtrix{\rpoly} = \begin{pmatrix} 1 & \prob & -(3\prob^2 - \prob^3)\\ -2(3\prob^2 - \prob^3) & -4(3\prob^2 - \prob^3) & 10(3\prob^2 - \prob^3)\\ -18(3\prob^2 - \prob^3) & -21(3\prob^2 - \prob^3) & 45(3\prob^2 - \prob^3) \end{pmatrix},\] then~\cref{eq:lin-eq-1} to~\cref{eq:lin-eq-3} implies that %and the following linear equation \begin{equation} \mtrix{\rpoly}\cdot (x~ y~ z~)^T = \vct{b}(\graph{1}), \end{equation} which proves the first part of the lemma. %\AR{ %Also the top right entry should be $-(p^2-p^3)$-- the negative sign is missing. This changes the rest of the calculations and has to be propagated. If my calculations are correct the final polynomial should be $-30p^2(1-p)^2(1-p-p^2+p^3)$. This still has no root in $(0,1)$} %\AH{While propagating changes in ~\cref{eq:2pd-3d}, I noticed and corrected some errors, most notably, that for pulling out the \textbf{$a^2$} factor as described next, I hadn't squared it. That has been addressed. 110220} Note that if $\mtrix{\rpoly}$ has full rank then one can compute $x,y,z$ in $O(1)$ using Gaussian elimination. %Now we seek to show that all rows of the system are indeed independent. % %The method of minors can be used to compute the determinant, To show that $\mtrix{\rpoly}$ indeed has full rank, we will show that $\dtrm{\mtrix{\rpoly}}\ne 0$ for every $\prob\in (0,1)$. Towards that end, we will show that $\dtrm{\mtrix{\rpoly}}$ as a polynomial in $\prob$ does not have any root in $(0,1)$. We also make use of the fact that for a matrix with entries $ab, ac, ad,$ and $ae$, the determinant is $a^2be - a^2cd = a^2\cdot\begin{vmatrix} b&c \\d &e\end{vmatrix}$. We have $\dtrm{\mtrix{\rpoly}}$ is \begin{align*} &\begin{vmatrix} 1 & \prob & -(3\prob^2 - \prob^3)\\ -2(3\prob^2 - \prob^3) & -4(3\prob^2 - \prob^3) & 10(3\prob^2 - \prob^3)\\ -18(3\prob^2 - \prob^3) & -21(3\prob^2 - \prob^3) & 45(3\prob^2 - \prob^3) \end{vmatrix} = \\ &(3\prob^2 - \prob^3)^2 \cdot \begin{vmatrix} -4 & 10\\ -21 & 45 \end{vmatrix} - \prob(3\prob^2 - \prob^3)^2~ \cdot \begin{vmatrix} -2 & 10\\ -18 & 45 \end{vmatrix}\\ &+ \left(- ~(3\prob^2 - \prob^3)^3\right)~ \cdot \begin{vmatrix} -2 & -4\\ -18 & -21 \end{vmatrix}. \end{align*} Compute each RHS term starting with the left and working to the right, \begin{align} &(3\prob^2 - \prob^3)^2\cdot \left((-4 \cdot 45) - (-21 \cdot 10)\right) = (3\prob^2 - \prob^3)^2\cdot(-180 + 210)\nonumber\\ &= 30(3\prob^2 - \prob^3)^2.\label{eq:det-1} \end{align} The middle term then is \begin{align} &-\prob(3\prob^2 - \prob^3)^2 \cdot \left((-2 \cdot 45) - (-18 \cdot 10)\right) \nonumber\\ &= -\prob(3\prob^2 - \prob^3)^2 \cdot (-90 + 180) = -90\prob(3\prob^2 - \prob^3)^2.\label{eq:det-2} \end{align} Finally, the rightmost term, \begin{align} &-\left(3\prob^2 - \prob^3\right)^3 \cdot \left((-2 \cdot -21) - (-18 \cdot -4)\right) \nonumber\\ &= -\left(3\prob^2 - \prob^3\right)^3 \cdot (42 - 72) = 30\left(3\prob^2 - \prob^3\right)^3.\label{eq:det-3} \end{align} Putting \cref{eq:det-1}, \cref{eq:det-2}, \cref{eq:det-3} together, we have, \begin{align} &\dtrm{\mtrix{\rpoly}} = 30(3\prob^2 - \prob^3)^2 - 90\prob(3\prob^2 - \prob^3)^2 +30(3\prob^2 - \prob^3)^3\nonumber\\ &= 30(3\prob^2 - \prob^3)^2\left(1 - 3\prob + (3\prob^2 - \prob^3)\right) \nonumber\\ &= 30\prob^4\left(3 - \prob\right)^2\left(-\prob^3 + 3\prob^2 - 3\prob + 1\right)\nonumber\\ &= 30\prob^4\left(3 - \prob\right)^2\left(1 - \prob\right)^3.\label{eq:det-final} \end{align} From ~\cref{eq:det-final} it can easily be seen that the roots of $\dtrm{\mtrix{\rpoly}}$ are $0, 1,$ and $3$. Hence there are no roots in $(0, 1)$ and ~\cref{lem:lin-sys} follows. %\end{proof} %\qed %\begin{proof}[Proof of \cref{th:single-p}] %The proof follows by ~\cref{lem:lin-sys}. %\end{proof} %\qed %\begin{Corollary}\label{cor:single-p-gen-k} %For every value $\kElem \geq 3$, there exists a query with $\kElem$ product width that is hard. %\end{Corollary} %\begin{proof}[Proof of Corollary ~\ref{cor:single-p-gen-k}] %Consider $\poly^3_{G}$ and $\poly' = 1$ such that $\poly'' = \poly^3_{G} \cdot \poly'$. By ~\cref{th:single-p}, query $\poly''$ with $\kElem = 4$ has $\Omega(\numvar^{\frac{4}{3}})$ complexity. %\end{proof} %\qed