
Computing expected multiplicities for bag-TIDBs with bounded
multiplicities

Su Feng

Boris Glavic

sfeng14@hawk.iit.edu

bglavic@iit.edu

Illinois Institute of Technology , USA

Chicago, New York, USA

Aaron Huber

Oliver Kennedy

Atri Rudra

ahuber@buffalo.edu

okennedy@buffalo.edu

atri@buffalo.edu

University at Buffalo, USA

Buffalo, New York, USA

ABSTRACT

In this work, we study the problem of computing a tuple’s expected

multiplicity over probabilistic databases with bag semantics (where

each tuple is associated with a multiplicity) exactly and approxi-

mately. We consider bag-TIDBs where we have a bound 𝑐 on the

maximum multiplicity of each tuple and tuples are independent

probabilistic events (we refer to such databases as 𝑐-TIDBs). We are

specifically interested in the fine-grained complexity of computing

expected multiplicities and how it compares to the complexity of

deterministic query evaluation algorithms — if these complexities

are comparable, it opens the door to practical deployment of proba-

bilistic databases. Unfortunately, our results imply that computing

expected multiplicities for 𝑐-TIDBs based on the results produced by

such query evaluation algorithms introduces super-linear overhead

(under parameterized complexity hardness assumptions/conjec-

tures). We proceed to study approximation of expected result tuple

multiplicities for positive relational algebra queries (RA+) over 𝑐-
TIDBs and for a non-trivial subclass of block-independent databases

(BIDBs). We develop a sampling algorithm that computes a (1 ± 𝜖)-
approximation of the expected multiplicity of an output tuple in

time linear in the runtime of the corresponding deterministic query

for any RA+ query.

CCS CONCEPTS

• Information systems→ Information systems applications;

Data management systems; • Theory of computation→ Prob-

abilistic computation; Complexity classes.

KEYWORDS

probabilstic data model, parameterized complexity, fine-grained

complexity, lineage polynomial

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:

Su Feng, Boris Glavic, Aaron Huber, Oliver Kennedy, and Atri Rudra. 2022.

Computing expected multiplicities for bag-TIDBs with bounded multiplici-

ties. In Proceedings of Make sure to enter the correct conference title from your

rights confirmation emai (Conference acronym ’XX). ACM, New York, NY,

USA, 28 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

This work explores the problem of computing the expectation of the

multiplicity of a tuple in the result of a query over a 𝑐-TIDB, a type of

probabilistic database with bag semantics where the multiplicity of

a tuple is a random variable with range [0, 𝑐] for some fixed constant

𝑐 and multiplicities assigned to any two tuples are independent of

each other. Formally, a 𝑐-TIDB, D =

(
{0, . . . , 𝑐}𝐷 ,P

)
consists of

a set of tuples 𝐷 and a probability distribution P over all possible

worlds generated by assigning each tuple 𝑡 ∈ 𝐷 a multiplicity in

the range [0, 𝑐]. Any such world can be encoded as a vector from

{0, . . . , 𝑐}𝐷 , the set of all vectors of length 𝑛 = |𝐷 | such that each

index corresponds to a distinct 𝑡 ∈ 𝐷 storing its multiplicity. A

given worldW ∈ {0, . . . , 𝑐}𝐷 can be interpreted as follows: for each

𝑡 ∈ 𝐷 ,W𝑡 is the multiplicity of 𝑡 inW. Given that the multiplicities

of tuples are independent events, the probability distribution P
can be expressed compactly by assigning each tuple a (disjoint)

probability distribution over [0, 𝑐]. Let 𝑝𝑡, 𝑗 denote the probability
that tuple 𝑡 is assigned multiplicity 𝑗 . The probability of a particular

world W is then

∏
𝑡 ∈𝐷 𝑝𝑡,W𝑡

.

Allowing for ≤ 𝑐 multiplicities across all tuples gives rise to

having ≤ (𝑐 + 1)𝑛 possible worlds instead of the usual 2
𝑛
possible

worlds of a 1-TIDB, which (assuming set query semantics), is the

same as the traditional set TIDB. In this work, since we are generally

considering bag query input, we will only be considering bag query

semantics. We denote by 𝑄 (W) (𝑡) the multiplicity of 𝑡 in query 𝑄

over possible worldW ∈ {0, . . . , 𝑐}𝐷 .
We can formally state our problem of computing the expected

multiplicity of a result tuple as:

Problem 1.1. Given a 𝑐-TIDBD =

(
{0, . . . , 𝑐}𝐷 ,P

)
,RA+ query1

𝑄 , and result tuple 𝑡 , compute the expectedmultiplicity of 𝑡 :EW∼P [𝑄 (W) (𝑡)].

1
An RA+ query is a query expressed in positive relational algebra, i.e., using only the

relational algebra operators selection (𝜎), projection (𝜋), natural join (Z) and union

(∪).

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Huber, Kennedy, Rudra, et al.

Φ[𝜋𝐴 (𝑄), 𝐷, 𝑡] =∑︁
𝑡 ′:𝜋𝐴 (𝑡 ′)=𝑡

Φ[𝑄,𝐷, 𝑡 ′]

Φ[𝑄1 ∪𝑄2, 𝐷, 𝑡] =

Φ[𝑄1, 𝐷, 𝑡] + Φ[𝑄2, 𝐷, 𝑡]

Φ[𝜎𝜃 (𝑄), 𝐷, 𝑡] ={
Φ[𝑄,𝐷, 𝑡] if 𝜃 (𝑡)
0 otherwise.

Φ[𝑄1Z𝑄2, 𝐷, 𝑡] =

Φ[𝑄1, 𝐷, 𝜋𝑎𝑡𝑡𝑟 (𝑄1)𝑡]

· Φ[𝑄2, 𝐷, 𝜋𝑎𝑡𝑡𝑟 (𝑄2)𝑡]

Φ[𝑅, 𝐷, 𝑡] = 𝑋𝑡
Figure 1: Construction of the lineage (polynomial) for an

RA+ query 𝑄 over an arbitrary deterministic database 𝐷 ,

where X consists of all 𝑋𝑡 over all 𝑅 in 𝐷 and 𝑡 in 𝑅. Here

𝐷.𝑅 denotes the instance of relation 𝑅 in 𝐷 . Please note, after

we introduce the reduction to 1-BIDB, the base case will be

expressed alternatively.

It is natural to explore computing the expected multiplicity of

a result tuple as this is the analog for computing the marginal

probability of a tuple in a set PDB. In this work we will assume that

𝑐 = 𝑂 (1) since this is what is typically seen in practice. Allowing

for unbounded 𝑐 is an interesting open problem.

Hardness of Set Query Semantics and Bag Query Semantics.

Set query evaluation semantics over 1-TIDBs have been studied

extensively, and the data complexity of the problem in general has

been shown by Dalvi and Suicu to be #P-hard [14]. For our setting,

there exists a trivial polytime algorithm to compute Problem 1.1

for any RA+ query over a 𝑐-TIDB due to linearity of expection

(see Sec. 1.1). Since we can compute Problem 1.1 in polynomial time,

the interesting question that we explore deals with analyzing the

hardness of computing expectation using fine-grained analysis and

parameterized complexity, where we are interested in the exponent

of polynomial runtime.

Specifically, in this work we ask if Problem 1.1 can be solved

in time linear in the runtime of an analogous deterministic query

which we make more precise shortly. If this is true, then this would

open up the way for deployment of 𝑐-TIDBs in practice. To an-

alyze this question we denote by 𝑇 ∗ (𝑄,D) the optimal runtime

complexity of computing Problem 1.1 over 𝑐-TIDB D.

Let 𝑇𝑑𝑒𝑡

(
𝑄, 𝐷, 𝑐

)
(see Sec. 2.4 for further details) denote the

runtime for query 𝑄 , deterministic database 𝐷 , and multiplicity

bound 𝑐 . This paper considers RA+ queries for which order of

operations is explicit, as opposed to other query languages, e.g.

Datalog, UCQ. Thus, since order of operations affects runtime, we

denote the optimized RA+ query picked by an arbitrary produc-

tion system as OPT (𝑄) = min𝑄′∈RA+,𝑄′≡𝑄 𝑇𝑑𝑒𝑡
(
𝑄 ′, 𝐷, 𝑐

)
. Then

𝑇𝑑𝑒𝑡

(
OPT (𝑄) , 𝐷, 𝑐

)
is the runtime for the optimized query.

2

Our lower bound results. Our question is whether or not it is

always true that 𝑇 ∗ (𝑄,D) ≤ 𝑇𝑑𝑒𝑡 (OPT (𝑄) , 𝐷, 𝑐). Unfortunately
this is not the case. Table 1 shows our results.

Specifically, depending on what hardness result/conjecture we

assume, we get various weaker or stronger versions of no as an

2
Note that our work applies to any𝑄 ∈ RA+ , which implies that specific heuristics

for choosing an optimized query can be abstracted away, i.e., our work does not

consider heuristic techniques.

answer to our question. To make some sense of the other lower

bounds in Table 1, we note that it is not too hard to show that

𝑇 ∗ (𝑄,D) ≤ 𝑂
(
(𝑇𝑑𝑒𝑡 (OPT (𝑄) , 𝐷, 𝑐))𝑘

)
, where 𝑘 is the join width

(our notion of join width follows from Definition 2.2 and Fig. 1.) of

the query 𝑄 over all result tuples 𝑡 (and the parameter that defines

our family of hard queries).

What our lower bound in the third row says is that one cannot

get more than a polynomial improvement over essentially the trivial

algorithm for Problem 1.1. However, this result assumes a hard-

ness conjecture that is not as well studied as those in the first two

rows of the table (see Sec. 3 for more discussion on the hardness as-

sumptions). Further, we note that existing results
3
already imply the

claimed lower bounds if wewere to replace the𝑇𝑑𝑒𝑡 (OPT (𝑄) , 𝐷, 𝑐)
by just 𝑛 (indeed these results follow from known lower bounds for

deterministic query processing). Our contribution is to then identify

a family of hard queries where deterministic query processing is

‘easy’ but computing the expected multiplicities is hard.

Our upper bound results.We introduce a (1±𝜖)-approximation al-

gorithm that computes Problem 1.1 in time𝑂𝜖 (𝑇𝑑𝑒𝑡 (OPT (𝑄) , 𝐷, 𝑐)).
Thismeans, whenwe are okaywith approximation, that we solve Prob-

lem 1.1 in time linear in the size of the deterministic query and bag

PDBs are deployable in practice. In contrast, known approximation

techniques ([32, 40]) in set-PDBs need timeΩ(𝑇𝑑𝑒𝑡 (OPT (𝑄) , 𝐷, 𝑐)2𝑘)
(see Appendix G). Further, our approximation algorithm works for

a more general notion of bag PDBs beyond 𝑐-TIDBs (see Sec. 2.2).

1.1 Polynomial Equivalence

A common encoding of probabilistic databases (e.g., in [2, 5, 29, 30]

andmany others) relies on annotating tuples with lineages or propo-

sitional formulas that describe the set of possible worlds that the

tuple appears in. The bag semantics analog is a provenance/lineage

polynomial (see Fig. 1) Φ[𝑄, 𝐷, 𝑡] [27], a polynomial with non-zero

integer coefficients and exponents, over variables X encoding input

tuple multiplicities. Evaluating a lineage polynomial for a query

result tuple 𝑡𝑜𝑢𝑡 by, for each tuple 𝑡𝑖𝑛 , assigning the variable 𝑋𝑡𝑖𝑛
encoding the tuple’s multiplicity to the tuple’s multiplicity in the

possible world yields the multiplicity of the 𝑡𝑜𝑢𝑡 in the query result

for this world.

We drop 𝑄 , 𝐷 , and 𝑡 from Φ[𝑄,𝐷, 𝑡] when they are clear from

the context or irrelevant to the discussion. We now specify the

problem of computing the expectation of tuple multiplicity in the

language of lineage polynomials:

Problem 1.2 (Expected Multiplicity of Lineage Polynomi-

als). Given an RA+ query𝑄 , 𝑐-TIDB D and result tuple 𝑡 , compute

the expectedmultiplicity of the polynomialΦ[𝑄,𝐷, 𝑡] (i.e.,EW∼P [Φ[𝑄, 𝐷, 𝑡] (W)],
whereW ∈ {0, . . . , 𝑐}𝐷).

We note that computing Problem 1.1 is equivalent (yields the

same result as) to computing Problem 1.2 (see Proposition 2.8).

3
This claim follows from known results for the problem of counting 𝑘-cliques, where

for a query 𝑄 over database 𝐷 that counts the number of 𝑘-cliques. Specifically, a

lower bound of the form Ω
(
𝑛1+𝜖0

)
for some 𝜖0 > 0 follows from the triangle detection

hypothesis (this like our result is for 𝑘 = 3). Second, a lower bound of 𝜔
(
𝑛𝐶0

)
for all

𝐶0 > 0 under the assumption #W[0] ≠ #W[1] for counting 𝑘-clique [23]. Finally,
a lower bound of Ω

(
𝑛𝑐0 ·𝑘

)
for some 𝑐0 > 0 was shown by [11] (under the strong

exponential time hypothesis).

Computing expected multiplicities for bag-TIDBs with bounded multiplicities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Lower bound on 𝑇 ∗ (𝑄ℎ𝑎𝑟𝑑 ,D) Num. Ps Hardness Assumption

Ω
(
(𝑇𝑑𝑒𝑡 (OPT (𝑄ℎ𝑎𝑟𝑑) , 𝐷, 𝑐))1+𝜖0

)
for some 𝜖0 > 0 Single Triangle Detection hypothesis

𝜔

(
(𝑇𝑑𝑒𝑡 (OPT (𝑄ℎ𝑎𝑟𝑑) , 𝐷, 𝑐))𝐶0

)
for all 𝐶0 > 0 Multiple #W[0] ≠ #W[1]

Ω
(
(𝑇𝑑𝑒𝑡 (OPT (𝑄ℎ𝑎𝑟𝑑) , 𝐷, 𝑐))𝑐0 ·𝑘

)
for some 𝑐0 > 0 Multiple Conjecture 3.2

Table 1: Our lower bounds for a specific hard query 𝑄ℎ𝑎𝑟𝑑 parameterized by 𝑘 . For D =

{
{0, . . . , 𝑐}𝐷 ,P

}
those with ‘Multiple’

in the second column need the algorithm to be able to handle multiple P, i.e. probability distributions (for a given 𝐷). The

last column states the hardness assumptions that imply the lower bounds in the first column (𝜖𝑜 ,𝐶0, 𝑐0 are constants that are

independent of 𝑘).

All of our results rely on working with a reduced form

(
Φ̃
)
of the

lineage polynomial Φ. In fact, it turns out that for the 1-TIDB case,

computing the expected multiplicity (over bag query semantics) is

exactly the same as evaluating this reduced polynomial over the

probabilities that define the 1-TIDB. This is also true when the query

input(s) is a block independent disjoint probabilistic database [40]

(bag query semantics with tuple multiplicity at most 1), for which

the proof of Lemma 1.4 (introduced shortly) holds .

Next, we motivate this reduced polynomial. Consider the query

𝑄1 defined as follows over the bag relations of Fig. 2:

SELECT DISTINCT 1 FROM T 𝑡1, R r, T 𝑡2

WHERE 𝑡1.Point = r.Point1 AND 𝑡2.Point = r.Point2

It can be verified that Φ (𝐴, 𝐵,𝐶, 𝐸, 𝑋,𝑌, 𝑍) for the sole result tu-
ple of𝑄1 is𝐴𝑋𝐵+𝐵𝑌𝐸+𝐵𝑍𝐶 . Now consider the product query𝑄2

1
=

𝑄1×𝑄1. The lineage polynomial for𝑄2

1
is given byΦ2

1
(𝐴, 𝐵,𝐶, 𝐸, 𝑋,𝑌, 𝑍)

= 𝐴2𝑋 2𝐵2+𝐵2𝑌 2𝐸2+𝐵2𝑍 2𝐶2+2𝐴𝑋𝐵2𝑌𝐸+2𝐴𝑋𝐵2𝑍𝐶 +2𝐵2𝑌𝐸𝑍𝐶.

To compute E
[
Φ2

1

]
we can use linearity of expectation and push

the expectation through each summand. To keep things simple, let

us focus on the monomial Φ
(𝐴𝐵𝑋)2
1

= 𝐴2𝑋 2𝐵2 as the procedure

is the same for all other monomials of Φ2

1
. Let𝑊𝑋 be the random

variable corresponding to a lineage variable 𝑋 . Because the distinct

variables in the product are independent, we can push expectation

through them yielding E
[
𝑊 2

𝐴
𝑊 2

𝑋
𝑊 2

𝐵

]
= E

[
𝑊 2

𝐴

]
E

[
𝑊 2

𝑋

]
E

[
𝑊 2

𝐵

]
.

Since𝑊𝐴,𝑊𝐵 ∈ {0, 1}we can further deriveE [𝑊𝐴] E
[
𝑊 2

𝑋

]
E [𝑊𝐵]

by the fact that for any 𝑊 ∈ {0, 1}, 𝑊 2 = 𝑊 . Observe that if

𝑋 ∈ {0, 1}, then we further would have E [𝑊𝐴] E [𝑊𝑋] E [𝑊𝐵] =
𝑝𝐴 · 𝑝𝑋 · 𝑝𝐵 (denoting 𝑃𝑟 [𝑊𝐴 = 1] = 𝑝𝐴) = Φ̃

(𝐴𝐵𝑋)2
1

(𝑝𝐴, 𝑝𝑋 , 𝑝𝐵)
(see 𝑖𝑖) of Definition 1.3). However, in this example, we get stuck

with E
[
𝑊 2

𝑋

]
, since𝑊𝑋 ∈ {0, 1, 2} and for𝑊𝑋 ← 2,𝑊 2

𝑋
≠𝑊𝑋 .

Denote the variables of Φ to be Vars (Φ) . In the 𝑐-TIDB set-

ting, Φ (X) has an equivalent reformulation (Φ𝑅 (XR)) that is of
use to us, where |XR | = 𝑐 · |X| . Given 𝑋𝑡 ∈ Vars (Φ) and inte-

ger valuation 𝑋𝑡 ∈ {0, . . . , 𝑐}. We can replace 𝑋𝑡 by
∑
𝑗 ∈[𝑐] 𝑗𝑋𝑡, 𝑗

where the variables

(
𝑋𝑡, 𝑗

)
𝑗 ∈[𝑐] are disjoint with integer assign-

ments 𝑋𝑡 ∈ {0, 1}. Then for anyW ∈ {0, . . . , 𝑐}𝐷 and correspond-

ing reformulated world WR ∈ {0, 1}𝐷𝑐 , we set WR𝑡,𝑗 = 1 for

W𝑡 = 𝑗 , while WR𝑡,𝑗′ = 0 for all 𝑗 ′ ≠ 𝑗 ∈ [𝑐]. By construction then

Φ (X) ≡ Φ𝑅 (XR) (XR = Vars (Φ𝑅)) since for any integer valuation
𝑋𝑡 ∈ [𝑐], 𝑋 𝑗 ∈ {0, 1} we have the equality 𝑋𝑡 = 𝑗 =

∑
𝑗 ∈[𝑐] 𝑗𝑋 𝑗 .

Considering again our example,

Φ
(𝐴𝐵𝑋)2
1,𝑅

(𝐴,𝑋, 𝐵) = Φ
(𝐴𝑋𝐵)2
1

©­«
∑︁
𝑗1∈[𝑐]

𝑗1𝐴 𝑗1 ,
∑︁
𝑗2∈[𝑐]

𝑗2𝑋 𝑗2 ,
∑︁
𝑗3∈[𝑐]

𝑗3𝐵 𝑗3
ª®¬

=
©­«

∑︁
𝑗1∈[𝑐]

𝑗1𝐴 𝑗1
ª®¬
2 ©­«

∑︁
𝑗2∈[𝑐]

𝑗2𝑋 𝑗2
ª®¬
2 ©­«

∑︁
𝑗3∈[𝑐]

𝑗3𝐵 𝑗3
ª®¬
2

.

Since the set of multiplicities for tuple 𝑡 by nature are disjoint we can

drop all cross terms and have Φ2

1,𝑅
=

∑
𝑗1, 𝑗2, 𝑗3∈[𝑐] 𝑗

2

1
𝐴2

𝑗1
𝑗2
2
𝑋 2

𝑗2
𝑗2
3
𝐵2
𝑗3
.

Computing expectationwe getE
[
Φ2

1,𝑅

]
=

∑
𝑗1, 𝑗2, 𝑗3∈[𝑐] 𝑗

2

1
𝑗2
2
𝑗2
3
E

[
𝑊𝐴 𝑗

1

]
E

[
𝑊𝑋 𝑗

2

]
E

[
𝑊𝐵 𝑗

3

]
,

since we now have that all𝑊𝑋 𝑗
∈ {0, 1}. This leads us to consider

a structure related to the lineage polynomial.

Definition 1.3. For any polynomial Φ ((𝑋𝑡)𝑡 ∈𝐷) define the refor-
mulated polynomial Φ𝑅

((
𝑋𝑡, 𝑗

)
𝑡 ∈𝐷,𝑗 ∈[𝑐]

)
to be the polynomial Φ𝑅

= Φ
((∑

𝑗 ∈[𝑐] 𝑗 · 𝑋𝑡, 𝑗
)
𝑡 ∈𝐷

)
and ii) define the reduced polynomial

Φ̃
((
𝑋𝑡, 𝑗

)
𝑡 ∈𝐷,𝑗 ∈[𝑐]

)
to be the polynomial resulting from converting

Φ𝑅 into the standard monomial basis (SMB),
4
removing all monomi-

als containing the term 𝑋𝑡, 𝑗𝑋𝑡, 𝑗 ′ for 𝑡 ∈ 𝐷, 𝑗 ≠ 𝑗 ′ ∈ [𝑐], and setting
all variable exponents 𝑒 > 1 to 1.

Continuing with the example
5 Φ2

1
(𝐴, 𝐵,𝐶, 𝐸, 𝑋1, 𝑋2, 𝑌 , 𝑍) we

have

Φ̃2

1
(𝐴, 𝐵,𝐶, 𝐸, 𝑋1, 𝑋2, 𝑌 , 𝑍) =

𝐴
©­«

∑︁
𝑗 ∈[𝑐]

𝑗2𝑋 𝑗
ª®¬𝐵+𝐵𝑌𝐸+𝐵𝑍𝐶+2𝐴 ©­«

∑︁
𝑗 ∈[𝑐]

𝑗2𝑋 𝑗
ª®¬𝐵𝑌𝐸+2𝐴 ©­«

∑︁
𝑗 ∈[𝑐]

𝑗2𝑋 𝑗
ª®¬𝐵𝑍𝐶+2𝐵𝑌𝐸𝑍𝐶 =

𝐴𝐵𝑋1+𝐴𝐵 (2)2 𝑋2+𝐵𝑌𝐸+𝐵𝑍𝐶+2𝐴𝑋1𝐵𝑌𝐸+2𝐴 (2)2 𝑋2𝐵𝑌𝐸+2𝐴𝑋1𝐵𝑍𝐶+2𝐴 (2)2 𝑋2𝐵𝑍𝐶+2𝐵𝑌𝐸𝑍𝐶.
Note that we have argued that for our specific example the expecta-

tion thatwewant is Φ̃2

1
(𝑃𝑟 (𝐴 = 1) , 𝑃𝑟 (𝐵 = 1) , 𝑃𝑟 (𝐶 = 1)), 𝑃𝑟 (𝐸 = 1) , 𝑃𝑟 (𝑋1 = 1) , 𝑃𝑟 (𝑋2 = 1) , 𝑃𝑟 (𝑌 = 1) , 𝑃𝑟 (𝑍 = 1)).

Lemma 1.4 generalizes the equivalence to all RA+ queries on 𝑐-
TIDBs (proof in Appendix B.5).

Lemma 1.4. For any 𝑐-TIDBD,RA+ query𝑄 , and lineage polyno-
mial Φ (X) = Φ [𝑄,𝐷, 𝑡] (X), it holds that EW∼P [Φ𝑅 (W)] = Φ̃ (p),
where p =

((
𝑝𝑡, 𝑗

)
𝑡 ∈𝐷,𝑗 ∈[𝑐]

)
.

1.2 Our Techniques

Lower BoundProof Techniques.Ourmain hardness result shows

that computing Problem 1.1 is #W[1] − ℎ𝑎𝑟𝑑 for 1-TIDB. To prove

4
This is the representation, typically used in set-PDBs, where the polynomial is rere-

sented as sum of ‘pure’ products. See Definition 2.1 for a formal definition.

5
To save clutter we do not show the full expansion for variables with greatest multi-

plicity = 1 since e.g. for variable𝐴, the sum of products itself evaluates to 1
2 ·𝐴2 = 𝐴.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Huber, Kennedy, Rudra, et al.

𝑻
Point Φ

𝑒1 𝐴

𝑒2 𝐵

𝑒3 𝐶

𝑒4 𝐸

𝑹
Point1 Point2 Φ

𝑒1 𝑒2 𝑋

𝑒2 𝑒4 𝑌

𝑒2 𝑒3 𝑍

D

LC

𝑄2

Point Φ Circuit

𝑒1 𝐴𝑋

×

𝐴 𝑋

𝑒2

𝐵(𝑌 + 𝑍)
Or

𝐵𝑌 + 𝐵𝑍

𝑌 𝑍

𝐵 +

×

Or

𝑌 𝐵 𝑍

× ×

+

𝑄2(D) (𝑡) ≡ Φ (X)

EC

Point E[Φ(X)]
𝑒1

(
𝑝𝐴,1 + 𝑝𝐴,2

)
·
(
𝑝𝑋,1 + 2𝑝𝑋,2

)
𝑒2

(
𝑝𝐵,1 + 𝑝𝐵2

) (
𝑝𝑌,1 + 2𝑝𝑌,2 + 𝑝𝑍,1 + 2𝑝𝑍,2

)

E [Φ(X)]

Figure 2: Intensional Query Evaluation Model (𝑄2 = 𝜋Point(
𝑇ZPoint=Point1𝑅

)
where, for table 𝑅, 𝑐 = 2, while for𝑇, 𝑐 = 1.)

this result we show that for the same 𝑄1 from the example above,

for an arbitrary ‘product width’ 𝑘 , the query 𝑄𝑘
ℎ𝑎𝑟𝑑

is able to en-

code various hard graph-counting problems (assuming𝑂 (𝑛) tuples
rather than the 𝑂 (1) tuples in Fig. 2). We do so by considering an

arbitrary graph 𝐺 (analogous to relation 𝑹 of 𝑄1) and analyzing

how the coefficients in the (univariate) polynomial Φ̃ (𝑝, . . . , 𝑝) re-
late to counts of subgraphs in 𝐺 that are isomorphic to various

graphs with 𝑘 edges. E.g., we exploit the fact that the coefficient

corresponding to the power of 2𝑘 in Φ of 𝑄𝑘
ℎ𝑎𝑟𝑑

is proportional

to the number of 𝑘-matchings in 𝐺 , a known hard problem in

parameterized/fine-grained complexity literature.

Upper Bound Techniques. Our negative results (Table 1) indi-

cate that 𝑐-TIDBs (even for 𝑐 = 1) can not achieve comparable

performance to deterministic databases for exact results (under

complexity assumptions). In fact, under plausible hardness conjec-

tures, one cannot (drastically) improve upon the trivial algorithm to

exactly compute the expected multiplicities for 1-TIDBs. A natural

followup is whether we can do better if we are willing to settle for

an approximation to the expected multiplities.

We adopt a two-step intensional model of query evaluation used

in set-PDBs, as illustrated in Fig. 2: (i) Lineage Computation (LC):

Given input 𝐷 and 𝑄 , output every tuple 𝑡 that possibly satisfies 𝑄 ,

annotated with its lineage polynomial (Φ(X) = Φ[𝑄,𝐷, 𝑡] (X)); (ii)
Expectation Computation (EC): GivenΦ(X) for each tuple, compute

E𝑊 ∼P [Φ(W)]. Let 𝑇𝐿𝐶 (𝑄, 𝐷, C) denote the runtime of LC when it

outputs C (which is a representation of Φ as an arithmetic circuit

— more on this representation in Sec. 2.3). Denote by 𝑇𝐸𝐶 (C, 𝜖)
(recall C is the output of LC) the runtime of EC, which we can

leverage Definition 1.3 and Lemma 1.4 to address the next formal

objective:

Problem 1.5 (𝑐-TIDB linear time approximation). Given 𝑐-

TIDBD,RA+ query𝑄 , is there a (1±𝜖)-approximation ofEW∼P [𝑄 (W) (𝑡)]
for all result tuples 𝑡 where∃C : 𝑇𝐿𝐶 (𝑄, 𝐷, C)+𝑇𝐸𝐶 (C, 𝜖) ≤ 𝑂𝜖 (𝑇𝑑𝑒𝑡 (OPT (𝑄) , 𝐷, 𝑐))?

We show in Appendix E.2.1 an 𝑂 (𝑇𝑑𝑒𝑡 (OPT (𝑄) , 𝐷, 𝑐)) algo-
rithm for constructing the lineage polynomial for all result tuples

of an RA+ query 𝑄 (or more more precisely, a single circuit C
with one sink per tuple representing the tuple’s lineage). A key

insight of this paper is that the representation of C matters. For

example, if we insist that C represent the lineage polynomial in

SMB, the answer to the above question in general is no, since then

we will need |C| ≥ Ω
(
(𝑇𝑑𝑒𝑡 (OPT (𝑄) , 𝐷, 𝑐))𝑘

)
, and hence, just

𝑇𝐿𝐶 (𝑄,𝐷, C) will be too large.

However, systems can directly emit compact, factorized repre-

sentations ofΦ(X) (e.g., as a consequence of the standard projection
push-down optimization [25]). For example, in Fig. 2, 𝐵(𝑌 + 𝑍) is a
factorized representation of the SMB-form 𝐵𝑌 + 𝐵𝑍 . Accordingly,
this work uses (arithmetic) circuits

6
as the representation system

of Φ(X).
Given that there exists a representation C∗ such that𝑇𝐿𝐶 (𝑄,𝐷, C∗) ≤

𝑂 (𝑇𝑑𝑒𝑡 (OPT (𝑄) , 𝐷, 𝑐)), we can now focus on the complexity of

the EC step. We can represent the factorized lineage polynomial

by its correspoding arithmetic circuit C (whose size we denote by
|C|). As we also show in Appendix E.2.2, this size is also bounded

by𝑇𝑑𝑒𝑡 (OPT (𝑄) , 𝐷, 𝑐) (i.e., |C∗ | ≤ 𝑂 (𝑇𝑑𝑒𝑡 (OPT (𝑄) , 𝐷, 𝑐))). Thus,
the question of approximation can be stated as the following stronger

(since Problem 1.5 has access to all equivalent C representing𝑄 (W) (𝑡)),
but sufficient condition:

Problem 1.6. Given one circuit C that encodes Φ[𝑄, 𝐷, 𝑡] for all
result tuples 𝑡 (one sink per 𝑡) for 𝑐-TIDB D and RA+ query 𝑄 , does
there exist an algorithm that computes a (1 ± 𝜖)-approximation of

EW∼P [𝑄 (W) (𝑡)] (for all result tuples 𝑡) in 𝑂 (|C|) time?

For an upper bound on approximating the expected count, it is

easy to check that if all the probabilties are constant then (with an

additive adjustment) Φ (𝑝1, . . . , 𝑝𝑛)
(i.e. evaluating the original lineage polynomial over the probabil-

ity values) is a constant factor approximation . This is illustrated in

the following example using𝑄2

1
from earlier. To aid in presentation

we assume 𝑐 = 2 for variable 𝑋 and 𝑐 = 1 for all other variables. Let

𝑝𝐴 denote 𝑃𝑟 [𝐴 = 1]. In computing Φ̃, we have some cancellations

to deal with:

Φ2

1,𝑅 (X) = 𝐴
2
(
𝑋 2

1
+ 4𝑋1𝑋2 + 4𝑋 2

2

)
𝐵2 + 𝐵2𝑌 2𝐸2 + 𝐵2𝑍 2𝐶2 + 2𝐴𝑋1𝐵

2𝑌𝐸

+ 2𝐴𝑋2𝐵
2𝑌𝐸 + 2𝐴𝑋1𝐵

2𝑍𝐶 + 2𝐴𝑋2𝐵
2𝑍𝐶 + 2𝐵2𝑌𝐸𝑍𝐶

This then implies

Φ̃2 (X) = 𝐴𝑋1𝐵 + 4𝐴𝑋2𝐵 + 𝐵𝑌𝐸 + 𝐵𝑍𝐶 + 2𝐴𝑋1𝐵𝑌𝐸 + 2𝐴𝑋2𝐵𝑌𝐸 + 2𝐴𝑋1𝐵𝑍𝐶

+ 2𝐴𝑋2𝐵𝑍𝐶 + 2𝐵𝑌𝐸𝑍𝐶

Substituting p for X,
Φ2

1,𝑅 (p) = 𝑝
2

𝐴𝑝
2

𝑋
1

𝑝2𝐵 + 4𝑝
2

𝐴𝑝𝑋1
𝑝𝑋

2
𝑝2𝐵 + 4𝑝

2

𝐴𝑝
2

𝑋
2

𝑝2𝐵 + 𝑝
2

𝐵𝑝
2

𝑌 𝑝
2

𝐸 + 𝑝
2

𝐵𝑝
2

𝑍𝑝
2

𝐶 + 2𝑝𝐴𝑝𝑋1
𝑝2𝐵𝑝𝑌 𝑝𝐸 + 2𝑝𝐴𝑝𝑋2

𝑝2𝐵𝑝𝑌 𝑝𝐸

+ 2𝑝𝐴𝑝𝑋
1
𝑝2𝐵𝑝𝑍𝑝𝐶 + 2𝑝𝐴𝑝𝑋2

𝑝2𝐵𝑝𝑍𝑝𝐶 + 2𝑝
2

𝐵𝑝𝑌 𝑝𝐸𝑝𝑍𝑝𝐶

≤ 𝑝𝐴𝑝𝑋
1
𝑝𝐵 + 4𝑝2𝐴𝑝𝑋1

𝑝𝑋
2
𝑝2𝐵 + 4𝑝𝐴𝑝𝑋2

𝑝𝑏 + 𝑝𝐵𝑝𝑌 𝑝𝐸 + 𝑝𝐵𝑝𝑍𝑝𝐶 + 2𝑝𝐴𝑝𝑋
1
𝑝𝐵𝑝𝑌 𝑝𝐸 + 2𝑝𝐴𝑝𝑋

2
𝑝𝐵𝑝𝑌 𝑝𝐸

+ 2𝑝𝐴𝑝𝑋
1
𝑝𝐵𝑝𝑍𝑝𝐶 + 2𝑝𝐴𝑝𝑋

2
𝑝𝐵𝑝𝑍𝑝𝐶 + 2𝑝𝐵𝑝𝑌 𝑝𝐸𝑝𝑍𝑝𝐶 = Φ̃2

1
(p) + 4𝑝2𝐴𝑝𝑋1

𝑝𝑋
2
𝑝2𝐵 .

If we assume that all probability values are at least 𝑝0 > 0, then

given access to Φ2

1,𝑅
(p) − 4𝑝2

𝐴
𝑝𝑋1

𝑝𝑋2
𝑝2
𝐵
we get that Φ2

1,𝑅
(p) −

4𝑝2
𝐴
𝑝𝑋1

𝑝𝑋2
𝑝2
𝐵
is in the range

(
(𝑝0)3 ·

(
Φ̃2

1
p
)
, Φ̃2

1
(p)

]
. Note how-

ever, that this is not a tight approximation. In sec. 4 we demonstrate

that a (1±𝜖) (multiplicative) approximationwith competitive perfor-

mance is achievable. To get an (1±𝜖)-multiplicative approximation

6
An arithmetic circuit is a DAGwith variable and/or numeric source nodes and internal,

each nodes representing either an addition or multiplication operator.

Computing expected multiplicities for bag-TIDBs with bounded multiplicities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

and solve Problem 1.6, using C we uniformly sample monomials

from the equivalent SMB representation of Φ (without materializing

the SMB representation) and ‘adjust’ their contribution to Φ̃ (·).
Applications. Recent work in heuristic data cleaning [8, 42, 45, 45,

51] emits a PDB when insufficient data exists to select the ‘correct’

data repair. Probabilistic data cleaning is a crucial innovation, as

the alternative is to arbitrarily select one repair and ‘hope’ that

queries receive meaningful results. Although PDB queries instead

convey the trustworthiness of results [37], they are impractically

slow [18, 19], even in approximation (see Appendix G). Bags, as

we consider, are sufficient for production use, where bag-relational

algebra is already the default for performance reasons. Our results

show that bag-PDBs can be competitive, laying the groundwork

for probabilistic functionality in production database engines.

Paper Organization.We present relevant background and nota-

tion in Sec. 2. We then prove our main hardness results in Sec. 3 and

present our approximation algorithm in Sec. 4. Finally, we discuss

related work in Sec. 5 and conclude in Sec. 6. All proofs are in the

appendix.

2 BACKGROUND AND NOTATION

2.1 Polynomial Definition and Terminology

Given an index set 𝑆 over variables 𝑋𝑡 for 𝑡 ∈ 𝑆 , a (general) poly-
nomial 𝜙 over (𝑋𝑡)𝑡 ∈𝑆 with individual degree 𝐾 < ∞ is formally

defined as:

𝜙 ((𝑋𝑡)𝑡 ∈𝑆) =
∑︁

d∈{0,...,𝐾 }𝑆
𝑐d ·

∏
𝑡 ∈𝑆

𝑋
𝑑𝑡
𝑡 where 𝑐d ∈ N. (1)

Definition 2.1 (StandardMonomial Basis). The term

∏
𝑡 ∈𝑆 𝑋

𝑑𝑡
𝑡

in Eq. (1) is amonomial. A polynomial 𝜙 (X) is in standard monomial

basis (SMB) when we keep only the terms with 𝑐d ≠ 0 from Eq. (1).

Unless othewise noted, we consider all polynomials to be in SMB

representation. When it is unclear, we use SMB (𝜙) (SMB (Φ)) to
denote the SMB form of a polynomial (lineage polynomial) 𝜙 (Φ).

Definition 2.2 (Degree). The degree of polynomial 𝜙 (X) is the
largest

∑
𝑡 ∈𝑆 𝑑𝑡 for all d ∈ {0, . . . , 𝐾}𝑆 such that 𝑐 (𝑑1,...,𝑑𝑛) ≠ 0. We

denote the degree of 𝜙 as deg (𝜙).

As an example, the degree of the polynomial 𝑋 2 + 2𝑋𝑌 2 + 𝑌 2
is

3. Product terms in lineage arise only from join operations (Fig. 1),

so intuitively, the degree of a lineage polynomial is analogous to

the largest number of joins needed to produce a result tuple.

We call a polynomial Φ (X) a 𝑐-TIDB-lineage polynomial (or

simply lineage polynomial), if it is clear from context that there

exists an RA+ query 𝑄 , 𝑐-TIDB D, and result tuple 𝑡 such that

Φ (X) = Φ[𝑄, 𝐷, 𝑡] (X) .

2.2 Binary-BIDB

A block independent database BIDBD ′ models a set of worlds each

of which consists of a subset of the possible tuples 𝐷 ′, where 𝐷 ′

is partitioned into𝑚 blocks 𝐵𝑖 and all 𝐵𝑖 are independent random

events.D ′ further constrains that all 𝑡 ∈ 𝐵𝑖 for all 𝑖 ∈ [𝑚] of 𝐷 ′ be
disjoint events. We refer to any monomial that includes 𝑋𝑡𝑋𝑡 ′ for

𝑡 ≠ 𝑡 ′ ∈ 𝐵𝑖 as a cancellation. We define next a specific construction

of BIDB that is useful for our work.

Φ′
[
𝜋𝐴 (𝑄) , 𝐷

′
, 𝑡 𝑗

]
=

∑︁
𝑡 𝑗′ ,

𝜋𝐴 (𝑡 𝑗′)=𝑡 𝑗

Φ′
[
𝑄,𝐷

′
, 𝑡 𝑗 ′

]
Φ′

[
𝑄1 ∪𝑄2, 𝐷

′
, 𝑡 𝑗

]
=Φ′

[
𝑄1, 𝐷

′
, 𝑡 𝑗

]
+ Φ′

[
𝑄2, 𝐷

′
, 𝑡 𝑗

]

Φ′
[
𝜎𝜃 (𝑄) , 𝐷

′
, 𝑡 𝑗

]
=

{
𝜃 = 1 Φ′

[
𝑄,𝐷

′
, 𝑡 𝑗

]
𝜃 = 0 0

Φ′
[
𝑄1Z𝑄2, 𝐷

′
, 𝑡 𝑗

]
=Φ
′
[
𝑄1, 𝐷

′
, 𝜋𝑎𝑡𝑡𝑟 (𝑄1)

(
𝑡 𝑗

)]
· Φ′

[
𝑄2, 𝐷

′
, 𝜋𝑎𝑡𝑡𝑟 (𝑄2)

(
𝑡 𝑗

)]
Φ′

[
𝑅, 𝐷

′
, 𝑡 𝑗

]
= 𝑗 · 𝑋𝑡, 𝑗 .

Figure 3: Construction of the lineage (polynomial) for an

RA+ query 𝑄 over 𝐷
′
.

Definition 2.3 (Binary-BIDB). Define a Binary-BIDB to be the

pairD ′ = (>𝑡 ∈𝐷′ {0, 𝑐𝑡 } ,P ′) , where 𝐷 ′ is the set of possible tuples
such that each 𝑡 ∈ 𝐷 ′ has a multiplicity domain of {0, 𝑐𝑡 }, with 𝑐𝑡 ∈
N. 𝐷 ′ is partitioned into𝑚 independent blocks 𝐵𝑖 , for 𝑖 ∈ [𝑚], of dis-
joint tuples. P ′ is characterized by the vector (𝑝𝑡)𝑡 ∈𝐷′ where for every
block 𝐵𝑖 ,

∑
𝑡 ∈𝐵𝑖 𝑝𝑡 ≤ 1. Given𝑊 ∈ >

𝑡 ∈𝐷′ {0, 𝑐𝑡 } and for 𝑖 ∈ [𝑚],

let 𝑝𝑖 (𝑊) =


1 −∑

𝑡 ∈𝐵𝑖 𝑝𝑡 if𝑊𝑡 = 0 for all 𝑡 ∈ 𝐵𝑖
0 if there exists 𝑡, 𝑡 ′ ∈ 𝐵𝑖 ,𝑊𝑡 ,𝑊𝑡 ′ ≠ 0

𝑝𝑡 𝑊𝑡 ≠ 0 for the unique 𝑡 ∈ 𝐵𝑖 .
P ′ is the probability distribution across all worlds such that, given

𝑊 ∈>
𝑡 ∈𝐷′ {0, 𝑐𝑡 }, 𝑃𝑟 [W =𝑊] = ∏

𝑖∈[𝑚] 𝑝𝑖 (𝑊). 7

Fig. 3 shows the lineage construction ofΦ′ (X) givenRA+ query
𝑄 for arbitrary deterministic 𝐷

′
. Note that the semantics differ

from Fig. 1 only in the base case.

Proposition 2.4 (𝑐-TIDB reduction). Given 𝑐-TIDBD =

(
{0, . . . , 𝑐}𝐷 ,P

)
,

let D ′ = (>𝑡 ∈𝐷′ {0, 𝑐𝑡 } ,P ′) be the Binary-BIDB obtained in the

following manner: for each 𝑡 ∈ 𝐷 , create block 𝐵𝑡 =
{∫
𝑡, 𝑗 𝑗 ∈[𝑐]

}
of disjoint tuples, for all 𝑗 ∈ [𝑐]. The probability distribution P ′

is the characterized by the vector p =

((
𝑝𝑡, 𝑗

)
𝑡 ∈𝐷,𝑗 ∈[𝑐]

)
. Then, the

distributions P and P ′ are equivalent.

We now define the reduced polynomial Φ̃′ of a Binary-BIDB.

Definition 2.5 (Φ̃′). Given a polynomial Φ′ (X) generated from a

Binary-BIDB and let Φ̃′ (X) denote the reduced form ofΦ′ (X) derived
as follows: i) compute SMB (Φ′ (X)) eliminating all monomials with

cross terms 𝑋𝑡𝑋𝑡 ′ for 𝑡 ≠ 𝑡
′ ∈ 𝐵𝑖 and ii) reduce all variable exponents

𝑒 > 1 to 1.

Then givenW ∈ {0, 1}𝐷′ over the reduced Binary-BIDB of Propo-

sition 2.4, the disjoint requirement and the semantics for construct-

ing the lineage polynomial over a Binary-BIDB, Φ′ (W) is of the
same structure as the reformulated polynomial Φ𝑅 (W) of step
i) from Definition 1.3, which then implies that Φ̃′ is the reduced
polynomial that results from step ii) of both Definition 1.3 and Def-

inition 2.5, and further that Lemma 1.4 immediately follows for

Binary-BIDB polynomials.

Lemma 2.6. Given any Binary-BIDB D ′, RA+ query 𝑄 , and lin-
eage polynomialΦ′ (X) = Φ′ [𝑄,𝐷 ′, 𝑡] (X), it holds thatEW∼P′ [Φ′ (W)] =
Φ̃′ (p) .
7
We slightly abuse notation here, denoting a world vector as𝑊 rather than W to

distinguish between the random variable and the world instance. When there is no

ambiguity, we will denote a world vector asW.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Huber, Kennedy, Rudra, et al.

Let |Φ| be the number of operators in Φ.

Corollary 2.7. If Φ is a 1-BIDB lineage polynomial already in

SMB, then the expectation of Φ, i.e., E [Φ] = Φ̃ (𝑝1, . . . , 𝑝𝑛) can be

computed in 𝑂 (|Φ|) time.

2.2.1 Possible World Semantics. In this section, we show how the

traditional possible worlds semantics corresponds to our setup.

Readers can safely skip this part without missing anything vital to

the results of this paper.

Queries over probabilistic databases are traditionally viewed as

being evaluated using the so-called possible world semantics. A

general bag-PDB can be defined as the pairD = (Ω,P) where Ω is

the set of possible worlds represented by D and P the probability

distribution over Ω. Under the possible world semantics, the result

of a query 𝑄 over an incomplete database Ω is the set of query

answers produced by evaluating 𝑄 over each possible world 𝜔 ∈
Ω: {𝑄 (𝜔) : 𝜔 ∈ Ω}. The result of a query is the pair (𝑄 (Ω) ,P ′)
where P ′ is a probability distribution that assigns to each possible

query result the sum of the probabilites of the worlds that produce

this answer: 𝑃𝑟 [𝜔 ∈ Ω] = ∑
𝜔′∈Ω,𝑄 (𝜔′)=𝑄 (𝜔) 𝑃𝑟 [𝜔 ′].

Suppose that D ′ is a reduced Binary-BIDB from 𝑐-TIDB D as

defined by ??. Instead of looking only at the possible worlds of D ′,
one can consider the set of all worlds, including those that cannot

exist due to, e.g., disjointness. Since |𝐷 | = 𝑛 the all worlds set can be
modeled by W ∈ {0, 1}𝑛𝑐 , such that W𝑡, 𝑗 ∈W represents whether

or not the multiplicity of 𝑡 is 𝑗 (here and later, especially in Sec. 4,

we will rename the variables as 𝑋1, . . . , 𝑋𝑛′ , where 𝑛
′ =

∑
𝑡 ∈𝐷 |𝐵𝑡 |).

8
We can denote a probability distribution over all W ∈ {0, 1}𝑛𝑐

as P ′. When P ′ is the one induced from each 𝑝𝑡, 𝑗 while assigning

𝑃𝑟 [W] = 0 for any W with W𝑡, 𝑗 ,W𝑡, 𝑗 ′ ≠ 0 for 𝑗 ≠ 𝑗 ′, we end up

with a bijective mapping from P to P ′, such that each mapping

is equivalent, implying the distributions are equivalent, and thus

query results. Appendix B.2 has more details.

We now make a meaningful connection between possible world

semantics and world assignments on the lineage polynomial.

Proposition 2.8 (Expectation of polynomials). Given a bag-

PDB D = (Ω,P), RA+ query 𝑄 , and lineage polynomial Φ[𝑄, 𝐷, 𝑡]
for arbitrary result tuple 𝑡 , we have (denotingD as the random variable

over Ω): ED∼P [𝑄 (D) (𝑡)] = EW∼P [Φ[𝑄,𝐷, 𝑡] (W)] .

A formal proof of Proposition 2.8 is given in Appendix B.3.
9

2.3 Formalizing Problem 1.6

We focus on the problem of computing EW∼P [Φ[𝑄,𝐷, 𝑡] (W)]
from now on, assume implicit𝑄,𝐷, 𝑡 , and drop them fromΦ[𝑄, 𝐷, 𝑡]
(i.e., Φ (X) will denote a polynomial).

Problem 1.6 asks if there exists a linear time approximation

algorithm in the size of a given circuit Cwhich encodesΦ (X). Recall
that in this work we represent lineage polynomials via arithmetic

circuits [9], a standard way to represent polynomials over fields

(particularly in the field of algebraic complexity) that we use for

polynomials over N in the obvious way. Since we are specifically

using circuits to model lineage polynomials, we can refer to these

8
In this example, |𝐵𝑡 | = 𝑐 for all 𝑡 .

9
Although Proposition 2.8 follows, e.g., as an obvious consequence of [30]’s Theorem

7.1, we are unaware of any formal proof for bag-probabilistic databases.

circuits as lineage circuits. However, when the meaning is clear, we

will drop the term lineage and only refer to them as circuits.

Definition 2.9 (Circuit). A circuit C is a Directed Acyclic Graph
(DAG) whose source gates (in degree of 0) consist of elements in either

N or X = (𝑋1, . . . , 𝑋𝑛). For each result tuple there exists one sink gate.
The internal gates have binary input and are either sum (+) or product
(×) gates. Each gate has the following members: type, input, val,
partial, degree, Lweight, and Rweight, where type is the value
type {+,×, var,num} and input the list of inputs. Source gates have

an extra member val storing the value. CL (CR) denotes the left (right)
input of C.

When the underlying DAG is a tree (with edges pointing towards

the root), the structure is an expression tree T. In such a case, the

root of T is analogous to the sink of C. The fields partial, degree,
Lweight, and Rweight are used in the proofs of Appendix D.

The circuits in Fig. 2 encode their respective polynomials in

column Φ. Note that the ciricuit C representing 𝐴𝑋 and the circuit

C’ representing 𝐵 (𝑌 + 𝑍) each encode a tree, with edges pointing

towards the root.

𝑿 2 𝒀 −1

× × ×

+ +

×

Figure 4: Circuit encoding

of (𝑋 + 2𝑌) (2𝑋 − 𝑌)

We next formally define the

relationship of circuits with

polynomials. While the defi-

nition assumes one sink for

notational convenience, it eas-

ily generalizes to the multiple

sinks case.

Definition 2.10 (poly(·)).
poly(C) maps the sink of cir-

cuit C to its corresponding poly-
nomial (in SMB). poly(·) is re-
cursively defined on C as fol-

lows, with addition and mul-

tiplication following the stan-

dard interpretation for polynomials:

poly(C) =


poly(CL) + poly(CR) if C.type = +
poly(CL) · poly(CR) if C.type = ×
C.val if C.type = var OR num.

C need not encode Φ (X) in the same, default SMB representation.

For instance, C could encode the factorized representation (𝑋 +
2𝑌) (2𝑋 −𝑌) of Φ (X) = 2𝑋 2 + 3𝑋𝑌 − 2𝑌 2

, as shown in Fig. 4, while

poly(C) = Φ (X) is always the equivalent SMB representation.

Definition 2.11 (Circuit Set). CSet (Φ (X)) is the set of all
possible circuits C such that poly(C) = Φ (X).

The circuit of Fig. 4 is an element of CSet
(
2𝑋 2 + 3𝑋𝑌 − 2𝑌 2

)
.

One can think of CSet (Φ (X)) as the infinite set of circuits where
for each element C, poly (C) = Φ (X).
We are now ready to formally state the final version of Problem 1.6.

Definition 2.12 (The Expected Result Multiplicity Prob-

lem). Let D ′ be an arbitrary 𝑐-TIDB and X be the set of variables

annotating tuples in 𝐷 ′. Fix an RA+ query 𝑄 and a result tuple 𝑡 .

The Expected Result Multiplicity Problem is defined as follows:Input: C ∈ CSet (Φ (X)) for Φ′ (X) = Φ′ [𝑄,𝐷 ′, 𝑡] Output:
EW∼P [Φ′ [𝑄,𝐷 ′, 𝑡] (W)]

Computing expected multiplicities for bag-TIDBs with bounded multiplicities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

2.4 Relationship to Deterministic Query

Runtimes

In Sec. 1, we introduced the structure𝑇𝑑𝑒𝑡 (·) to analyze the runtime

complexity of Problem 1.1. To decouple our results from specific

join algorithms, we first lower bound the cost of a join.

Definition 2.13 (Join Cost). Denote by 𝑇𝑗𝑜𝑖𝑛 (𝑅1, . . . , 𝑅𝑚) the
runtime of an algorithm for computing the𝑚-ary join 𝑅1 ⊲⊳ . . . ⊲⊳ 𝑅𝑚 .

We require only that the algorithm must enumerate its output, i.e.,

that 𝑇𝑗𝑜𝑖𝑛 (𝑅1, . . . , 𝑅𝑚) ≥ |𝑅1 ⊲⊳ . . . ⊲⊳ 𝑅𝑚 |. With this definition of

𝑇𝑗𝑜𝑖𝑛 (·), worst-case optimal join algorithms are handled.

Worst-case optimal join algorithms [38, 39] and query evaluation

via factorized databases [41] (as well as work on FAQs [35]) can

be modeled as RA+ queries (though the query size is data depen-

dent). For these algorithms, 𝑇𝑗𝑜𝑖𝑛 (𝑅1, . . . , 𝑅𝑛) is linear in the AGM

bound [6]. Our cost model for general query evaluation follows

from the join cost:

𝑇𝑑𝑒𝑡

(
𝑅, 𝐷, 𝑐

)
= |𝐷.𝑅 | 𝑇𝑑𝑒𝑡

(
𝜎𝑄, 𝐷, 𝑐

)
= 𝑇𝑑𝑒𝑡

(
𝑄, 𝐷

)
𝑇𝑑𝑒𝑡

(
𝜋𝑄, 𝐷, 𝑐

)
= 𝑇𝑑𝑒𝑡

(
𝑄, 𝐷, 𝑐

)
+

���𝑄 (𝐷)���𝑇𝑑𝑒𝑡

(
𝑄 ∪𝑄 ′, 𝐷, 𝑐

)
= 𝑇𝑑𝑒𝑡

(
𝑄, 𝐷, 𝑐

)
+𝑇𝑑𝑒𝑡

(
𝑄 ′, 𝐷, 𝑐

)
+

���𝑄 (
𝐷

)��� + ���𝑄 ′ (𝐷)���
𝑇𝑑𝑒𝑡

(
𝑄1 ⊲⊳ . . . ⊲⊳ 𝑄𝑚, 𝐷, 𝑐

)
= 𝑇𝑑𝑒𝑡

(
𝑄1, 𝐷, 𝑐

)
+ . . . +𝑇𝑑𝑒𝑡

(
𝑄𝑚, 𝐷, 𝑐

)
+𝑇𝑗𝑜𝑖𝑛 (𝑄1 (𝐷), . . . , 𝑄𝑚 (𝐷))

Under this model, an RA+ query 𝑄 evaluated over database 𝐷

has runtime 𝑂 (𝑇𝑑𝑒𝑡
(
𝑄,𝐷, 𝑐

)
). We assume that full table scans are

used for every base relation access. We can model index scans by

treating an index scan query 𝜎𝜃 (𝑅) as a base relation.
Lemma E.2 and Lemma E.3 show that for any RA+ query 𝑄

and 𝐷 , there exists a circuit C∗ such that 𝑇𝐿𝐶 (𝑄, 𝐷, C∗) and |C∗ | are
both𝑂 (𝑇𝑑𝑒𝑡 (OPT (𝑄) , 𝐷, 𝑐)). Recall we assumed these two bounds

when we moved from Problem 1.5 to Problem 1.6. Lastly, we can

handle FAQs and factorized databases by allowing for optimization,

i.e. OPT (𝑄).

3 HARDNESS OF EXACT COMPUTATION

In this section, we will prove the hardness results claimed in Table 1

for a specific (family) of hard instance (𝑄ℎ𝑎𝑟𝑑 ,D) for Problem 1.2

where D is a 1-TIDB. Note that this implies hardness for 𝑐-TIDBs

(𝑐 ≥ 1), showing Problem 1.2 cannot be done in𝑂 (𝑇𝑑𝑒𝑡 (OPT (𝑄) , 𝐷, 𝑐))
runtime. The results also apply to Binary-BIDB and other more gen-

eral PDBs.

3.1 Preliminaries

Our hardness results are based on (exactly) counting the number

of (not necessarily induced) subgraphs in 𝐺 isomorphic to 𝐻 . Let

(𝐺,𝐻) denote this quantity.We can think of𝐻 as being of constant

size and 𝐺 as growing. In particular, we will consider the problems

of computing the following counts (given𝐺 in its adjacency list rep-

resentation): # (𝐺,) (the number of triangles), # (𝐺,) (the num-

ber of 3-matchings), and the latter’s generalization #

(
𝐺, · · · 𝑘

)
(the number of 𝑘-matchings). We use 𝑇𝑚𝑎𝑡𝑐ℎ (𝑘,𝐺) to denote the

optimal runtime of computing #

(
𝐺, · · · 𝑘

)
exactly. Our hardness

results in Sec. 3.2 are based on the following hardness results/con-

jectures:

Theorem 3.1 ([12]). Given positive integer 𝑘 and undirected graph

𝐺 = (𝑉 , 𝐸) with no self-loops or parallel edges, 𝑇𝑚𝑎𝑡𝑐ℎ (𝑘,𝐺) ≥
𝜔 (𝑓 (𝑘) · |𝐸 |𝑐) for any function 𝑓 and any constant 𝑐 independent of

|𝐸 | and 𝑘 (assuming #W[0] ≠ #W[1]).

Conjecture 3.2. There exists an absolute constant 𝑐0 > 0 such

that for every 𝐺 = (𝑉 , 𝐸), we have 𝑇𝑚𝑎𝑡𝑐ℎ (𝑘,𝐺) ≥ Ω
(
|𝐸 |𝑐0 ·𝑘

)
for

large enough 𝑘 .

We note that the above conjecture is somewhat non-standard.

In particular, the best known algorithm to compute #

(
𝐺, · · · 𝑘

)
takes time Ω

(
|𝑉 |𝑘/2

)
(i.e. if this is the best algorithm then 𝑐0 =

1

4
) [12]. What the above conjecture is saying is that one can only

hope for a polynomial improvement over the state of the art algo-

rithm to compute #

(
𝐺, · · · 𝑘

)
.

Our hardness result in Section 3.3 is based on the following

conjectured hardness result:

Conjecture 3.3. There exists a constant 𝜖0 > 0 such that given

an undirected graph𝐺 = (𝑉 , 𝐸), computing # (𝐺,) exactly cannot

be done in time 𝑜
(
|𝐸 |1+𝜖0

)
.

The so called Triangle detection hypothesis (cf. [36]), which states

that detecting the presence of triangles in 𝐺 takes time Ω
(
|𝐸 |4/3

)
,

implies that in Conjecture 3.3 we can take 𝜖0 ≥ 1

3
.

All of our hardness results rely on a simple lineage polynomial

encoding of the edges of a graph. To prove our hardness result,

consider a graph 𝐺 = (𝑉 , 𝐸), where |𝐸 | =𝑚, 𝑉 = [𝑛]. Our lineage
polynomial has a variable𝑋𝑖 for every 𝑖 in [𝑛]. Consider the polyno-
mial Φ𝐺 (X) =

∑
(𝑖, 𝑗) ∈𝐸

𝑋𝑖 ·𝑋 𝑗 . The hard polynomial for our problem

will be a suitable power 𝑘 ≥ 3 of the polynomial above:

Definition 3.4. For any graph 𝐺 = (𝑉 , 𝐸) and 𝑘 ≥ 1, define

Φ𝑘𝐺 (𝑋1, . . . , 𝑋𝑛) =
©­«

∑︁
(𝑖, 𝑗) ∈𝐸

𝑋𝑖 · 𝑋 𝑗
ª®¬
𝑘

.

Returning to Fig. 2, it can be seen that Φ𝑘
𝐺
(X) is the lineage poly-

nomial from query 𝑄𝑘
ℎ𝑎𝑟𝑑

, which we define next (𝑄2 from Sec. 1 is

the same query with 𝑘 = 2). Let us alias

SELECT DISTINCT 1 FROM T 𝑡1, R r, T 𝑡2

WHERE 𝑡1.Point = r.Point1 AND 𝑡2.Point = r.Point2

as 𝑅. The query 𝑄𝑘
ℎ𝑎𝑟𝑑

then becomes

SELECT COUNT (*) FROM 𝑅 JOIN 𝑅 JOIN · · · JOIN 𝑅︸ ︷︷ ︸
𝑘 times

Consider again the 𝑐-TIDB instance D of Fig. 2 and, for our hard

instance, let 𝑐 = 1.D generalizes to one compatible to Definition 3.4

as follows. Relation𝑇 has𝑛 tuples corresponding to each vertex for 𝑖

in [𝑛], each with probability 𝑝 and𝑅 has tuples corresponding to the

edges 𝐸 (each with probability of 1).
10

In other words, this instance

𝐷 contains the set of 𝑛 unary tuples in 𝑇 (which corresponds to 𝑉)

and𝑚 binary tuples in 𝑅 (which corresponds to 𝐸). Note that this

implies that Φ𝑘
𝐺
is indeed a 1-TIDB lineage polynomial.

10
Technically, Φ𝑘

𝐺
(X) should have variables corresponding to tuples in 𝑅 as well, but

since they always are present with probability 1, we drop those. Our argument also

works when all the tuples in 𝑅 also are present with probability 𝑝 but to simplify

notation we assign probability 1 to edges.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Huber, Kennedy, Rudra, et al.

Next, we note that the runtime for answering 𝑄𝑘
ℎ𝑎𝑟𝑑

on deter-

ministic database 𝐷 , as defined above, is 𝑂𝑘 (𝑚) (i.e. deterministic

query processing is ‘easy’ for this query):

Lemma 3.5. Let𝑄𝑘
ℎ𝑎𝑟𝑑

and𝐷 be as defined above. Then𝑇𝑑𝑒𝑡

(
𝑄𝑘
ℎ𝑎𝑟𝑑

, 𝐷

)
is 𝑂𝑘 (𝑚).

3.2 Multiple Distinct 𝑝 Values

We are now ready to present our main hardness result.

Theorem 3.6. Let 𝑝0, . . . , 𝑝2𝑘 be 2𝑘 + 1 distinct values in (0, 1].
Then computing Φ̃𝑘

𝐺
(𝑝𝑖 , . . . , 𝑝𝑖) (over all 𝑖 ∈ [2𝑘 + 1]) for arbitrary

𝐺 = (𝑉 , 𝐸) needs time Ω (𝑇𝑚𝑎𝑡𝑐ℎ (𝑘,𝐺)), assuming 𝑇𝑚𝑎𝑡𝑐ℎ (𝑘,𝐺) ≥
𝜔 (|𝐸 |).

Note that the second row of Table 1 follows from Proposition 2.8,

Theorem 3.6, Lemma 3.5, and Theorem 3.1 while the third row is

proved by Proposition 2.8, Theorem 3.6, Lemma 3.5, and Conjec-

ture 3.2. Since Conjecture 3.2 is non-standard, the latter hardness

result should be interpreted as follows. Any substantial polyno-

mial improvement for Problem 1.2 (over the trivial algorithm that

converts Φ into SMB and then uses Corollary 2.7 for EC) would

lead to an improvement over the state of the art upper bounds on

𝑇𝑚𝑎𝑡𝑐ℎ (𝑘,𝐺). Finally, note that Theorem 3.6 needs one to be able to

compute the expected multiplicities over (2𝑘 + 1) distinct values of
𝑝𝑖 , each of which corresponds to distinct P (for the same 𝐷), which

explain the ‘Multiple’ entry in the second column in the second and

third row in Table 1. Next, we argue how to get rid of this latter

requirement.

3.3 Single 𝑝 value

While Theorem 3.6 shows that computing Φ̃(𝑝, . . . , 𝑝) for multiple

values of 𝑝 in general is hard it does not rule out the possibility that

one can compute this value exactly for a fixed value of 𝑝 . Indeed, it

is easy to check that one can compute Φ̃(𝑝, . . . , 𝑝) exactly in linear

time for 𝑝 ∈ {0, 1}. Next we show that these two are the only

possibilities:

Theorem 3.7. Fix 𝑝 ∈ (0, 1). Then assuming Conjecture 3.3 is true,

any algorithm that computes Φ̃3

𝐺
(𝑝, . . . , 𝑝) for arbitrary𝐺 = (𝑉 , 𝐸)

exactly has to run in time Ω
(
|𝐸 |1+𝜖0

)
, where 𝜖0 is as defined in

Conjecture 3.3.

Note that Proposition 2.8 and Theorem 3.7 above imply the

hardness result in the first row of Table 1. We note that Theorem 3.1

and Conjecture 3.2 (and the lower bounds in the second and third

row of Table 1) need 𝑘 to be large enough (in particular, we need a

family of hard queries). But the above Theorem 3.7 (and the lower

bound in first row of Table 1) holds for 𝑘 = 3 (and hence for a fixed

query).

4 1 ± 𝜖 APPROXIMATION ALGORITHM

In Sec. 3, we showed that Problem 1.2 cannot be solved in𝑂 (𝑇𝑑𝑒𝑡 (OPT (𝑄) , 𝐷, 𝑐))
runtime. In light of this, we desire to produce an approximation

algorithm that runs in time 𝑂 (𝑇𝑑𝑒𝑡 (OPT (𝑄) , 𝐷, 𝑐)). We do this

by showing the result via circuits, such that our approximation

algorithm for this problem runs in 𝑂 (|C|) for a very broad class

of circuits, (thus affirming Problem 1.6); see the discussion after

Lemma 4.9 for more. The following approximation algorithm ap-

plies to bag query semantics over both 𝑐-TIDB lineage polynomials

and general BIDB lineage polynomials in practice, where for the

latter we note that a 1-TIDB is equivalently a BIDB (blocks are size

1). Our experimental results (see Appendix D.11) which use queries

from the PDBench benchmark [1] show a low 𝛾 (see Definition 4.6)

supporting the notion that our bounds hold for general BIDB in

practice.

Corresponding proofs and pseudocode for all formal statements

and algorithms can be found in Appendix D.

4.1 Preliminaries and some more notation

We now introduce definitions and notation related to circuits and

polynomials that we will need to state our upper bound results.

First we introduce the expansion E(C) of circuit C which is used in

our auxiliary algorithm SampleMonomial for sampling monomials

when computing the approximation.

Definition 4.1 (E(C)). For a circuit C, we define E(C) as a list

of tuples (v, c), where v is a set of variables and c ∈ N. E(C) has
the following recursive definition (◦ is list concatenation). E(C) =
E(CL) ◦ E(CR) if C.type = +
{(vL ∪ vR, cL · cR) | (vL, cL) ∈ E(CL), (vR, cR) ∈ E(CR)} if C.type = ×
List [(∅, C.val)] if C.type = num

List [({C.val}, 1)] if C.type = var.

Later on, we will denote the monomial composed of the variables

in v as vm. As an example of E(C), consider C illustrated in Fig. 4. E(C)
is then [(𝑋, 2), (𝑋𝑌,−1), (𝑋𝑌, 4), (𝑌,−2)]. This helps us redefine Φ̃
(see Eq. (2)) in a way that makes our algorithm more transparent.

Definition 4.2 (|C|). For any circuit C, the corresponding positive
circuit, denoted |C|, is obtained from C as follows. For each leaf node

ℓ of C where ℓ .type is num, update ℓ .value to |ℓ .value|.

We will overload notation and use |C| (X) to mean poly (|C|).
Conveniently, |C| (1, . . . , 1) gives us ∑

(v,c) ∈E(C)
|c|.

Definition 4.3 (size (·), depth (·)). The functions size and depth
output the number of gates and levels respectively for input C.

Definition 4.4 (deg(·)). 11
deg(C) is defined recursively as fol-

lows:

deg(C) =


max(deg(CL), deg(CR)) if C.type = +
deg(CL) + deg(CR) + 1 if C.type = ×
1 if C.type = var

0 otherwise.

Next, we use the following notation for the complexity of multi-

plying integers:

Definition 4.5 (M (·, ·)). 12
In a RAM model of word size of𝑊 -

bits,M (𝑀,𝑊) denotes the complexity of multiplying two integers

11
Note that the degree of poly(|C |) is always upper bounded by deg(C) and the

latter can be strictly larger (e.g. consider the case when C multiplies two copies of the

constant 1– here we have deg(C) = 1 but degree of poly(|C |) is 0).
12
We note that when doing arithmetic operations on the RAM model for input of

size 𝑁 , we have that M (𝑂 (log𝑁),𝑂 (log𝑁)) = 𝑂 (1) . More generally we have

M (𝑁,𝑂 (log𝑁)) = 𝑂 (𝑁 log𝑁 log log𝑁) .

Computing expected multiplicities for bag-TIDBs with bounded multiplicities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

represented with 𝑀-bits. (We will assume that for input of size 𝑁 ,

𝑊 = 𝑂 (log𝑁).)

Finally, to get linear runtime results, we will need to define an-

other parameter modeling the (weighted) number of monomials in

E(C) that need to be ‘canceled’ when monomials with dependent

variables are removed (Sec. 2.2). Let isInd (·) be a boolean function

returning true if monomial vm is composed of independent vari-

ables and false otherwise; further, let 1𝜃 also be a boolean function

returning true if 𝜃 evaluates to true.

Definition 4.6 (Parameter 𝛾). Given a Binary-BIDB circuit C
define

𝛾 (C) =
∑
(v,c) ∈E(C) |c| · 1¬isInd(vm)

|C| (1, . . . , 1) .

4.2 Our main result

We solve Problem 1.6 for any fixed 𝜖 > 0 in what follows.

Algorithm Idea. Our approximation algorithm (ApproximateΦ̃
pseudo code in Appendix D.1) is based on the following observation.

Given a lineage polynomial Φ(X) = poly(C) for circuit C over

Binary-BIDB (recall that all 𝑐-TIDB can be reduced to Binary-BIDB

by Proposition 2.4), we have:

Φ̃ (𝑝1, . . . , 𝑝𝑛) =
∑︁

(v,c) ∈E(C)
1
isInd(vm) · c ·

∏
𝑋𝑖 ∈v

𝑝𝑖 . (2)

Given the above, the algorithm is a sampling based algorithm

for the above sum: we sample (via SampleMonomial) (v, c) ∈ E(C)
with probability proportional to |c| and compute Y = 1

isInd(vm) ·∏
𝑋𝑖 ∈v 𝑝𝑖 . Repeating the sampling an appropriate number of times

and computing the average of Y gives us our final estimate. OnePass

is used to compute the sampling probabilities needed in Sample-

Monomial (details are in Appendix D).

Runtime analysis. We can argue the following runtime for the

algorithm outlined above:

Theorem 4.7. Let C be an arbitrary Binary-BIDB circuit, define

Φ(X) = poly(C), let 𝑘 = deg(C), and let𝛾 = 𝛾 (C). Further let it be the
case that 𝑝𝑖 ≥ 𝑝0 for all 𝑖 ∈ [𝑛]. Then an estimate E of Φ̃(𝑝1, . . . , 𝑝𝑛)
satisfying

𝑃𝑟

(���E − Φ̃(𝑝1, . . . , 𝑝𝑛)��� > 𝜖 ′ · Φ̃(𝑝1, . . . , 𝑝𝑛)) ≤ 𝛿 (3)

can be computed in time

𝑂

((
size(C) +

log
1

𝛿
· 𝑘 · log𝑘 · depth(C))
(𝜖 ′)2 · (1 − 𝛾)2 · 𝑝2𝑘

0

)
· M (log (|C| (1, . . . , 1)), log (size(C)))

)
.

(4)

In particular, if 𝑝0 > 0 and𝛾 < 1 are absolute constants then the above

runtime simplifies to𝑂𝑘

((
1

(𝜖′)2 · size(C) · log
1

𝛿

)
· M (log (|C| (1, . . . , 1)), log (size(C)))

)
.

The restriction on 𝛾 is satisfied by any 1-TIDB (where 𝛾 = 0 in

the equivalent 1-BIDB of Proposition 2.4) as well as for all three

queries of the PDBench BIDB benchmark (see Appendix D.11 for

experimental results). Further, we can also argue the following

result, recalling from Sec. 1 for 𝑐-TIDBD =

(
{0, . . . , 𝑐}𝐷 ,P

)
, where

𝐷 is the set of possible tuples across all possible worlds of D.

Lemma 4.8. GivenRA+ query𝑄 and 𝑐-TIDBD, let C be the circuit
computed by 𝑄 (𝐷). Then, for the reduced Binary-BIDB D ′ there ex-
ists an equivalent circuit C’ obtained from 𝑄 (𝐷 ′), such that 𝛾 (C′) ≤
1 − 𝑐−(𝑘−1) with size (C′) ≤ size (C) + 𝑂 (𝑛𝑐) and depth (C′) =
depth (C) +𝑂 (log 𝑐).

We briefly connect the runtime in Eq. (4) to the algorithm out-

line earlier (where we ignore the dependence onM (·, ·), which
is needed to handle the cost of arithmetic operations over inte-

gers). The size(C) comes from the time taken to run OnePass once

(OnePass essentially computes |C| (1, . . . , 1) using the natural cir-
cuit evaluation algorithm on C). We make

log
1

𝛿

(𝜖′)2 · (1−𝛾)2 ·𝑝2𝑘
0

many

calls to SampleMonomial (each of which essentially traces 𝑂 (𝑘)
random sink to source paths in C all of which by definition have

length at most depth(C)).
Finally, we address theM (log (|C| (1, . . . , 1)), log (size(C))) term

in the runtime.

Lemma 4.9. For any Binary-BIDB circuit C with deg(C) = 𝑘 , we
have |C| (1, . . . , 1) ≤ 2

2
𝑘 ·depth(C) . Further, if C is a tree, then we have

|C| (1, . . . , 1) ≤ size(C)𝑂 (𝑘) .

Note that the above implies that with the assumption 𝑝0 > 0 and

𝛾 < 1 are absolute constants from Theorem 4.7, then the runtime

there simplifies to𝑂𝑘

(
1

(𝜖′)2 · size(C)
2 · log 1

𝛿

)
for general circuits C.

If C is a tree, then the runtime simplifies to𝑂𝑘

(
1

(𝜖′)2 · size(C) · log
1

𝛿

)
,

which then answers Problem 1.6 with yes for such circuits.

Finally, note that by Proposition E.1 and Lemma E.2 for any

RA+ query 𝑄 , there exists a circuit C∗ for Φ[𝑄, 𝐷, 𝑡] such that

depth(C∗) ≤ 𝑂 |𝑄 | (log𝑛) and size(C) ≤ 𝑂𝑘 (𝑇𝑑𝑒𝑡 (𝑄, 𝐷, 𝑐)). Using
this along with Lemma 4.9, Theorem 4.7 and the fact that 𝑛 ≤
𝑇𝑑𝑒𝑡 (𝑄,𝐷, 𝑐), we have the following corollary:

Corollary 4.10. Let𝑄 be anRA+ query andD be aBinary-BIDB

with 𝑝0 > 0 and𝛾 < 1 (where 𝑝0, 𝛾 as in Theorem 4.7) are absolute con-

stants. Let Φ(X) = Φ[𝑄,𝐷, 𝑡] for any result tuple 𝑡 with deg(Φ) = 𝑘 .
Then one can compute an approximation satisfying Eq. (3) in time

𝑂𝑘, |𝑄 |,𝜖′,𝛿 (𝑇𝑑𝑒𝑡 (OPT (𝑄) , 𝐷, 𝑐)) (given𝑄, 𝐷 and 𝑝𝑖 for each 𝑖 ∈ [𝑛]
that defines P).

Next, we note that the above result along with Lemma 4.8 an-

swers Problem 1.5 in the affirmative as follows:

Corollary 4.11. Let 𝑄 be an RA+ query and D be a 𝑐-TIDB

with 𝑝0 > 0 (where 𝑝0 as in Theorem 4.7) is an absolute constant.

Let Φ(X) = Φ[𝑄, 𝐷, 𝑡] for any result tuple 𝑡 with deg(Φ) = 𝑘 .

Then one can compute an approximation satisfying Eq. (3) in time

𝑂𝑘, |𝑄 |,𝜖′,𝛿,𝑐 (𝑇𝑑𝑒𝑡 (OPT (𝑄) , 𝐷, 𝑐)) (given 𝑄,𝐷 and 𝑝𝑡, 𝑗 for each 𝑡 ∈
𝐷, 𝑗 ∈ [𝑐] that defines P).

Proof of Corollary 4.11. The proof follows by Lemma 4.8,

and Corollary 4.10. □
If we want to approximate the expected multiplicities of all 𝑍 =

𝑂 (𝑛𝑘) result tuples 𝑡 simultaneously, we just need to run the above

result with 𝛿 replaced by
𝛿
𝑍
. Note this increases the runtime by

only a logarithmic factor.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Huber, Kennedy, Rudra, et al.

5 RELATEDWORK

Probabilistic Databases (PDBs) have been studied predominantly

for set semantics. Approaches for probabilistic query processing

(i.e., computing marginal probabilities of tuples), fall into two broad

categories. Intensional (or grounded) query evaluation computes the

lineage of a tuple and then the probability of the lineage formula. It

has been shown that computing the marginal probability of a tuple

is #P-hard [48] (by reduction from weighted model counting). The

second category, extensional query evaluation, is in PTIME, but is
limited to certain classes of queries. Dalvi et al. [15] and Olteanu

et al. [22] proved dichotomies for UCQs and two classes of queries

with negation, respectively. Amarilli et al. investigated tractable

classes of databases for more complex queries [3]. Another line of

work studies which structural properties of lineage formulas lead

to tractable cases [33, 43, 46]. In this paper we focus on intensional

query evaluation with polynomials.

Many data models have been proposed for encoding PDBs more

compactly than as sets of possible worlds. These include tuple-

independent databases [49] (TIDBs), block-independent databases

(BIDBs) [44], and PC-tables [28]. Fink et al. [20] study aggregate

queries over a probabilistic version of the extension of K-relations

for aggregate queries proposed in [4] (pvc-tables) that supports

bags, and has runtime complexity linear in the size of the lineage.

However, this lineage is encoded as a tree; the size (and thus the

runtime) are still superlinear in𝑇𝑑𝑒𝑡 (𝑄, 𝐷, 𝑐). The runtime bound is

also limited to a specific class of (hierarchical) queries, suggesting

the possibility of a generalization of [15]’s dichotomy result to

bag-PDBs.

Several techniques for approximating tuple probabilities have

been proposed in related work [13, 16, 21, 40], relying on Monte

Carlo sampling, e.g., [13], or a branch-and-bound paradigm [40].

Our approximation algorithm is also based on sampling.

Compressed Encodings are used for Boolean formulas (e.g, vari-

ous types of circuits including OBDDs [31]) and polynomials (e.g.,

factorizations [41]) some of which have been utilized for probabilis-

tic query processing, e.g., [31]. Compact representations for which

probabilities can be computed in linear time include OBDDs, SDDs,

d-DNNF, and FBDD. [17] studies circuits for absorptive semirings

while [47] studies circuits that include negation (expressed as the

monus operation). Algebraic Decision Diagrams [7] (ADDs) gener-

alize BDDs to variables with more than two values. Chen et al. [10]

introduced the generalized disjunctive normal form. Appendix H

covers more related work on fine-grained complexity.

6 CONCLUSIONS AND FUTUREWORK

We have studied the problem of calculating the expected multi-

plicity of a bag-query result tuple, a problem that has a practical

application in probabilistic databases over multisets. We show that

under various parameterized complexity hardness results/conjec-

tures computing the expected multiplicities exactly is not possible

in time linear in the corresponding deterministic query processing

time. We prove that it is possible to approximate the expectation

of a lineage polynomial in linear time in the deterministic query

processing over TIDBs and BIDBs (assuming that there are few

cancellations). Interesting directions for future work include devel-

opment of a dichotomy for bag PDBs. While we can handle higher

moments (this follows fairly easily from our existing results– see

Appendix F), more general approximations are an interesting area

for exploration, including those for more general data models.

ACKNOWLEDGMENTS

7 ACKNOWLEDGEMENTS

We thank Virginia Williams for showing us Eq. (20), which greatly

simplified our earlier proof of Lemma 3.8, and for graciously allow-

ing us to use it.

REFERENCES

[1] pdbench. http://pdbench.sourceforge.net/. Accessed: 2020-12-15.

[2] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha U.

Nabar, Tomoe Sugihara, and JenniferWidom. Trio: A system for data, uncertainty,

and lineage. In VLDB, pages 1151–1154, 2006.

[3] Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Probabilities and prove-

nance via tree decompositions. PODS, 2015.

[4] Yael Amsterdamer, Daniel Deutch, and Val Tannen. Provenance for aggregate

queries. In PODS, pages 153–164, 2011.

[5] Lyublena Antova, Thomas Jansen, Christoph Koch, and Dan Olteanu. Fast and

simple relational processing of uncertain data.

[6] Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans

for relational joins. SIAM J. Comput., 42(4):1737–1767, 2013. doi:10.1137/
110859440.

[7] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii,

Abelardo Pardo, and Fabio Somenzi. Algebraic decision diagrams and their

applications. In IEEE CAD, 1993.

[8] George Beskales, Ihab F. Ilyas, and Lukasz Golab. Sampling the repairs of func-

tional dependency violations under hard constraints. Proc. VLDB Endow., 3(1):197–

207, 2010.

[9] Peter Bürgisser, Michael Clausen, and Mohammad Amin Shokrollahi. Algebraic

complexity theory, volume 315. Springer, 1997.

[10] Hubie Chen and Martin Grohe. Constraint satisfaction with succinctly specified

relations. J. Comput. Syst. Sci., 76(8):847–860, 2010.

[11] Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational

lower bounds via parameterized complexity. Journal of Computer and System

Sciences, 72(8):1346–1367, 2006. URL: https://www.sciencedirect.com/science/

article/pii/S0022000006000675, doi:https://doi.org/10.1016/j.jcss.2006.
04.007.

[12] Radu Curticapean. Counting matchings of size k is w[1]-hard. In ICALP, volume

7965, pages 352–363, 2013.

[13] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.

VLDB, 16(4):544, 2007.

[14] Nilesh Dalvi and Dan Suciu. The dichotomy of conjunctive queries on proba-

bilistic structures. In PODS, pages 293–302, 2007.

[15] Nilesh Dalvi and Dan Suciu. The dichotomy of probabilistic inference for unions

of conjunctive queries. JACM, 59(6):30, 2012.

[16] Maarten Van den Heuvel, Peter Ivanov, Wolfgang Gatterbauer, Floris Geerts, and

Martin Theobald. Anytime approximation in probabilistic databases via scaled

dissociations. In SIGMOD, pages 1295–1312, 2019.

[17] Daniel Deutch, Tova Milo, Sudeepa Roy, and Val Tannen. Circuits for datalog

provenance. In ICDT, pages 201–212, 2014.

[18] Su Feng, Boris Glavic, Aaron Huber, and Oliver Kennedy. Efficient uncertainty

tracking for complex queries with attribute-level bounds. In SIGMOD, 2021.

[19] Su Feng, Aaron Huber, Boris Glavic, and Oliver Kennedy. Uncertainty anno-

tated databases - a lightweight approach for approximating certain answers. In

SIGMOD, 2019.

[20] Robert Fink, Larisa Han, and Dan Olteanu. Aggregation in probabilistic databases

via knowledge compilation. PVLDB, 5(5):490–501, 2012.

[21] Robert Fink, Jiewen Huang, and Dan Olteanu. Anytime approximation in proba-

bilistic databases. VLDBJ, 22(6):823–848, 2013.

[22] Robert Fink and Dan Olteanu. Dichotomies for queries with negation in proba-

bilistic databases. TODS, 41(1):4:1–4:47, 2016.

[23] Jörg Flum andMartin Grohe. The parameterized complexity of counting problems.

In Proceedings of the 43rd Symposium on Foundations of Computer Science, FOCS

’02, page 538, USA, 2002. IEEE Computer Society.

[24] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in The-

oretical Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-
540-29953-X.

[25] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom. Database systems

- the complete book (2. ed.). Pearson Education, 2009.

[26] George Grätzer. Universal algebra. Springer Science & Business Media, 2008.

http://pdbench.sourceforge.net/
https://doi.org/10.1137/110859440
https://doi.org/10.1137/110859440
https://www.sciencedirect.com/science/article/pii/S0022000006000675
https://www.sciencedirect.com/science/article/pii/S0022000006000675
https://doi.org/https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X

Computing expected multiplicities for bag-TIDBs with bounded multiplicities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[27] Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance semirings.

In PODS, pages 31–40, 2007.

[28] Todd J Green and Val Tannen. Models for incomplete and probabilistic informa-

tion. In EDBT, pages 278–296. 2006.

[29] T. Imielinski and W. Lipski. Incomplete information in relational databases. 1989.

[30] Tomasz Imieliński and Witold Lipski Jr. Incomplete information in relational

databases. JACM, 31(4):761–791, 1984.

[31] Abhay Kumar Jha and Dan Suciu. Probabilistic databases with markoviews.

PVLDB, 5(11):1160–1171, 2012.

[32] Richard M. Karp, Michael Luby, and Neal Madras. Monte-carlo approximation

algorithms for enumeration problems. J. Algorithms, 10(3):429–448, 1989.

[33] Batya Kenig, Avigdor Gal, and Ofer Strichman. A new class of lineage expressions

over probabilistic databases computable in p-time. In SUM, volume 8078, pages

219–232, 2013.

[34] Oliver Kennedy and Christoph Koch. Pip: A database system for great and small

expectations. In ICDE, 2010.

[35] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. Faq: Questions asked

frequently. In PODS, pages 13–28, 2016.

[36] Tsvi Kopelowitz and Virginia Vassilevska Williams. Towards optimal set-

disjointness and set-intersection data structures. In ICALP, volume 168, pages

74:1–74:16, 2020.

[37] Poonam Kumari, Said Achmiz, and Oliver Kennedy. Communicating data quality

in on-demand curation. In QDB, 2016.

[38] Hung Q. Ngo. Worst-case optimal join algorithms: Techniques, results, and open

problems. In PODS, 2018.

[39] Hung Q. Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: new develop-

ments in the theory of join algorithms. SIGMOD Rec., 42(4):5–16, 2013.

[40] Dan Olteanu, Jiewen Huang, and Christoph Koch. Approximate confidence

computation in probabilistic databases. In ICDE, pages 145–156, 2010.

[41] Dan Olteanu and Maximilian Schleich. Factorized databases. SIGMOD Rec.,

45(2):5–16, 2016.

[42] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. Holoclean:

Holistic data repairs with probabilistic inference. Proc. VLDB Endow., 10(11):1190–

1201, 2017.

[43] Sudeepa Roy, Vittorio Perduca, and Val Tannen. Faster query answering in

probabilistic databases using read-once functions. In ICDT, 2011.

[44] C. Ré and D. Suciu. Materialized views in probabilistic databases: for information

exchange and query optimization. In VLDB, pages 51–62, 2007.

[45] Christopher De Sa, Alexander Ratner, Christopher Ré, Jaeho Shin, Feiran Wang,

SenWu, and Ce Zhang. Incremental knowledge base construction using deepdive.

VLDB J., 26(1):81–105, 2017.

[46] Prithviraj Sen, Amol Deshpande, and Lise Getoor. Read-once functions and query

evaluation in probabilistic databases. PVLDB, 3(1):1068–1079, 2010.

[47] Pierre Senellart. Provenance and probabilities in relational databases. SIGMOD

Record, 46(4):5–15, 2018.

[48] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM

J. Comput., 8(3):410–421, 1979.

[49] Guy Van den Broeck and Dan Suciu. Query processing on probabilistic data: A

survey. 2017.

[50] Virginia Vassilevska Williams. Some open problems in fine-grained complexity.

SIGACT News, 49(4):29–35, 2018. doi:10.1145/3300150.3300158.
[51] Ying Yang, Niccolò Meneghetti, Ronny Fehling, Zhen Hua Liu, Dieter Gawlick,

and Oliver Kennedy. Lenses: An on-demand approach to etl. PVLDB, 8(12):1578–

1589, 2015.

https://doi.org/10.1145/3300150.3300158

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Huber, Kennedy, Rudra, et al.

A GENERALIZING BEYOND SET INPUTS

A.1 TIDBs

In our definition of TIDBs (Sec. 2.2), we assumed a model of TIDBs

where each input tuple is assigned a probability 𝑝 of having multi-

plicity 1. That is, we assumed inputs to be sets, but interpret queries

under bag semantics. Other sensible generalizations of TIDBs from

set semantics to bag semantics also exist.

One very natural such generalization is to assign each input

tuple 𝑡 a multiplicity𝑚𝑡 and probability 𝑝 : the tuple has probability

𝑝 to exists with multiplicity𝑚𝑡 , and otherwise has multiplicity 0. If

the maximal multiplicity of all input tuples in the TIDB is bounded

by some constant, then a generalization of our hardness results

and approximation algorithm can be achieved by changing the

construction of lineage polynomials (in Fig. 1) as follows (all other

cases remain the same as in fig. 1):

Φ[𝑅, 𝐷Ω, 𝑡] =
{
𝑚𝑡𝑋𝑡 if 𝐷Ω .𝑅 (𝑡) =𝑚𝑡
0 otherwise.

That is the variable representing a tuple is multiplied by 𝑚𝑡 to

encode the tuple’s multiplicity𝑚𝑡 . We note that our lower bounds

still hold for this model since we only need𝑚𝑡 = 1 for all tuples 𝑡 .

Further, it can be argued that our proofs (as is) for approximation

algorithms also work for this model. The only change is that since

we now allow𝑚𝑡 > 1 some of the constants in the runtime analysis

of our algorithms change but the overall asymptotic runtime bound

remains the same.

Yet another option would be to assign each tuple a probabil-

ity distribution over multiplicities. It seems very unlikely that our

results would extend to a model that allows arbitrary probability

distributions over multiplicities (our current proof techniques defi-

nitely break down). However, we would like to note that the special

case of a Poisson binomial distribution (sum of independent but

not necessarily identical Bernoulli trials) over multiplicities can be

handled as follows: we add an additional identifier attribute to each

relation in the database. For a tuple 𝑡 with maximal multiplicity

𝑚𝑡 , we create𝑚𝑡 copies of 𝑡 with different identifiers. To answer

a query over this encoding, we first project away the identifier

attribute (note that as per Fig. 1, in Φ this would add up all the

variables corresponding to the same tuple 𝑡).

A.2 BIDBs

The approach described above works for BIDBs as well if we define

the bag version of BIDBs to associate each tuple 𝑡 a multiplicity𝑚𝑡 .

Recall that we associate each tuple in a block with a unique variable.

Thus, the modified lineage polynomial construction shown above

can be applied for BIDBs too (and our approximation results also

hold).

B MISSING DETAILS FROM SECTION 2

B.1 K-relations and N[X]-encoded PDBs

We can useK-relations tomodel bags. AK-relation [27] is a relation

whose tuples are annotated with elements from a commutative

semiring K = {𝐾, ⊕K , ⊗K , 0K , 1K }. A commutative semiring is a

structure with a domain 𝐾 and associative and commutative binary

operations ⊕K and ⊗K such that ⊗K distributes over ⊕K , 0K is

the identity of ⊕K , 1K is the identity of ⊗K , and 0K annihilates

all elements of 𝐾 when combined by ⊗K . Let U be a countable

domain of values. Formally, an n-ary K-relation 𝑅 over U is a

function 𝑅 : U𝑛 → 𝐾 with finite support 𝑠𝑢𝑝𝑝 (𝑅) = {𝑡 | 𝑅(𝑡) ≠
0K }. A K-database is defined similarly, where we view the K-
database (relation) as a function mapping tuples to their respective

annotations. RA+ query semantics overK-relations are analogous

to the lineage construction semantics of Fig. 1, with the exception

of replacing + with ⊕K and · with ⊗K .
Consider the semiring N = {N, +,×, 0, 1} of natural numbers.

N-databases model bag semantics by annotating each tuple with

its multiplicity. A probabilistic N-database (N-PDB) is a PDB where

each possible world is anN-database. We study the problem of com-

puting statistical moments for query results over such databases.

Given an N-PDB D = (Ω,P), (RA+) query 𝑄 , and possible result

tuple 𝑡 , we sum 𝑄 (𝐷) (𝑡) · P (𝐷) for all 𝐷 ∈ Ω to compute the

expected multiplicity of 𝑡 . Intuitively, the expectation of𝑄 (𝐷) (𝑡) is
the number of duplicates of 𝑡 we expect to find in result of query𝑄 .

Let N[X] denote the set of polynomials over variables X =

(𝑋1, . . . , 𝑋𝑛) with natural number coefficients and exponents. Con-

sider now the semiring (abusing notation) N[X] = {N[X], +, ·, 0, 1}
whose domain is N[X], with the standard addition and multiplica-

tion of polynomials. We define an N[X]-encoded PDB DN[X] as
the tuple (𝐷N[X] ,P), where N[X]-database 𝐷N[X] is paired with

the probability distribution P across the set of possible worlds

represented by 𝐷N[X] , i.e. the one induced from PN[X] , the proba-
bility distribution over X. Note that the notation is slightly abused

since the first element of the pair is an encoded set of possible

worlds, i.e. 𝐷N[X] is the deterministic bounding database. We de-

note by Φ[𝑄, 𝐷N[X] , 𝑡] the annotation of tuple 𝑡 in the result of

𝑄 (𝐷N[X]) (𝑡), and as before, interpret it as a functionΦ[𝑄, 𝐷N[X] , 𝑡] :
{0, 1} |X | → N from vectors of variable assignments to the corre-

sponding value of the annotating polynomial. N[X]-encoded PDBs

and a function𝑀𝑜𝑑 (which transforms an N[X]-encoded PDB to

an equivalent N-PDB) are both formalized next.

To justify the use of N[X]-databases, we need to show that we

can encode any N-PDB in this way and that the query semantics

over this representation coincides with query semantics over its

respective N-PDB. For that it will be opportune to define represen-

tation systems for N-PDBs.

Definition B.1 (Representation System). A representation

system for N-PDBs is a tuple (M, 𝑀𝑜𝑑) whereM is a set of represen-

tations and𝑀𝑜𝑑 associates with each𝑀 ∈ M an N-PDB D. We say

that a representation system is closed under a class of queries Q if

for any query 𝑄 ∈ Q and𝑀 ∈ M we have:

𝑀𝑜𝑑 (𝑄 (𝑀)) = 𝑄 (𝑀𝑜𝑑 (𝑀))

A representation system is complete if for every N-PDB D there

exists𝑀 ∈ M such that:

𝑀𝑜𝑑 (𝑀) = D

As mentioned above we will use N[X]-databases paired with

a probability distribution as a representation system, referring to

such databases as N[X]-encoded PDBs. Given N[X]-encoded PDB

DN[X] , one can think of the of P as the probability distribution

Computing expected multiplicities for bag-TIDBs with bounded multiplicities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

across all worlds {0, 1}𝑛 . Denote a particular world to be w. For

convenience let𝜓w : DN[X] → DN be a function that computes the

corresponding N-PDB upon assigning all values𝑤𝑖 ∈ w to 𝑋𝑖 ∈ X
of 𝐷N[X] . Note the one-to-one correspondence between elements

w ∈ {0, 1}𝑛 to the worlds encoded by 𝐷N[X] when w is assigned

to X (assuming a domain of {0, 1} for each 𝑋𝑖). We can think of

𝜓w (DN[X]) (𝑡) as the semiring homomorphism N[X] → N that

applies the assignment w to all variables X of a polynomial and

evaluates the resulting expression in N.

Definition B.2 (𝑀𝑜𝑑

(
DN[X]

)
). Given an N[X]-encoded PDB

DN[X] , we compute its equivalent N-PDB DN = 𝑀𝑜𝑑

(
DN[X]

)
=

(Ω,P ′) as:

Ω = {𝜓w (DN[X]) | w ∈ {0, 1}𝑛}

∀𝐷 ∈ Ω : 𝑃𝑟 (𝐷) =
∑︁

w∈{0,1}𝑛 :𝜓w (DN[X])=𝐷
𝑃𝑟 (w)

For instance, consider a DN[X] consisting of a single tuple 𝑡1 =

(1) annotated with𝑋1+𝑋2 with probability distribution 𝑃𝑟 ([0, 0]) =
0, 𝑃𝑟 ([0, 1]) = 0, 𝑃𝑟 ([1, 0]) = 0.3 and 𝑃𝑟 ([1, 1]) = 0.7. This N[X]-
encoded PDB encodes two possible worlds (with non-zero proba-

bility) that we denote using their world vectors.

𝐷 [0,1] (𝑡1) = 1 and 𝐷 [1,1] (𝑡1) = 2

Importantly, as the following proposition shows, any finite N-PDB
can be encoded as an N[X]-encoded PDB and N[X]-encoded PDBs
are closed under RA+[27].

Proposition B.3. N[X]-encoded PDBs are a complete representa-

tion system for N-PDBs that is closed under RA+ queries.

Proof. To prove that N[X]-encoded PDBs are complete con-

sider the following construction that for any N-PDB D = (Ω,P)
produces an N[X]-encoded PDB DN[X] = (𝐷N[X] ,P ′) such that

𝑀𝑜𝑑 (DN[X]) = D. Let Ω = {𝐷1, . . . , 𝐷 |Ω |}. For each world 𝐷𝑖 we

create a corresponding variable 𝑋𝑖 . In 𝐷N[X] we assign each tuple

𝑡 the polynomial:

𝐷N[X] (𝑡) =
|Ω |∑︁
𝑖=1

𝐷𝑖 (𝑡) · 𝑋𝑖

The probability distribution P ′ assigns all world vectors zero proba-
bility except for |Ω | world vectors (representing the possible worlds)
w𝑖 . All elements of w𝑖 are zero except for the position correspond-

ing to variables𝑋𝑖 which is set to 1. Unfolding definitions it is trivial

to show that𝑀𝑜𝑑 (DN[X]) = D. Thus, N[X]-encoded PDBs are a

complete representation system.

SinceN[X] is the free object in the variety of semirings, Birkhoff’s

HSP theorem implies that any assignment X→ N, which includes

as a special case the assignments𝜓w used here, uniquely extends

to the semiring homomorphism alluded to above,𝜓w

(
DN[X]

)
(𝑡) :

N[X] → N. For a polynomial𝜓w

(
DN[X]

)
(𝑡) substitutes variables

based on w and then evaluates the resulting expression in N. For
instance, consider the polynomial DN[X] (𝑡) = Φ = 𝑋 + 𝑌 and

assignment w := 𝑋 = 0, 𝑌 = 1. We get𝜓w

(
DN[X]

)
(𝑡) = 0 + 1 = 1.

Closure underRA+ queries follows from this and from [27]’s Propo-

sition 3.5, which states that semiring homomorphisms commute

with queries over K-relations. □

B.2 TIDBs and BIDBs in the N[X]-encoded PDB

model

Two important subclasses of N[X]-encoded PDBs that are of in-

terest to us are the bag versions of tuple-independent databases

(TIDBs) and block-independent databases (BIDBs). Under set se-

mantics, a TIDB is a deterministic database 𝐷 where each tuple 𝑡 is

assigned a probability 𝑝𝑡 . The set of possible worlds represented by

a TIDB 𝐷 is all subsets of 𝐷 . The probability of each world is the

product of the probabilities of all tuples that exist with one minus

the probability of all tuples of 𝐷 that are not part of this world,

i.e., tuples are treated as independent random events. In a BIDB,

we also assign each tuple a probability, but additionally partition

𝐷 into blocks. The possible worlds of a BIDB 𝐷 are all subsets of

𝐷 that contain at most one tuple from each block. Note then that

the tuples sharing the same block are disjoint, and the sum of the

probabilitites of all the tuples in the same block 𝐵 is at most 1. The

probability of such a world is the product of the probabilities of all

tuples present in the world. For bag TIDBs and BIDBs, we define

the probability of a tuple to be the probability that the tuple exists

with multiplicity at least 1.

In this work, we define TIDBs and BIDBs as subclasses of N[X]-
encoded PDBs defined over variables X (Definition B.2) where X
can be partitioned into blocks that satisfy the conditions of a TIDB

or BIDB (stated formally in Sec. 2.2). In this work, we consider

one further deviation from the standard: We use bag semantics for

queries. Even though tuples cannot occur more than once in the

input TIDB or BIDB, they can occur with a multiplicity larger than

one in the result of a query. Since in TIDBs and BIDBs, there is a one-

to-one correspondence between tuples in the database and variables,

we can interpret a vector w ∈ {0, 1}𝑛 as denoting which tuples

exist in the possible world𝜓w (DN[X]) (the ones where𝑤𝑖 = 1). For

BIDBs specifically, note that at most one of the bits corresponding

to tuples in each block will be set (i.e., for any pair of bits𝑤 𝑗 ,𝑤 𝑗 ′

that are part of the same block 𝑏𝑖 ⊇ {𝑡𝑖, 𝑗 , 𝑡𝑖, 𝑗 ′}, at most one of them

will be set). Denote the vector p to be a vector whose elements are

the individual probabilities 𝑝𝑖 of each tuple 𝑡𝑖 . Given PDB Dt P is

the distribution induced by p, which we will denote P (p) .

E
W∼P (p)

[Φ(W)] =
∑︁

w∈{0,1}𝑛
𝑠.𝑡 .𝑤𝑗 ,𝑤𝑗′=1→�𝑏𝑖 ⊇{𝑡𝑖,𝑗 ,𝑡𝑖′, 𝑗 }

Φ(w)
∏
𝑗 ∈[𝑛]
𝑠.𝑡 .𝑤𝑗=1

𝑝 𝑗

∏
𝑗 ∈[𝑛]
𝑠.𝑡 .𝑤𝑗=0

(1 − 𝑝𝑖)

(5)

Recall that tuple blocks in a TIDB always have size 1, so the outer

summation of eq. (5) is over the full set of vectors.

B.3 Proof of Proposition 2.8

Proof. We need to prove for N-PDB D = (Ω,P) and N[X]-
encoded PDB DN[X] = (𝐷 ′

N[X] ,P
′) where 𝑀𝑜𝑑 (DN[X]) = D

that ED∼P [𝑄 (𝐷) (𝑡)] = EW∼P′
[
Φ[𝑄, 𝐷N[X] , 𝑡] (W)

]
By expand-

ing Φ[𝑄,𝐷N[X] , 𝑡] and the expectation we have:

E
W∼P′

[Φ(W)] =
∑︁

w∈{0,1}𝑛
𝑃𝑟 (w) ·𝑄 (𝐷N[X]) (𝑡) (w)

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Huber, Kennedy, Rudra, et al.

From 𝑀𝑜𝑑 (DN[X]) = D, we have that the range of 𝜓w(DN[X]) is
Ω, so

=
∑︁
𝐷∈Ω

∑︁
w∈{0,1}𝑛 :𝜓w (DN[X])=𝐷

𝑃𝑟 (w) ·𝑄 (𝐷N[X]) (𝑡) (w)

The inner sum is only overwwhere𝜓w (DN[X]) = 𝐷 (i.e.,𝑄 (𝐷N[X]) (𝑡) (w) =
𝑄 (𝐷) (𝑡))

=
∑︁
𝐷∈Ω

∑︁
w∈{0,1}𝑛 :𝜓w (DN[X])=𝐷

𝑃𝑟 (w) ·𝑄 (𝐷) (𝑡)

By distributivity of + over ×

=
∑︁
𝐷∈Ω

𝑄 (𝐷) (𝑡)
∑︁

w∈{0,1}𝑛 :𝜓w (DN[X])=𝐷
𝑃𝑟 (w)

From the definition of P in definition B.2, given𝑀𝑜𝑑 (DN[X]) = D,

we get

=
∑︁
𝐷∈Ω

𝑄 (𝐷) (𝑡) · 𝑃𝑟 (𝐷) = E
D∼P
[𝑄 (𝐷) (𝑡)]

□

B.4 Proposition B.4

Note the following fact:

Proposition B.4. For any BIDB-lineage polynomialΦ(𝑋1, . . . , 𝑋𝑛)
and all w such that 𝑃𝑟 [W = w] > 0, it holds that Φ(w) = Φ̃(w) .

Proof. Note that any Φ in factorized form is equivalent to its

SMB expansion. For each term in the expanded form, further note

that for all 𝑏 ∈ {0, 1} and all 𝑒 ≥ 1, 𝑏𝑒 = 𝑏. Finally, note that there

are exactly three cases where the expectation of a monomial term

E
[
𝑐d

∏
𝑖=𝑛 𝑠.𝑡 . d𝑖 ≥1 𝑋𝑖

]
is zero: (i) when 𝑐d = 0, (ii) when 𝑝𝑖 = 0 for

some 𝑖 where d𝑖 ≥ 1, and (iii) when𝑋𝑖 and 𝑋 𝑗 are in the same block

for some 𝑖, 𝑗 where d𝑖 , d𝑗 ≥ 1. □

B.5 Proof for Lemma 1.4

Proof. Let Φ be a polynomial of 𝑛 variables with highest degree

= 𝐾 , defined as follows:

Φ(𝑋1, . . . , 𝑋𝑛) =
∑︁

d∈{0,...,𝐾 }𝑛
𝑐d ·

𝑛∏
𝑖=1

𝑠.𝑡 .𝑑𝑖 ≥1

𝑋
𝑑𝑖
𝑖
.

Let the boolean function isInd (·) take d as input and return true

if there does not exist any dependent variables in d, i.e., � 𝐵, 𝑖 ≠
𝑗 | 𝑑𝐵,𝑖 , 𝑑𝐵,𝑗 ≥ 1.

13
. Then in expectation we have

E
W
[Φ(W)] = E

W


∑︁

d∈{0,...,𝐾 }𝑛
∧ isInd(d)

𝑐d ·
𝑛∏
𝑖=1

𝑠.𝑡 .𝑑𝑖 ≥1

𝑊
𝑑𝑖
𝑖
+

∑︁
d∈{0,...,𝐾 }𝑛
∧ ¬isInd(d)

𝑐d ·
𝑛∏
𝑖=1

𝑠.𝑡 .𝑑𝑖 ≥1

𝑊
𝑑𝑖
𝑖


(6)

=
∑︁

d∈{0,...,𝐾 }𝑛
∧ isInd(d)

𝑐d · E
W


𝑛∏
𝑖=1

𝑠.𝑡 .𝑑𝑖 ≥1

𝑊
𝑑𝑖
𝑖

 +
∑︁

d∈{0,...,𝐾 }𝑛
∧ ¬isInd(d)

𝑐d · E
W


𝑛∏
𝑖=1

𝑠.𝑡 .𝑑𝑖 ≥1

𝑊
𝑑𝑖
𝑖


(7)

13
This BIDB notation is used and discussed in sec. 2.2

=
∑︁

d∈{0,...,𝐾 }𝑛
∧isInd(d)

𝑐d · E
W


𝑛∏
𝑖=1

𝑠.𝑡 .𝑑𝑖 ≥1

𝑊
𝑑𝑖
𝑖

 (8)

=
∑︁

d∈{0,...,𝐾 }𝑛
∧ isInd(d)

𝑐d ·
𝑛∏
𝑖=1

𝑠.𝑡 .𝑑𝑖 ≥1

E
W

[
𝑊
𝑑𝑖
𝑖

]
(9)

=
∑︁

d∈{0,...,𝐾 }𝑛
∧ isInd(d)

𝑐d ·
𝑛∏
𝑖=1

𝑠.𝑡 .𝑑𝑖 ≥1

E
W
[𝑊𝑖] (10)

=
∑︁

d∈{0,...,𝐾 }𝑛
∧ isInd(d)

𝑐d ·
𝑛∏
𝑖=1

𝑠.𝑡 .𝑑𝑖 ≥1

𝑝𝑖 (11)

= Φ̃(𝑝1, . . . , 𝑝𝑛) . (12)

Eq. (6) is the result of substituting in the definition of Φ given above.

Then we arrive at eq. (7) by linearity of expectation. Next, eq. (8)

is the result of the independence constraint of BIDBs, specifically

that any monomial composed of dependent variables, i.e., variables

from the same block 𝐵, has a probability of 0. Eq. (9) is obtained by

the fact that all variables in each monomial are independent, which

allows for the expectation to be pushed through the product. In

eq. (10), since𝑊𝑖 ∈ {0, 1} it is the case that for any exponent 𝑒 ≥ 1,

𝑊 𝑒
𝑖
=𝑊𝑖 . Next, in eq. (11) the expectation of a tuple is indeed its

probability.

Finally, it can be verified that Eq. (12) follows since eq. (11)

satisfies the construction of Φ̃(𝑝1, . . . , 𝑝𝑛) in Definition 1.3. □

B.6 Proof For Corollary 2.7

Proof. Note that Lemma 1.4 shows that E [Φ] = Φ̃(𝑝1, . . . , 𝑝𝑛).
Therefore, if Φ is already in SMB form, one only needs to compute

Φ(𝑝1, . . . , 𝑝𝑛) ignoring exponent terms (note that such a polynomial

is Φ̃(𝑝1, . . . , 𝑝𝑛)), which indeed has 𝑂 (|Φ|) computations. □

C MISSING DETAILS FROM SECTION 3

C.1 Lemma C.1

Lemma C.1. Assuming that each 𝑣 ∈ 𝑉 has degree ≥ 1,
14

the PDB

relations encoding the edges for Φ𝑘
𝐺
of Definition 3.4 can be computed

in 𝑂 (𝑚) time.

Proof of Lemma C.1. Only two relations need be constructed,

one for the set 𝑉 and one for the set 𝐸. By a simple linear scan,

each can be constructed in time 𝑂 (𝑚 + 𝑛). Given that the degree

of each 𝑣 ∈ 𝑉 is at least 1, we have that𝑚 ≥ Ω(𝑛), and this yields

the claimed runtime. □

C.2 Proof of Lemma 3.5

Proof. By the recursive defintion of 𝑇𝑑𝑒𝑡 (·, ·) (see Sec. 2.4), we
have the following equation for our hard query 𝑄 when 𝑘 = 1, (we

denote this as 𝑄1
).

𝑇𝑑𝑒𝑡

(
𝑄1, 𝐷

)
= |𝐷.𝑉 | + |𝐷.𝐸 | + |𝐷.𝑉 | +𝑇𝑗𝑜𝑖𝑛 (𝐷.𝑉 , 𝐷.𝐸, 𝐷.𝑉) .

14
This is WLOG, since any vertex with degree 0 can be dropped without affecting the

result of our hard query.

Computing expected multiplicities for bag-TIDBs with bounded multiplicities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

We argue that𝑇𝑗𝑜𝑖𝑛 (𝐷.𝑉 , 𝐷.𝐸, 𝐷.𝑉) is at most𝑂 (𝑚) by noting that

there exists an algorithm that computes 𝐷.𝑉Z𝐷.𝐸Z𝐷.𝑉 in the

same runtime
15
. Then by the assumption of Lemma C.1 (each 𝑣 ∈ 𝑉

has degree ≥ 1), the sum of the first three terms is 𝑂 (𝑚). We

then obtain that 𝑇𝑑𝑒𝑡
(
𝑄1, 𝐷

)
= 𝑂 (𝑚) +𝑂 (𝑚) = 𝑂 (𝑚). For 𝑄𝑘 =

𝑄1

1
×· · ·×𝑄1

𝑘
, we have the recurrence𝑇𝑑𝑒𝑡

(
𝑄𝑘 , 𝐷

)
= 𝑇𝑑𝑒𝑡

(
𝑄1

1
, 𝐷

)
+

· · · + 𝑇𝑑𝑒𝑡
(
𝑄1

𝑘
, 𝐷

)
+ 𝑇𝑗𝑜𝑖𝑛 (𝑄1

1
, · · · , 𝑄1

𝑘
). Since 𝑄1

outputs a count,

computing the join 𝑄1

1
Z · · ·Z𝑄1

𝑘
is just multiplying 𝑘 numbers,

which takes 𝑂 (𝑘) time. Thus, we have

𝑇𝑑𝑒𝑡

(
𝑄𝑘 , 𝐷

)
≤ 𝑘 ·𝑂 (𝑚) +𝑂 (𝑘) ≤ 𝑂 (𝑘𝑚),

as desired. □

C.3 Lemma C.2

The following lemma reduces the problem of counting 𝑘-matchings

in a graph to our problem (and proves Theorem 3.6):

Lemma C.2. Let 𝑝0, . . . , 𝑝2𝑘 be distinct values in (0, 1]. Then given
the values Φ̃𝑘

𝐺
(𝑝𝑖 , . . . , 𝑝𝑖) for 0 ≤ 𝑖 ≤ 2𝑘 , the number of 𝑘-matchings

in 𝐺 can be computed in 𝑂
(
𝑘3

)
time.

C.4 Proof of Lemma C.2

Proof. We first argue that Φ̃𝑘
𝐺
(𝑝, . . . , 𝑝) =

2𝑘∑
𝑖=0

𝑐𝑖 · 𝑝𝑖 . First, since

Φ𝐺 (X) has degree 2, it follows that Φ𝑘𝐺 (X) has degree 2𝑘 . By def-

inition, Φ̃𝑘
𝐺
(X) sets every exponent 𝑒 > 1 to 𝑒 = 1, which means

that deg(Φ̃𝑘
𝐺
) ≤ deg(Φ𝑘

𝐺
) = 2𝑘 . Thus, if we think of 𝑝 as a vari-

able, then Φ̃𝑘
𝐺
(𝑝, . . . , 𝑝) is a univariate polynomial of degree at most

deg(Φ̃𝑘
𝐺
) ≤ 2𝑘 . Thus, we can write

Φ̃𝑘𝐺 (𝑝, . . . , 𝑝) =
2𝑘∑︁
𝑖=0

𝑐𝑖𝑝
𝑖

We note that 𝑐𝑖 is exactly the number of monomials in the SMB

expansion of Φ𝑘
𝐺
(X) composed of 𝑖 distinct variables.16

Given that we then have 2𝑘 + 1 distinct values of Φ̃𝑘
𝐺
(𝑝, . . . , 𝑝)

for 0 ≤ 𝑖 ≤ 2𝑘 , it follows that we have a linear system of the

form M · c = b where the 𝑖th row of M is

(
𝑝0
𝑖
. . . 𝑝2𝑘

𝑖

)
, c is the

coefficient vector (𝑐0, . . . , 𝑐2𝑘), and b is the vector such that b[𝑖] =
Φ̃𝑘
𝐺
(𝑝𝑖 , . . . , 𝑝𝑖). In other words, matrixM is the Vandermonde ma-

trix, from which it follows that we have a matrix with full rank

(the 𝑝𝑖 ’s are distinct), and we can solve the linear system in 𝑂 (𝑘3)
time (e.g., using Gaussian Elimination) to determine c exactly. Thus,
after 𝑂 (𝑘3) work, we know c and in particular, 𝑐

2𝑘 exactly.

Next, we show why we can compute #

(
𝐺, · · · 𝑘

)
from 𝑐

2𝑘 in

𝑂 (1) additional time. We claim that 𝑐
2𝑘 is 𝑘! · #

(
𝐺, · · · 𝑘

)
. This

15
Indeed the trivial algorithm that computes the obvious pair-wise joins has the claimed

runtime. That is, we first compute 𝐷.𝑉Z𝐷.𝐸, which takes𝑂 (𝑚) (assuming 𝐷.𝑉 is

stored in hash map) since tuples in 𝐷.𝑉 can only filter tuples in 𝐷.𝐸. The resulting

subset of tuples in 𝐷.𝐸 are then again joined (on the right) with 𝐷.𝑉 , which by the

same argument as before also takes𝑂 (𝑚) time, as desried.

16
Since Φ̃𝑘

𝐺
(X) does not have any monomial with degree < 2, it is the case that

𝑐0 = 𝑐1 = 0 but for the sake of simplcity we will ignore this observation.

can be seen intuitively by looking at the expansion of the original

factorized representation

Φ𝑘𝐺 (X) =
∑︁

(𝑖1, 𝑗1), · · · ,(𝑖𝑘 , 𝑗𝑘) ∈𝐸
𝑋𝑖1𝑋 𝑗1 · · ·𝑋𝑖𝑘𝑋 𝑗𝑘 ,

where a unique 𝑘-matching in the multi-set of product terms can

be selected

∏𝑘
𝑖=1 𝑖 = 𝑘! times. Indeed, note that each 𝑘-matching

(𝑖1, 𝑗1) . . . (𝑖𝑘 , 𝑗𝑘) in 𝐺 corresponds to the monomial

∏𝑘
ℓ=1 𝑋𝑖ℓ𝑋 𝑗ℓ

in Φ𝑘
𝐺
(X), with distinct indexes, and this implies that each distinct

𝑘-matching appears the exact number of permutations that exist

for its particular set of 𝑘 edges, or 𝑘!.

Since, as noted earlier, 𝑐
2𝑘 represents the number of monomials

with 2𝑘 distinct variables, then it must be that 𝑐
2𝑘 is the overall

number of𝑘-matchings. And since we have𝑘! copies of each distinct

𝑘-matching, it follows that 𝑐
2𝑘 = 𝑘! · #

(
𝐺, · · · 𝑘

)
. Thus, simply

dividing 𝑐
2𝑘 by 𝑘! gives us #

(
𝐺, · · · 𝑘

)
, as needed. □

C.5 Proof of Theorem 3.6

Proof. For the sake of contradiction, assume we can solve our

problem in 𝑜 (𝑇𝑚𝑎𝑡𝑐ℎ (𝑘,𝐺)) time. Given a graph 𝐺 by Lemma C.1

we can compute the PDB encoding in𝑂 (𝑚) time. Then after we run

our algorithm on Φ̃𝑘
𝐺
, we get Φ̃𝑘

𝐺
(𝑝𝑖 , . . . , 𝑝𝑖) for every 0 ≤ 𝑖 ≤ 2𝑘 in

additional𝑂 (𝑘) ·𝑜 (𝑇𝑚𝑎𝑡𝑐ℎ (𝑘,𝐺)) time. Lemma C.2 then computes

the number of 𝑘-matchings in𝐺 in𝑂 (𝑘3) time. Adding the runtime

of all of these steps, we have an algorithm for computing the number

of 𝑘-matchings that runs in time

𝑂 (𝑚) +𝑂 (𝑘) · 𝑜 (𝑇𝑚𝑎𝑡𝑐ℎ (𝑘,𝐺)) +𝑂 (𝑘3) (13)

≤ 𝑜 (𝑇𝑚𝑎𝑡𝑐ℎ (𝑘,𝐺)) . (14)

We obtain Eq. (14) from the facts that 𝑘 is fixed (related to𝑚) and

the assumption that 𝑇𝑚𝑎𝑡𝑐ℎ (𝑘,𝐺) ≥ 𝜔 (𝑚). Thus we obtain the

contradiction that we can achieve a runtime 𝑜 (𝑇𝑚𝑎𝑡𝑐ℎ (𝑘,𝐺)) that
is better than the optimal time 𝑇𝑚𝑎𝑡𝑐ℎ (𝑘,𝐺) required to compute

𝑘-matchings. □

C.6 Subgraph Notation and 𝑂 (1) Closed
Formulas

We need all the possible edge patterns in an arbitrary 𝐺 with at

most three distinct edges. We have already seen , and , so

we define the remaining patterns:

• Single Edge ()
• 2-path ()

• 2-matching ()

• 3-star ()–this is the graph that results when all three

edges share exactly one common endpoint. The remaining

endpoint for each edge is disconnected from any endpoint

of the remaining two edges.

• Disjoint Two-Path ()–this subgraph consists of a two-

path and a remaining disjoint edge.

For any graph 𝐺 , the following formulas for # (𝐺,𝐻) compute

their respective patterns exactly in𝑂 (𝑚) time, with 𝑑𝑖 representing

the degree of vertex 𝑖 (proofs are in Appendix C.7):

(𝐺,) =𝑚, (15)

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Huber, Kennedy, Rudra, et al.

(𝐺,) =
∑︁
𝑖∈𝑉

(
𝑑𝑖

2

)
(16)

(𝐺,) =
∑︁
(𝑖, 𝑗) ∈𝐸

𝑚 − 𝑑𝑖 − 𝑑 𝑗 + 1
2

(17)

(𝐺,) =
∑︁
𝑖∈𝑉

(
𝑑𝑖

3

)
(18)

(𝐺,) + 3# (𝐺,) =
∑︁
(𝑖, 𝑗) ∈𝐸

(
𝑚 − 𝑑𝑖 − 𝑑 𝑗 + 1

2

)
(19)

(𝐺,) + 3# (𝐺,) =
∑︁
(𝑖, 𝑗) ∈𝐸

(𝑑𝑖 − 1) · (𝑑 𝑗 − 1) (20)

C.7 Proofs of Eq. (15)-Eq. (20)

The proofs for Eq. (15), Eq. (16) and Eq. (18) are immediate.

Proof of Eq. (17). For edge (𝑖, 𝑗) connecting arbitrary vertices

𝑖 and 𝑗 , finding all other edges in 𝐺 disjoint to (𝑖, 𝑗) is equivalent
to finding all edges that are not connected to either vertex 𝑖 or

𝑗 . The number of such edges is𝑚 − 𝑑𝑖 − 𝑑 𝑗 + 1, where we add 1

since edge (𝑖, 𝑗) is removed twice when subtracting both 𝑑𝑖 and

𝑑 𝑗 . Since the summation is iterating over all edges such that a pair

((𝑖, 𝑗), (𝑘, ℓ)) will also be counted as ((𝑘, ℓ), (𝑖, 𝑗)), division by 2

then eliminates this double counting. Note that 𝑚 and 𝑑𝑖 for all

𝑖 ∈ 𝑉 can be computed in one pass over the set of edges by simply

maintaining counts for each quantity. Finally, the summation is

also one traversal through the set of edges where each operation

is either a lookup (𝑂 (1) time) or an addition operation (also 𝑂 (1))
time. □

Proof of Eq. (19). Eq. (19) is true for similar reasons. For edge

(𝑖, 𝑗), it is necessary to find two additional edges, disjoint or con-

nected. As in our argument for Eq. (17), once the number of edges

disjoint to (𝑖, 𝑗) have been computed, then we only need to con-

sider all possible combinations of two edges from the set of disjoint

edges, since it doesn’t matter if the two edges are connected or

not. Note, the factor 3 of is necessary to account for the triple

counting of 3-matchings, since it is indistinguishable to the closed

form expression which of the remaining edges are either disjoint or

connected to each of the edges in the initial set of edges disjoint to

the edge under consideration. Observe that the disjoint case will be

counted 3 times since each edge of a 3-path is visited once, and the

same 3-path counted in each visitation. For the latter case however,

it is true that since the two path in is connected, there will be

no multiple counting by the fact that the summation automatically

disconnects the current edge, meaning that a two matching at the

current vertex under consideration will not be counted. Thus,

will only be counted once, precisely when the single disjoint edge is

visited in the summation. The sum over all such edge combinations

is precisely then # (𝐺,) + 3# (𝐺,). Note that all factorials
can be computed in𝑂 (𝑚) time, and then each combination

(𝑛
2

)
can

be performed with constant time operations, yielding the claimed

𝑂 (𝑚) run time. □

Proof of Eq. (20). To compute # (𝐺,), note that for an arbi-

trary edge (𝑖, 𝑗), a 3-path exists for edge pair (𝑖, ℓ) and (𝑗, 𝑘) where

𝑖, 𝑗, 𝑘, ℓ are distinct. Further, the quantity (𝑑𝑖 − 1) · (𝑑 𝑗 − 1) repre-
sents the number of 3-edge subgraphs with middle edge (𝑖, 𝑗) and
outer edges (𝑖, ℓ), (𝑗, 𝑘) such that ℓ ≠ 𝑗 and 𝑘 ≠ 𝑖 . When 𝑘 = ℓ , the

resulting subgraph is a triangle, and when 𝑘 ≠ ℓ , the subgraph is

a 3-path. Summing over all edges (i, j) gives Eq. (20) by observing

that each triangle is counted thrice, while each 3-path is counted

just once. For reasons similar to Eq. (17), all 𝑑𝑖 can be computed in

𝑂 (𝑚) time and each summand can then be computed in 𝑂 (1) time,

yielding an overall 𝑂 (𝑚) run time. □

C.8 Tools to prove Theorem 3.7

Note that Φ̃3

𝐺
(𝑝, . . . , 𝑝) as a polynomial in 𝑝 has degree at most six.

Next, we figure out the exact coefficients since this would be useful

in our arguments:

Lemma C.3. For any 𝑝 , we have:

Φ̃3

𝐺 (𝑝, . . . , 𝑝) = #

(
𝐺,

)
𝑝2 + 6#

(
𝐺,

)
𝑝3 + 6#

(
𝐺,

)
𝑝4 + 6# (𝐺,) 𝑝3

+ 6# (𝐺,) 𝑝4 + 6#
(
𝐺,

)
𝑝4 + 6#

(
𝐺,

)
𝑝5 + 6#

(
𝐺,

)
𝑝6 .

(21)

C.8.1 Proof for Lemma C.3.

Proof. By definition we have that

Φ3

𝐺 (X) =
∑︁

(𝑖1, 𝑗1),(𝑖2, 𝑗2),(𝑖3, 𝑗3) ∈𝐸

3∏
ℓ=1

𝑋𝑖ℓ𝑋 𝑗ℓ .

Hence Φ̃3

𝐺
(X) has degree six. Note that the monomial

∏
3

ℓ=1 𝑋𝑖ℓ𝑋 𝑗ℓ

will contribute to the coefficient of 𝑝𝜈 in Φ̃3

𝐺
(X), where 𝜈 is the

number of distinct variables in the monomial. Let 𝑒1 = (𝑖1, 𝑗1), 𝑒2 =
(𝑖2, 𝑗2), and 𝑒3 = (𝑖3, 𝑗3). We compute Φ̃3

𝐺
(X) by considering each

of the three forms that the triple (𝑒1, 𝑒2, 𝑒3) can take.

case 1: 𝑒1 = 𝑒2 = 𝑒3 (all edges are the same). When we have that

𝑒1 = 𝑒2 = 𝑒3, then the monomial corresponds to # (𝐺,). There are
exactly𝑚 such triples, each with a 𝑝2 factor in Φ̃3

𝐺
(𝑝, . . . , 𝑝).

case 2: This case occurs when there are two distinct edges of

the three, call them 𝑒 and 𝑒 ′. When there are two distinct edges,

there is then the occurence when 2 variables in the triple (𝑒1, 𝑒2, 𝑒3)
are bound to 𝑒 . There are three combinations for this occurrence

in Φ3

𝐺
(X). Analogusly, there are three such occurrences in Φ3

𝐺
(X)

when there is only one occurrence of 𝑒 , i.e. 2 of the variables in

(𝑒1, 𝑒2, 𝑒3) are 𝑒 ′. This implies that all 3 + 3 = 6 combinations of

two distinct edges 𝑒 and 𝑒 ′ contribute to the same monomial in Φ̃3

𝐺
.

Since 𝑒 ≠ 𝑒 ′, this case produces the following edge patterns: , ,

which contribute 6𝑝3 and 6𝑝4 respectively to Φ̃3

𝐺
(𝑝, . . . , 𝑝).

case 3: All 𝑒1, 𝑒2 and 𝑒3 are distinct. For this case, we have 3! = 6

permutations of (𝑒1, 𝑒2, 𝑒3), each of which contribute to the same

monomial in the SMB representation ofΦ3

𝐺
(X). This case consists of

the following edge patterns: , , , , , which contribute

6𝑝3, 6𝑝4, 6𝑝4, 6𝑝5 and 6𝑝6 respectively to Φ̃3

𝐺
(𝑝, . . . , 𝑝). □

Since 𝑝 is fixed, Lemma C.3 gives us one linear equation in

(𝐺,) and # (𝐺,) (we can handle the other counts due to

equations (15)-(20)). However, we need to generate one more inde-

pendent linear equation in these two variables. Towards this end

we generate another graph related to 𝐺 :

Definition C.4. For ℓ ≥ 1, let graph 𝐺 (ℓ) be a graph generated

from an arbitrary graph 𝐺 , by replacing every edge 𝑒 of 𝐺 with an

Computing expected multiplicities for bag-TIDBs with bounded multiplicities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

ℓ-path, such that all inner vertexes of an ℓ-path replacement edge are

disjoint from all other vertexes.
17
.

We will prove Theorem 3.7 by the following reduction:

Theorem C.5. Fix 𝑝 ∈ (0, 1). Let 𝐺 be a graph on𝑚 edges. If we

can compute Φ̃3

𝐺
(𝑝, . . . , 𝑝) exactly in𝑇 (𝑚) time, then we can exactly

compute # (𝐺,) in 𝑂 (𝑇 (𝑚) +𝑚) time.

For clarity, we repeat the notion of # (𝐺,𝐻) to mean the count

of subgraphs in 𝐺 isomorphic to 𝐻 . The following lemmas relate

these counts in 𝐺 (2) to 𝐺 (1) (𝐺). The lemmas are used to prove

Lemma C.8.

Lemma C.6. The 3-matchings in graph 𝐺 (2) satisfy the identity:

#

(
𝐺 (2) ,

)
= 8 · #

(
𝐺 (1) ,

)
+ 6 · #

(
𝐺 (1) ,

)
+ 4 · #

(
𝐺 (1) ,

)
+ 4 · #

(
𝐺 (1) ,

)
+ 2 · #

(
𝐺 (1) ,

)
.

Lemma C.7. For ℓ > 1 and any graph 𝐺 (ℓ) , #
(
𝐺 (ℓ) ,

)
= 0.

Finally, the following result immediately implies Theorem C.5:

Lemma C.8. Fix 𝑝 ∈ (0, 1). Given Φ̃3

𝐺 (ℓ)
(𝑝, . . . , 𝑝) for ℓ ∈ [2], we

can compute in 𝑂 (𝑚) time a vector b ∈ R3 such that(
1 − 3𝑝 −(3𝑝2 − 𝑝3)

10(3𝑝2 − 𝑝3) 10(3𝑝2 − 𝑝3)

)
·
(
(𝐺,)]
(𝐺,)

)
= b,

allowing us to compute # (𝐺,) and # (𝐺,) in 𝑂 (1) time.

C.9 Proofs for Lemma C.6, Lemma C.7, and

Lemma C.8

Before proceeding, let us introduce a few more helpful definitions.

Definition C.9 (𝐸 (ℓ)). For ℓ > 1, we use 𝐸 (ℓ) to denote the set of
edges in𝐺 (ℓ) . For any graph𝐺 (ℓ) , its edges are denoted by the a pair

(𝑒, 𝑏), such that 𝑏 ∈ {0, . . . , ℓ − 1} where (𝑒, 0), . . . , (𝑒, ℓ − 1) is the
ℓ-path that replaces the edge 𝑒 for 𝑒 ∈ 𝐸 (1) .

Definition C.10 (𝐸
(ℓ)
𝑆

). Given an arbitrary subgraph 𝑆 (1) of𝐺 (1) ,

let 𝐸
(1)
𝑆

denote the set of edges in 𝑆 (1) . Define then 𝐸 (ℓ)
𝑆

for ℓ > 1 as

the set of edges in the generated subgraph 𝑆 (ℓ) (i.e. when we apply

Definition C.4 to 𝑆 to generate 𝑆 (ℓ)).

For example, consider 𝑆 (1) with edges 𝐸
(1)
𝑆

= {𝑒1}. Then the

edge set of 𝑆 (2) is defined as 𝐸
(2)
𝑆

= {(𝑒1, 0), (𝑒1, 1)}.

Definition C.11 (

(𝐸
𝑡

)
and

(𝐸
≤𝑡

)
). Let

(𝐸
𝑡

)
denote the set of subsets

in 𝐸 with exactly 𝑡 edges. In a similar manner,

(𝐸
≤𝑡

)
is used to mean

the subsets of 𝐸 with 𝑡 or fewer edges.

The following function 𝑓ℓ is a mapping from every 3-edge shape

in 𝐺 (ℓ) to its ‘projection’ in 𝐺 (1) .

Definition C.12. Let 𝑓ℓ :
(𝐸 (ℓ)

3

)
→

(𝐸 (1)
≤3

)
be defined as follows.

For any element 𝑠 ∈
(𝐸 (ℓ)

3

)
such that 𝑠 = {(𝑒1, 𝑏1), (𝑒2, 𝑏2), (𝑒3, 𝑏3)},

define:

𝑓ℓ ({(𝑒1, 𝑏1), (𝑒2, 𝑏2), (𝑒3, 𝑏3)}) = {𝑒1, 𝑒2, 𝑒3} .
17
Note that𝐺 ≡ 𝐺 (1) .

Definition C.13 (𝑓 −1
ℓ

). For an arbitrary subgraph 𝑆 (1) of 𝐺 (1)

with at most𝑚 ≤ 3 edges, the inverse function 𝑓 −1
ℓ

:

(𝐸 (1)
≤3

)
→ 2
(𝐸 (ℓ)

3
)

takes 𝐸
(1)
𝑆

and outputs the set of all elements 𝑠 ∈
(𝐸 (ℓ)

𝑆

3

)
such that

𝑓ℓ (𝑠) = 𝐸 (1)𝑆 .

Note, importantly, that when we discuss 𝑓 −1
ℓ

, that each edge

present in 𝐸
(1)
𝑆

must have an edge in 𝑠 ∈ 𝑓 −1
ℓ
(𝐸 (1)
𝑆
) that projects

down to it. In particular, if |𝐸 (1)
𝑆
| = 3, then it must be the case

that each 𝑠 ∈ 𝑓 −1
ℓ
(𝐸 (1)
𝑆
) consists of the following set of edges:

{(𝑒𝑖 , 𝑏), (𝑒 𝑗 , 𝑏 ′), (𝑒𝑚, 𝑏 ′′)}, where 𝑖, 𝑗 and𝑚 are distinct.

We are now ready to prove the structural lemmas. To prove the

structural lemmas, we will count the number of occurrences of

and in 𝐺 (ℓ) we count for each 𝑆 ∈
(𝐸1
≤3

)
, how many and

subgraphs appear in 𝑓 −1
ℓ
(𝐸 (1)
𝑆
).

C.9.1 Proof of Lemma C.6.

Proof. For each subset 𝐸
(1)
𝑆
∈

(𝐸1
≤3

)
, we count the number of

3-matchings in the 3-edge subgraphs of 𝐺 (2) in 𝑓 −1
2
(𝐸 (1)
𝑆
). We

first consider the case of 𝐸
(1)
𝑆
∈

(𝐸1
3

)
, where 𝐸

(1)
𝑆

is composed

of the edges 𝑒1, 𝑒2, 𝑒3 and 𝑓
−1
2
(𝐸 (1)
𝑆
) is the set of all 3-edge subsets

𝑠 ∈ {(𝑒1, 0), (𝑒1, 1), (𝑒2, 0), (𝑒2, 1), (𝑒3, 0), (𝑒3, 1)} such that 𝑓ℓ (𝑠) =
{𝑒1, 𝑒2, 𝑒3}. The size of the output is denoted

���𝑓 −1
2
(𝐸 (1))

���. For the
case where each set of edges of the form {(𝑒1, 𝑏1), (𝑒2, 𝑏2), (𝑒3, 𝑏3)}
for 𝑏𝑖 ∈ [2], 𝑖 ∈ [3] is present, we have

���𝑓 −1
2
(𝐸 (1))

��� = 8. We count

the number of 3-matchings from the set 𝑓 −1
2
(𝐸 (1)
𝑆
).

We do a case analysis based on the subgraph 𝑆 (1) induced by

𝐸
(1)
𝑆

.

• 3-matching ()

When 𝑆 (1) is isomorphic to , it is the case that edges in 𝐸
(2)
𝑆

are not disjoint only for the pairs (𝑒𝑖 , 0), (𝑒𝑖 , 1) for 𝑖 ∈ {1, 2, 3}. By
definition, each set of edges in 𝑓 −1

2

(
𝐸
(1)
𝑆

)
is a three matching and���𝑓 −1

2

(
𝐸
(1)
𝑆

)��� = 8 possible 3-matchings.

• Disjoint Two-Path ()

For 𝑆 (1) isomorphic to edges 𝑒2, 𝑒3 form a 2-path with 𝑒1 being

disjoint. This means that in 𝑆 (2) edges (𝑒2, 0), (𝑒2, 1), (𝑒3, 0), (𝑒3, 1)
form a 4-path while (𝑒1, 0), (𝑒1, 1) is its own disjoint 2-path. We can

pick either (𝑒1, 0) or (𝑒1, 1) for the first edge in the 3-matching, while

it is necessary to have a 2-matching from path (𝑒2, 0), . . . (𝑒3, 1).
Note that the 4-path allows for three possible 2-matchings, specifi-

cally,

{(𝑒2, 0), (𝑒3, 0)} , {(𝑒2, 0), (𝑒3, 1)} , {(𝑒2, 1), (𝑒3, 1)} .

Since these two selections can bemade independently,

���𝑓 −1
2

(
𝐸
(1)
𝑆

)��� =
2 · 3 = 6 distinct 3-matchings in 𝑓 −1

2
(𝐸 (1)
𝑆
).

• 3-star ()

When 𝑆 (1) is isomorphic to , the inner edges (𝑒𝑖 , 1) of 𝑆 (2) are
all connected, and the outer edges (𝑒𝑖 , 0) are all disjoint. Note that
for a valid 3-matching it must be the case that at most one inner

edge can be part of the set of disjoint edges. For the case of when

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Huber, Kennedy, Rudra, et al.

exactly one inner edge is chosen, there exist 3 possiblities, based

on which inner edge is chosen. Note that if (𝑒𝑖 , 1) is chosen, the
matching has to choose (𝑒 𝑗 , 0) for 𝑗 ≠ 𝑖 and (𝑒 𝑗 ′, 0) for 𝑗 ′ ≠ 𝑖, 𝑗 ′ ≠ 𝑗 .

The remaining possible 3-matching occurs when all 3 outer edges

are chosen, and

���𝑓 −1
2

(
𝐸
(1)
𝑆

)��� = 4.

• 3-path ()

When 𝑆 (1) is isomorphic to it is the case that all edges begin-

ning with 𝑒1 and ending with 𝑒3 are successively connected. This

means that the edges of 𝐸
(2)
𝑆

form a 6-path. For a 3-matching to

exist in 𝑓 −1
2
(𝐸 (1)
𝑆
), we cannot pick both (𝑒𝑖 , 0) and (𝑒𝑖 , 1) or both

(𝑒𝑖 , 1) and (𝑒 𝑗 , 0) where 𝑗 = 𝑖 + 1. There are four such possibilities:

{(𝑒1, 0), (𝑒2, 0), (𝑒3, 0)}, {(𝑒1, 0), (𝑒2, 0), (𝑒3, 1)}, {(𝑒1, 0), (𝑒2, 1), (𝑒3, 1)} ,
{(𝑒1, 1), (𝑒2, 1), (𝑒3, 1)} and

���𝑓 −1
2

(
𝐸
(1)
𝑆

)��� = 4.

• Triangle ()

For 𝑆 (1) isomorphic to , note that it is the case that the edges in

𝐸
(2)
𝑆

are connected in a successive manner, but this time in a cycle,

such that (𝑒1, 0) and (𝑒3, 1) are also connected. While this is similar

to the discussion of the three path above, the first and last edges

are not disjoint. This rules out both subsets of (𝑒1, 0), (𝑒2, 0), (𝑒3, 1)
and (𝑒1, 0), (𝑒2, 1), (𝑒3, 1), so that

���𝑓 −1
2

(
𝐸
(1)
𝑆

)��� = 2.

Let us now consider when 𝐸
(1)
𝑆
∈

(𝐸1
≤2

)
, i.e. fixed subgraphs among

• 2-matching (), 2-path (), 1 edge ()

When |𝐸 (1)
𝑆
| = 2, we can only pick one from each of two pairs,

{(𝑒1, 0), (𝑒1, 1)} and {(𝑒2, 0), (𝑒2, 1)}. The third edge choice in 𝐸
(2)
𝑆

will break the disjoint property of a 3-matching. Thus, a 3-matching

cannot exist in 𝑓 −1
2
(𝐸 (1)
𝑆
). A similar argument holds for |𝐸 (1)

𝑆
| = 1,

where the output of 𝑓 −1
2

is {∅} since there are not enough edges in

the input to produce any other output.

Observe that all of the arguments above focused solely on the

property of subgraph 𝑆 (1) being isomorphmic. In other words, all

𝐸
(1)
𝑆

of a given “shape” yield the same number of 3-matchings in

𝑓 −1
2
(𝐸 (1)
𝑆
), and this is why we get the required identity using the

above case analysis. □

C.9.2 Proof of Lemma C.7.

Proof. The number of triangles in 𝐺 (ℓ) for ℓ ≥ 2 will always

be 0 for the simple fact that all cycles in 𝐺 (ℓ) will have at least six
edges. □

C.9.3 Proof of Lemma C.8.

Proof. The proof consists of two parts. First we need to show

that a vector b satisfying the linear system exists and further

can be computed in 𝑂 (𝑚) time. Second we need to show that

(𝐺,) , # (𝐺,) can indeed be computed in time 𝑂 (1).

The lemma claims that forM =

(
1 − 3𝑝 −(3𝑝2 − 𝑝3)

10(3𝑝2 − 𝑝3) 10(3𝑝2 − 𝑝3)

)
,

x =

(
(𝐺,)]
(𝐺,)

)
satisfies the linear systemM · x = b.

To prove the first step, we use Lemma C.3 to derive the following

equality (dropping the superscript and referring to 𝐺 (1) as 𝐺):

(𝐺,) 𝑝2 + 6# (𝐺,) 𝑝3 + 6# (𝐺,) 𝑝4 + 6# (𝐺,) 𝑝3 + 6# (𝐺,) 𝑝4

+ 6# (𝐺,) 𝑝4 + 6# (𝐺,) 𝑝5 + 6# (𝐺,) 𝑝6 = Φ̃3

𝐺 (𝑝, . . . , 𝑝)
(22)

(𝐺,) + # (𝐺,) 𝑝 + # (𝐺,) 𝑝2 + # (𝐺,) 𝑝3

=
Φ̃3

𝐺
(𝑝, . . . , 𝑝)
6𝑝3

− # (𝐺,)
6𝑝

− # (𝐺,) − # (𝐺,) 𝑝 − # (𝐺,) 𝑝

(23)

(𝐺,) (1 − 3𝑝) − # (𝐺,) (3𝑝2 − 𝑝3) =

Φ̃3

𝐺
(𝑝, . . . , 𝑝)
6𝑝3

− # (𝐺,)
6𝑝

− # (𝐺,) − # (𝐺,) 𝑝 − # (𝐺,) 𝑝

− [# (𝐺,) 𝑝 + 3# (𝐺,) 𝑝] −
[
(𝐺,) 𝑝2 + 3# (𝐺,) 𝑝2

]
(24)

Eq. (22) is the result of Lemma C.3. We obtain the remaining equa-

tions through standard algebraic manipulations.

Note that the LHS of Eq. (24) is obtained using eq. (19) and eq. (20)

and is indeed the productM[1] ·x[1]. Further note that this product
is equal to the RHS of Eq. (24), where every term is computable

in 𝑂 (𝑚) time (by equations (15)-(20)). We set b[1] to the RHS of

Eq. (24).

We follow the same process in deriving an equality for 𝐺 (2) .
Replacing occurrences of 𝐺 with 𝐺 (2) , we obtain an equation (be-

low) of the form of eq. (24) for 𝐺 (2) . Substituting identities from

lemma C.6 and Lemma C.7 we obtain

0 − (8# (𝐺,) +6# (𝐺,) + 4# (𝐺,) + 4# (𝐺,) + 2# (𝐺,)) (3𝑝2 − 𝑝3) =

Φ̃3

𝐺 (2)
(𝑝, . . . , 𝑝)
6𝑝3

−
#

(
𝐺 (2) ,

)
6𝑝

− #
(
𝐺 (2) ,

)
− #

(
𝐺 (2) ,

)
𝑝 − #

(
𝐺 (2) ,

)
𝑝

−
[
#

(
𝐺 (2) ,

)
𝑝2 + 3#

(
𝐺 (2) ,

)
𝑝2

]
−

[
#

(
𝐺 (2) ,

)
𝑝 + 3#

(
𝐺 (2) ,

)
𝑝

]
(25)

(10# (𝐺,) + 10𝐺) (3𝑝2 − 𝑝3) =

Φ̃3

𝐺 (2)
(𝑝, . . . , 𝑝)
6𝑝3

−
#

(
𝐺 (2) ,

)
6𝑝

− #
(
𝐺 (2) ,

)
− #

(
𝐺 (2) ,

)
𝑝 − #

(
𝐺 (2) ,

)
𝑝

−
[
#

(
𝐺 (2) ,

)
𝑝 + 3#

(
𝐺 (2) ,

)
𝑝

]
−

[
#

(
𝐺 (2) ,

)
𝑝2 − 3#

(
𝐺 (2) ,

)
𝑝2

]
+ (4# (𝐺,) + [6# (𝐺,) + 18# (𝐺,)] + [4# (𝐺,) + 12# (𝐺,)]) (3𝑝2 − 𝑝3)

(26)

The steps to obtaining eq. (26) are analogous to the derivation

immediately preceding. As in the previous derivation, note that the

LHS of Eq. (26) is the same as M[2] · x[2]. The RHS of Eq. (26) has
terms all computable (by equations (15)-(20)) in 𝑂 (𝑚) time. Setting

b[2] to the RHS then completes the proof of step 1.

Note that if M has full rank then one can compute # (𝐺,) and
(𝐺,) in 𝑂 (1) using Gaussian elimination.

To show thatM indeed has full rank, we show in what follows

that 𝐷𝑒𝑡 (M) ≠ 0 for every 𝑝 ∈ (0, 1). 𝐷𝑒𝑡 (M) =���� 1 − 3𝑝 −(3𝑝2 − 𝑝3)
10(3𝑝2 − 𝑝3) 10(3𝑝2 − 𝑝3)

���� = (1 − 3𝑝) · 10(3𝑝2 − 𝑝3) + 10(3𝑝2 − 𝑝3) · (3𝑝2 − 𝑝3)
= 10(3𝑝2 − 𝑝3) · (1 − 3𝑝 + 3𝑝2 − 𝑝3) = 10(3𝑝2 − 𝑝3) · (−𝑝3 + 3𝑝2 − 3𝑝 + 1)
= 10𝑝2 (3 − 𝑝) · (1 − 𝑝)3 (27)

Computing expected multiplicities for bag-TIDBs with bounded multiplicities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

From Eq. (27) it can easily be seen that the roots of 𝐷𝑒𝑡 (M)
are 0, 1, and 3. Hence there are no roots in (0, 1) and Lemma C.8

follows. □

C.10 Proof of Theorem C.5

Proof. We can compute𝐺 (2) from𝐺 (1) in𝑂 (𝑚) time. Addition-

ally, if in time 𝑂 (𝑇 (𝑚)), we have Φ̃3

𝐺 (ℓ)
(𝑝, . . . , 𝑝) for ℓ ∈ [2], then

the theorem follows by Lemma C.8. □
In other words, if Theorem C.5 holds, then so must Theorem 3.7.

C.11 Proof of Theorem 3.7

Proof. For the sake of contradiction, assume that for any 𝐺 ,

we can compute Φ̃3

𝐺
(𝑝, . . . , 𝑝) in 𝑜

(
𝑚1+𝜖0)

time. Let 𝐺 be the input

graph. Then by Theorem C.5 we can compute # (𝐺,) in further

time 𝑜
(
𝑚1+𝜖0)+𝑂 (𝑚). Thus, the overall, reduction takes 𝑜 (

𝑚1+𝜖0)+
𝑂 (𝑚) = 𝑜

(
𝑚1+𝜖0)

time, which violates Conjecture 3.3. □

D MISSING DETAILS FROM SECTION 4

In the following definitions and examples, we use the following

polynomial as an example:

Φ(𝑋,𝑌) = 2𝑋 2 + 3𝑋𝑌 − 2𝑌 2 . (28)

Definition D.1 (Pure Expansion). The pure expansion of a

polynomial Φ is formed by computing all product of sums occurring

in Φ, without combining like monomials. The pure expansion of Φ
generalizes Definition 2.1 by allowing monomials𝑚𝑖 =𝑚 𝑗 for 𝑖 ≠ 𝑗 .

Note that similar in spirit to ??, E(C) Definition 4.1 reduces all

variable exponents 𝑒 > 1 to 𝑒 = 1. Further, it is true that E(C) is the
pure expansion of C.

Example D.2 (Example of Pure Expansion). Consider the fac-

torized representation (𝑋 +2𝑌) (2𝑋 −𝑌) of the polynomial in Eq. (28).

Its circuit C is illustrated in Fig. 4. The pure expansion of the product

is 2𝑋 2 −𝑋𝑌 + 4𝑋𝑌 − 2𝑌 2
. As an additional example of Definition 4.1,

E(C) = [(𝑋, 2), (𝑋𝑌,−1), (𝑋𝑌, 4), (𝑌,−2)].

E(C) effectively18 encodes the reduced form of poly (C), decou-
pling each monomial into a set of variables v and a real coefficient

c. However, unlike the constraint on the input Φ to compute Φ̃, the
input circuit C does not need to be in SMB/SOP form.

Example D.3 (Example for Definition 4.2). Using the same

factorization from Example D.2, poly(|C|) = (𝑋 + 2𝑌) (2𝑋 + 𝑌) =
2𝑋 2+𝑋𝑌+4𝑋𝑌+2𝑌 2 = 2𝑋 2+5𝑋𝑌+2𝑌 2

. Note that this is not the same

as the polynomial from Eq. (28). As an example of the slight abuse

of notation we alluded to, poly (|C| (1, . . . , 1)) = 2 (1)2 + 5 (1) (1) +
2 (1)2 = 9.

Definition D.4 (Subcircuit). A subcircuit of a circuit C is a

circuit S such that S is a DAG subgraph of the DAG representing C.
The sink of S has exactly one gate g.

The following results assume input circuit C computed from an

arbitrary RA+ query 𝑄 and arbitrary BIDB D. We refer to C as a
BIDB circuit.

18
The minor difference here is that E(C) encodes the reduced form over the SOP pure

expansion of the compressed representation, as opposed to the SMB representation

Algorithm 1 ApproximateΦ̃(C, p, 𝛿, 𝜖)
Input: C: Circuit
Input: p = (𝑝1, . . . , 𝑝𝑛) ∈ [0, 1]𝑁
Input: 𝛿 ∈ [0, 1]
Input: 𝜖 ∈ [0, 1]
Output: acc ∈ R
1: acc← 0

2: N←
⌈
2 log

2

𝛿

𝜖2

⌉
3: (Cmod, size) ← OnePass (C) ⊲ OnePass is Algorithm 2

4: for i ∈ 1 to N do ⊲ Perform the required number of samples

5: (M, sgni) ← SampleMonomial (Cmod) ⊲

SampleMonomial is Algorithm 3. Note that sgni is the sign
of the monomial’s coefficient and not the coefficient itself

6: if M has at most one variable from each block then

7: Yi ←
∏
𝑋 𝑗 ∈M 𝑝 𝑗 ⊲ M is the sampled monomial’s set of

variables (cref. appendix D.9)

8: Yi ← Yi × sgni
9: acc← acc + Yi ⊲ Store the sum over all samples

10: end if

11: end for

12: acc← acc × size
N

13: return acc

Theorem D.5. Let C be an arbitrary BIDB circuit and define

Φ(X) = poly(C) and let𝑘 = deg(C). Then an estimateE of Φ̃(𝑝1, . . . , 𝑝𝑛)
can be computed in time

𝑂

((
size(C) +

log
1

𝛿
· |C |2 (1, . . . , 1) · 𝑘 · log𝑘 · depth(C))

(𝜖)2 · Φ̃2 (𝑝1, . . . , 𝑝𝑛)

)
· M (log (|C | (1, . . . , 1)), log (size(C)))

)
such that

𝑃𝑟

(���E − Φ̃(𝑝1, . . . , 𝑝𝑛)��� > 𝜖 · Φ̃(𝑝1, . . . , 𝑝𝑛)) ≤ 𝛿. (29)

The slight abuse of notation seen in |C| (1, . . . , 1) is explained
after Definition 4.2 and an example is given in Example D.3. The

only difference in the use of this notation in Theorem D.5 is that

we include an additional exponent to square the quantity.

D.1 Proof of Theorem D.5

We prove Theorem D.5 constructively by presenting an algorithm

ApproximateΦ̃ (Algorithm 1) which has the desired runtime and

computes an approximation with the desired approximation guar-

antee. Algorithm ApproximateΦ̃ uses Algorithm OnePass to com-

pute weights on the edges of a circuits. These weights are then

used to sample a set of monomials of Φ(C) from the circuit C by

traversing the circuit using the weights to ensure that monomials

are sampled with an appropriate probability. The correctness of

ApproximateΦ̃ relies on the correctness (and runtime behavior)

of auxiliary algorithms OnePass and SampleMonomial that we

state in the following lemmas (and prove later in this part of the

appendix).

Lemma D.6. The OnePass function completes in time:

𝑂

(
size(C) · M (log (|C(1 . . . , 1) |), log size(C))

)

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Huber, Kennedy, Rudra, et al.

OnePass guarantees two post-conditions: First, for each subcircuit

S of C, we have that S.partial is set to |S| (1, . . . , 1). Second, when
S.type = +, S.Lweight =

|SL | (1,...,1)
|S | (1,...,1) and likewise for S.Rweight.

To prove correctness of Algorithm 1, we only use the following

fact that follows from the above lemma: for the modified circuit

(Cmod) output by OnePass, Cmod .partial = |C| (1, . . . , 1).

Lemma D.7. The function SampleMonomial completes in time

𝑂 (log𝑘 · 𝑘 · depth(C) · M (log (|C| (1, . . . , 1)), log size(C)))
where𝑘 = deg(C). The function returns every (v, 𝑠𝑖𝑔𝑛(c)) for (v, c) ∈
E(C) with probability

|c |
|C | (1,...,1) .

With the above two lemmas, we are ready to argue the following

result:

Theorem D.8. For any C with deg(𝑝𝑜𝑙𝑦 (|C|)) = 𝑘 , algorithm 1

outputs an estimate acc of Φ̃(𝑝1, . . . , 𝑝𝑛) such that

𝑃𝑟

(���acc − Φ̃(𝑝1, . . . , 𝑝𝑛)��� > 𝜖 · |C| (1, . . . , 1)) ≤ 𝛿,
in𝑂

((
size(C) + log

1

𝛿

𝜖2
· 𝑘 · log𝑘 · depth(C)

)
· M (log (|C| (1, . . . , 1)), log size(C))

)
time.

Before proving Theorem D.8, we use it to argue the claimed

runtime of our main result, Theorem D.5.

Proof of Theorem D.5. Set E = ApproximateΦ̃(C, (𝑝1, . . . , 𝑝𝑛),
𝛿, 𝜖 ′), where

𝜖 ′ = 𝜖 · Φ̃(𝑝1, . . . , 𝑝𝑛)|C| (1, . . . , 1) ,

which achieves the claimed error bound on E (acc) trivially due

to the assignment to 𝜖 ′ and theorem D.8, since 𝜖 ′ · |C| (1, . . . , 1) =
𝜖 · Φ̃(1,...,1)
|C | (1,...,1) · |C| (1, . . . , 1) = 𝜖 · Φ̃(1, . . . , 1).
The claim on the runtime follows from Theorem D.8 since

1

(𝜖 ′)2
· log

(
1

𝛿

)
=

log
1

𝛿

𝜖2

(
Φ̃(𝑝1,...,𝑝𝑁)
|C | (1,...,1)

)
2

=
log

1

𝛿
· |C|2 (1, . . . , 1)

𝜖2 · Φ̃2 (𝑝1, . . . , 𝑝𝑛)
.

□
Let us now prove Theorem D.8:

D.2 Proof of Theorem D.8

Proof. Consider now the random variables Y1, . . . , YN, where
each Yi is the value of Yi in algorithm 1 after line 8 is executed.

Overloading isInd (·) to receive monomial input (recall vm is the
monomial composed of the variables in the set v), we have

Yi = 1(isInd(vm)) ·
∏

𝑋𝑖 ∈var(𝑣)
𝑝𝑖 ,

where the indicator variable handles the check in Line 6 Then for

random variable Y𝑖 , it is the case that

E [Yi] =
∑︁

(v,c) ∈E(C)

1(isInd(vm)) · 𝑐 ·
∏
𝑋𝑖 ∈var(𝑣) 𝑝𝑖

|C| (1, . . . , 1)

=
Φ̃(𝑝1, . . . , 𝑝𝑛)
|C| (1, . . . , 1) ,

where in the first equality we use the fact that sgni · |c| = c and

the second equality follows from Eq. (2) with 𝑋𝑖 substituted by 𝑝𝑖 .

Let Y = 1

𝑁

∑𝑁
𝑖=1 Yi. It is also true that

E
[
Y
]
=

1

𝑁

𝑁∑︁
𝑖=1

E [Yi] =
Φ̃(𝑝1, . . . , 𝑝𝑛)
|C| (1, . . . , 1) .

Hoeffding’s inequality states that if we know that each Y𝑖 (which
are all independent) always lie in the intervals [𝑎𝑖 , 𝑏𝑖], then it is

true that

𝑃𝑟

(��Y − E [
Y
] �� ≥ 𝜖) ≤ 2 exp

(
− 2𝑁 2𝜖2∑𝑁

𝑖=1 (𝑏𝑖 − 𝑎𝑖)2

)
.

Line 5 shows that sgni has a value in {−1, 1} that is multiplied

with𝑂 (𝑘) 𝑝𝑖 ∈ [0, 1], which implies the range for each Y𝑖 is [−1, 1].
Using Hoeffding’s inequality, we then get:

𝑃𝑟

(��Y − E [
Y
] �� ≥ 𝜖) ≤ 2 exp

(
−2𝑁

2𝜖2

2
2𝑁

)
= 2 exp

(
−𝑁𝜖

2

2

)
≤ 𝛿,

where the last inequality dictates our choice of 𝑁 in Line 2.

For the claimed probability bound of 𝑃𝑟

(���acc − Φ̃(𝑝1, . . . , 𝑝𝑛)��� > 𝜖 · |C| (1, . . . , 1)) ≤
𝛿 , note that in the algorithm, acc is exactly Y · |C| (1, . . . , 1). Mul-

tiplying the rest of the terms by the additional factor |C| (1, . . . , 1)
yields the said bound.

This concludes the proof for the first claim of theorem D.8. Next,

we prove the claim on the runtime.

Run-time Analysis. The runtime of the algorithm is dominated

first by Line 3 (which by LemmaD.6 takes time𝑂

(
size(C) · M (log (|C| (1, . . . , 1)), log (size(C)))

)
)

and then by 𝑁 iterations of the loop in Line 4. Each iteration’s run

time is dominated by the call to SampleMonomial in Line 5 (which

by LemmaD.7 takes𝑂

(
log𝑘 · 𝑘 · depth(C) · M (log (|C| (1, . . . , 1)), log (size(C)))

)
) and the check Line 6, which by the subsequent argument takes

𝑂 (𝑘 log𝑘) time. We sort the 𝑂 (𝑘) variables by their block IDs and

then check if there is a duplicate block ID or not. Combining all the

times discussed here gives us the desired overall runtime. □

D.3 Proof of Theorem 4.7

Proof. The result follows by first noting that by definition of 𝛾 ,

we have

Φ̃(1, . . . , 1) = (1 − 𝛾) · |C| (1, . . . , 1) .

Further, since each 𝑝𝑖 ≥ 𝑝0 and Φ(X) (and hence Φ̃(X)) has degree
at most 𝑘 , we have that

Φ̃(1, . . . , 1) ≥ 𝑝𝑘
0
· Φ̃(1, . . . , 1) .

The above two inequalities implies Φ̃(1, . . . , 1) ≥ 𝑝𝑘
0
· (1 − 𝛾) ·

|C| (1, . . . , 1). Applying this bound in the runtime bound in The-

orem D.5 gives the first claimed runtime. The final runtime of

𝑂𝑘

(
1

𝜖2
· size(C) · log 1

𝛿
· M (log (|C| (1, . . . , 1)), log (size(C)))

)
fol-

lows by noting that depth(C) ≤ size(C) and absorbing all factors

that just depend on 𝑘 . □

Computing expected multiplicities for bag-TIDBs with bounded multiplicities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

D.4 Proof of Lemma 4.8

Proof. The circuit C’ is built from C in the following manner.

For each input gate g𝑖 with g𝑖 .val = 𝑋𝑡 , replace g𝑖 with the

circuit S encoding the sum

∑𝑐
𝑗=1 𝑗 · 𝑋𝑡, 𝑗 . We argue that C’ is a

valid circuit by the following facts. Let D =

(
{0, . . . , 𝑐}𝐷 ,P

)
be the original 𝑐-TIDB C was generated from. Then, by Proposi-

tion 2.4 there exists a Binary-BIDBD ′ = (>𝑡 ∈𝐷′ {0, 𝑐𝑡 } ,P ′), with
𝐷 ′ =

{∫
𝑡, 𝑗 | 𝑡 ∈ 𝐷, 𝑗 ∈ [𝑐]

}
, from which the conversion from C

to C’ follows. Both poly (C) and poly (C′) have the same expected

multiplicity since (by Proposition 2.4) the distributions P and P ′
are equivalent and each 𝑗 · W′

𝑡, 𝑗
= W𝑡 for W′ ∈ {0, 1}𝑐𝑛 and

W ∈ {0, . . . , 𝑐}𝐷 . Finally, note that because there exists a (sub) cir-
cuit encoding

∑𝑐
𝑗=1 𝑗 · 𝑋𝑡, 𝑗 that is a balanced binary tree, the above

conversion implies the claimed size and depth bounds of the lemma.

Next we argue the claim on 𝛾 (C′). Consider the list of expanded
monomials E(C) for 𝑐-TIDB circuit C. Let vm = 𝑋

𝑑1
𝑡1
, . . . , 𝑋

𝑑ℓ
𝑡ℓ

be an

arbitrary monomial with ℓ variables. Then v yields the set of mono-

mials Ev (C′) =

{
𝑗
𝑑1
1
· 𝑋𝑑1
𝑡, 𝑗1
× · · · × 𝑗𝑑ℓ

ℓ
· 𝑋𝑑ℓ
𝑡, 𝑗ℓ

}
𝑗1,..., 𝑗ℓ ∈[𝑐]

in E(C′).
Recall that a cancellation occurs when we have a monomial v’ such
that there exists 𝑡 ≠ 𝑡 ′ in the same block 𝐵 where variables 𝑋𝑡 , 𝑋𝑡 ′

are in the set of variables v′m of v’. Observe that cancellations can

only occur for each𝑋
𝑑𝑡
𝑡 ∈ vm, where the expansion

(∑𝑐
𝑗=1 𝑗 · 𝑋𝑡, 𝑗

)𝑑𝑡
represents the monomial 𝑋

𝑑𝑡
𝑡 in 𝐷 ′. Consider the number of can-

cellations for

(∑𝑐
𝑗=1 𝑗 · 𝑋𝑡, 𝑗

)𝑑𝑡
. Then 𝛾 ≤ 1 − 𝑐𝑑𝑡−1, since for each

element in the set of cross products

{>
𝑖∈[𝑑𝑡], 𝑗𝑖 ∈[𝑐] 𝑋𝑡, 𝑗𝑖

}
there

are exactly 𝑐 surviving elements with 𝑗1 = · · · = 𝑗𝑑𝑡 = 𝑗 , i.e. 𝑋
𝑑𝑡
𝑡, 𝑗

for each 𝑗 ∈ [𝑐]. The rest of the 𝑐𝑑𝑡 − 𝑐 cross terms cancel. Re-

garding the whole monomial v’, it is the case that the proportion

of non-cancellations across each 𝑋
𝑑𝑡
𝑡 ∈ v′m multiply because non-

cancelling terms for 𝑋𝑡 can only be joined with non-cancelling

terms of 𝑋
𝑑𝑡′
𝑡 ′ ∈ v

′
m for 𝑡 ≠ 𝑡

′
. This then yields the fraction of can-

celled monomials 𝛾 ≤ 1 − ∏ℓ
𝑖=1 𝑐

𝑑𝑖−1 ≤ 1 − 𝑐−(𝑘−1) where the

inequalities take into account the fact that

∑ℓ
𝑖=1 𝑑𝑖 ≤ 𝑘 .

Since this is true for arbitrary v, the bound follows for poly (C′).
□

D.5 Proof of Lemma 4.9

We will prove Lemma 4.9 by considering the two cases separately.

We start by considering the case when C is a tree:

Lemma D.9. Let C be a tree (i.e. the sub-circuits corresponding to
two children of a node in C are completely disjoint). Then we have

|C| (1, . . . , 1) ≤ (size(C))deg(C)+1 .

Proof of Lemma D.9. For notational simplicity define𝑁 = size(C)
and 𝑘 = deg(C). We use induction on depth(C) to show that

|C| (1, . . . , 1) ≤ 𝑁𝑘+1. For the base case, we have that depth (C)
= 0, and there can only be one node which must contain a coeffi-

cient or constant. In this case, |C| (1, . . . , 1) = 1, and size (C) = 1,

and by Definition 4.4 it is the case that 0 ≤ 𝑘 = deg (C) ≤ 1, and it

is true that |C| (1, . . . , 1) = 1 ≤ 𝑁𝑘+1 = 1
𝑘+1 = 1 for 𝑘 ∈ {0, 1}.

Assume for ℓ > 0 an arbitrary circuit C of depth(C) ≤ ℓ that it
is true that |C| (1, . . . , 1) ≤ 𝑁𝑘+1.

For the inductive stepwe consider a circuit C such that depth(C) =
ℓ + 1. The sink can only be either a × or + gate. Let 𝑘L, 𝑘R denote
deg (CL) and deg (CR) respectively. Consider when sink node is ×.
Then note that

|C| (1, . . . , 1) = |CL | (1, . . . , 1) · |CR | (1, . . . , 1)

≤ (𝑁 − 1)𝑘L+1 · (𝑁 − 1)𝑘R+1

= (𝑁 − 1)𝑘+1 (30)

≤ 𝑁𝑘+1 .
In the above the first inequality follows from the inductive hypoth-

esis (and the fact that the size of either subtree is at most 𝑁 − 1) and
Eq. (30) follows by definition 4.4 which states that for 𝑘 = deg(C)
we have 𝑘 = 𝑘L + 𝑘R + 1.

For the case when the sink gate is a + gate, then for𝑁L = size(CL)
and 𝑁R = size(CR) we have

|C| (1, . . . , 1) = |CL | (1, . . . , 1) + |CR | (1, . . . , 1)

≤ 𝑁𝑘+1L + 𝑁𝑘+1R

≤ (𝑁 − 1)𝑘+1 (31)

≤ 𝑁𝑘+1 .
In the above, the first inequality follows from the inductive hypothes

and definition 4.4 (which implies the fact that 𝑘L, 𝑘R ≤ 𝑘). Note
that the RHS of this inequality is maximized when the base and

exponent of one of the terms is maximized. The second inequality

follows from this fact as well as the fact that since C is a tree we

have 𝑁L +𝑁R = 𝑁 −1 and, lastly, the fact that 𝑘 ≥ 0. This completes

the proof.

The upper bound in Lemma 4.9 for the general case is a simple

variant of the above proof (but we present a proof sketch of the

bound below for completeness):

Lemma D.10. Let C be a (general) circuit. Then we have

|C| (1, . . . , 1) ≤ 2
2
deg(C) ·depth(C) .

Proof Sketch of Lemma D.10. We use the same notation as in

the proof of Lemma D.9 and further define 𝑑 = depth(C). We will

prove by induction on depth(C) that |C| (1, . . . , 1) ≤ 2
2
𝑘 ·𝑑

. The

base case argument is similar to that in the proof of Lemma D.9. In

the inductive case we have that 𝑑L, 𝑑R ≤ 𝑑 − 1.
For the case when the sink node is ×, we get that

|C| (1, . . . , 1) = |CL | (1, . . . , 1) × |CR | (1, . . . , 1)

≤ 2
2
𝑘L ·𝑑L × 22

𝑘R ·𝑑R

≤ 2
2·2𝑘−1 · (𝑑−1)

≤ 2
2
𝑘𝑑 .

In the above the first inequality follows from inductive hypothesis

while the second inequality follows from the fact that 𝑘L, 𝑘R ≤ 𝑘 − 1
and 𝑑L, 𝑑R ≤ 𝑑 − 1, where we substitute the upperbound into every

respective term.

Now consider the case when the sink node is +, we get that
|C| (1, . . . , 1) = |CL | (1, . . . , 1) + |CR | (1, . . . , 1)

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Huber, Kennedy, Rudra, et al.

≤ 2
2
𝑘L ·𝑑L + 22

𝑘R ·𝑑R

≤ 2 · 22
𝑘 (𝑑−1)

≤ 2
2
𝑘𝑑 .

In the above the first inequality follows from the inductive hy-

pothesis while the second inequality follows from the facts that

𝑘L, 𝑘R ≤ 𝑘 and 𝑑L, 𝑑R ≤ 𝑑 − 1. The final inequality follows from the

fact that 𝑘 ≥ 0. □

D.6 OnePass Remarks

Please note that it is assumed that the original call to OnePass con-

sists of a call on an input circuit C such that the values of members

partial, Lweight and Rweight have been initialized to Null across
all gates.

The evaluation of |C| (1, . . . , 1) can be defined recursively, as

follows (where CL and CR are the ‘left’ and ‘right’ inputs of C if they
exist):

|C | (1, . . . , 1) =


|CL | (1, . . . , 1) · |CR | (1, . . . , 1) if C.type = ×
|CL | (1, . . . , 1) + |CR | (1, . . . , 1) if C.type = +
|C.val | if C.type = num

1 if C.type = var.

(32)

It turns out that for proof of Lemma D.7, we need to argue that

when C.type = +, we indeed have

C.Lweight← |CL | (1, . . . , 1)
|CL | (1, . . . , 1) + |CR | (1, . . . , 1)

; (33)

C.Rweight← |CR | (1, . . . , 1)
|CL | (1, . . . , 1) + |CR | (1, . . . , 1)

(34)

D.7 OnePass Example

Example D.11. Let T encode the expression (𝑋 + 𝑌) (𝑋 − 𝑌) + 𝑌 2
.

After one pass, Algorithm 2would have computed the following weight

distribution. For the two inputs of the sink gate C, C.Lweight = 4

5

and C.Rweight = 1

5
. Similarly, for S denoting the left input of CL,

S.Lweight = S.Rweight = 1

2
. This is depicted in Fig. 5.

𝒀 −1𝑿

× ×

+ +

×
+

C

1

2

1

2
1

2

1

2

1

5

4

5

Figure 5: Weights computed by OnePass in Example D.11.

Algorithm 2 OnePass (C)
Input: C: Circuit
Output: C: Annotated Circuit

Output: sum ∈ N
1: for g in TopOrd (C) do⊲ TopOrd (·) is the topological order of

C
2: if g.type = var then

3: g.partial← 1

4: else if g.type = num then

5: g.partial← |g.val|
6: else if g.type = × then

7: g.partial← gL .partial × gR .partial
8: else

9: g.partial← gL .partial + gR .partial
10: g.Lweight← gL .partial

g.partial

11: g.Rweight← gR .partial
g.partial

12: end if

13: sum← g.partial
14: end for

15: return (sum, C)

D.8 Proof of OnePass (Lemma D.6)

Proof. We prove the correct computation of partial, Lweight,
Rweight values on C by induction over the number of iterations in

the topological order TopOrd (line 1) of the input circuit C. TopOrd
follows the standard definition of a topological ordering over the

DAG structure of C.
For the base case, we have only one gate, which by definition is

a source gate and must be either var or num. In this case, as per

eq. (32), lines 3 and 5 correctly compute C.partial as 1.
For the inductive hypothesis, assume that OnePass correctly

computes S.partial, S.Lweight, and S.Rweight for all gates g in

C with 𝑘 ≥ 0 iterations over TopOrd. We now prove for 𝑘 + 1
iterations that OnePass correctly computes the partial, Lweight,
and Rweight values for each gate gi in C for 𝑖 ∈ [𝑘 + 1]. The gk + 1
must be in the last ordering of all gates gi. When size (C) > 1, if

g𝑘+1 is a leaf node, we are back to the base case. Otherwise g𝑘+1 is
an internal node which requires binary input.

When g𝑘+1 .type = +, then by line 9 g𝑘+1.partial= g𝑘+1L .partial
+g𝑘+1R .partial, a correct computation, as per eq. (32). Further,

lines 10 and 11 compute g𝑘+1 .Lweight =
g𝑘+1L .partial
g𝑘+1 .partial

and analo-

gously for g𝑘+1 .Rweight. All values needed for each computation

have been correctly computed by the inductive hypothesis.

When g𝑘+1 .type = ×, then line 7 computes g𝑘+1 .partial =

g𝑘+1L .partial × g𝑘+1R .partial, which indeed by eq. (32) is correct.

This concludes the proof of correctness.

Runtime Analysis. It is known that TopOrd(𝐺) is computable

in linear time. There are size(C) iterations, each of which takes

𝑂

(
M (log (|C(1 . . . , 1) |), log (size(C)))

)
time. This can be seen since

each of all the numbers which the algorithm computes is at most

|C| (1, . . . , 1). Hence, by definition each such operation takesM (log (|C(1 . . . , 1) |), log size(C))
time, which proves the claimed runtime. □

Computing expected multiplicities for bag-TIDBs with bounded multiplicities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Algorithm 3 SampleMonomial (C)

Input: C: Circuit
Output: vars: TreeSet
Output: sgn ∈ {−1, 1} ⊲ Algorithm 2 should have been run before

this one

1: vars← ∅
2: if C.type = + then ⊲ Sample at every + node
3: Csamp ← Sample from left input (CL) and right input (CR)

w.p. C.Lweight and C.Rweight. ⊲ Each call to

SampleMonomial uses fresh randomness

4: (v, s) ← SampleMonomial(Csamp)
5: return (v, s)
6: else if C.type = × then ⊲ Multiply the sampled values of all

inputs

7: sgn← 1

8: for 𝑖𝑛𝑝𝑢𝑡 in C.input do

9: (v, s) ← SampleMonomial(𝑖𝑛𝑝𝑢𝑡)
10: vars← vars ∪ {v}
11: sgn← sgn × s
12: end for

13: return (vars, sgn)
14: else if C.type = num then ⊲ The leaf is a coefficient

15: return ({}, sgn(C.val))⊲ sgn(·) outputs −1 for C.val ≥ 1

and −1 for C.val ≤ −1
16: else if C.type = 𝑣𝑎𝑟 then

17: return ({C.val}, 1)
18: end if

D.9 SampleMonomial Remarks

We briefly describe the top-down traversal of SampleMonomial.

When C.type = +, the input to be visited is sampled from the

weighted distribution precomputed by OnePass. When a C.type
= × node is visited, both inputs are visited. The algorithm computes

two properties: the set of all variable leaf nodes visited, and the

product of the signs of visited coefficient leaf nodes. We will assume

the TreeSet data structure to maintain sets with logarithmic time

insertion and linear time traversal of its elements. While we would

like to take advantage of the space efficiency gained in using a

circuit C instead an expression tree T, we do not know that such a

method exists when computing a sample of the input polynomial

representation.

The efficiency gains of circuits over trees is found in the capa-

bility of circuits to only require space for each distinct term in the

compressed representation. This saves space in such polynomials

containing non-distinct terms multiplied or added to each other,

e.g., 𝑥4. However, to avoid biased sampling, it is imperative to sam-

ple from both inputs of a multiplication gate, independently, which

is indeed the approach of SampleMonomial.

D.10 Proof of SampleMonomial (Lemma D.7)

Proof. We first need to show that SampleMonomial samples

a valid monomial vm by sampling and returning a set of variables v,

such that (v, c) is in E(C) and vm is indeed a monomial of the Φ̃ (X)
encoded in C. We show this via induction over the depth of C. For
the base case, let the depth 𝑑 of C be 0. We have that the single gate

is either a constant c for which by line 15 we return { }, or we have
that C.type = var and C.val = 𝑥 , and by line 17 we return {𝑥}. By
definition 4.1, both cases return a valid v for some (v, c) from E(C),
and the base case is proven.

For the inductive hypothesis, assume that for 𝑑 ≤ 𝑘 for some

𝑘 ≥ 0, that it is indeed the case that SampleMonomial returns a

valid monomial.

For the inductive step, let us take a circuit C with 𝑑 = 𝑘 + 1.
Note that each input has depth 𝑑 − 1 ≤ 𝑘 , and by inductive hy-

pothesis both of them sample a valid monomial. Then the sink can

be either a + or × gate. For the case when C.type = +, line 3 of

SampleMonomial will choose one of the inputs of the source. By

inductive hypothesis it is the case that some valid monomial is being

randomly sampled from each of the inputs. Then it follows when

C.type = + that a valid monomial is sampled by SampleMonomial.

When the C.type = ×, line 10 computes the set union of the mono-

mials returned by the two inputs of the sink, and it is trivial to see

by definition 4.1 that vm is a valid monomial encoded by some (v, c)
of E(C).

We will next prove by induction on the depth 𝑑 of C that for

(v, c) ∈ E(C), v is sampled with a probability
|c |

|C | (1,...,1) .
For the base case 𝑑 = 0, by definition 2.9 we know that the

size (C) = 1 and C.type = num or var. For either case, the probabil-

ity of the value returned is 1 since there is only one value to sample

from. When C.val = 𝑥 , the algorithm always return the variable set

{𝑥}. When C.type = num, SampleMonomial will always return ∅.
For the inductive hypothesis, assume that for 𝑑 ≤ 𝑘 and 𝑘 ≥ 0

SampleMonomial indeed returns v in (v, c) of E(C) with probabil-

ity
|c |

|C | (1,...,1) .
We prove now for 𝑑 = 𝑘 + 1 the inductive step holds. It is the

case that the sink of C has two inputs CL and CR. Since CL and CR are
both depth 𝑑 − 1 ≤ 𝑘 , by inductive hypothesis, SampleMonomial

will return vL in (vL, cL) of E(CL) and vR in (vR, cR) of E(CR), from
CL and CR with probability

|cL |
|CL | (1,...,1) and

|cR |
|CR | (1,...,1) .

Consider the case when C.type = ×. For the term (v, c) from
E(C) that is being sampled it is the case that v = vL∪vR, where vL is
coming from CL and vR from CR. The probability that SampleMono-

mial (CL) returns vL is
|cvL |

|CL | (1,...,1) and
|cvR |

|CR | (1,...,1) for vR. Since both
vL and vR are sampled with independent randomness, the final prob-

ability for sample v is then
|cvL | · |cvR |

|CL | (1,...,1) · |CR | (1,...,1) . For (v, c) in E(C),
by definition 4.1 it is indeed the case that |c| = |cvL | · |cvR | and that

(as shown in eq. (32)) |C| (1, . . . , 1) = |CL | (1, . . . , 1) · |CR | (1, . . . , 1),
and therefore v is sampled with correct probability

|c |
|C | (1,...,1) .

For the case when C.type = +, SampleMonomial will sample

v from one of its inputs. By inductive hypothesis we know that

any vL in E(CL) and any vR in E(CR) will both be sampled with

correct probability

|cvL |
|CL | (1,...,1) and

|cvR |
|CR | (1,...,1) , where either vL or vR

will equal v, depending on whether CL or CR is sampled. Assume

that v is sampled from CL, and note that a symmetric argument

holds for the case when v is sampled from CR. Notice also that

the probability of choosing CL from C is
|CL | (1,...,1)

|CL | (1,...,1)+ |CR | (1,...,1) as
computed by OnePass. Then, since SampleMonomial goes top-

down, and each sampling choice is independent (which follows

from the randomness in the root of C being independent from the

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Huber, Kennedy, Rudra, et al.

randomness used in its subtrees), the probability for v to be sampled

from C is equal to the product of the probability that CL is sampled

from C and v is sampled in CL, and

𝑃𝑟 (SampleMonomial(C) = v) =
𝑃𝑟 (SampleMonomial(CL) = v) · 𝑃𝑟 (𝑆𝑎𝑚𝑝𝑙𝑒𝑑𝐶ℎ𝑖𝑙𝑑 (C) = CL)

=
|cv |

|CL | (1, . . . , 1)
· |CL | (1, . . . , 1)
|CL | (1, . . . , 1) + |CR | (1, . . . , 1)

=
|cv |

|C| (1, . . . , 1) ,

and we obtain the desired result.

Lastly, we show by simple induction of the depth 𝑑 of C that

SampleMonomial indeed returns the correct sign value of c in

(v, c).
In the base case, C.type = num or var. For the former, Sample-

Monomial correctly returns the sign value of the gate. For the latter,

SampleMonomial returns the correct sign of 1, since a variable is a

neutral element, and 1 is the multiplicative identity, whose product

with another sign element will not change that sign element.

For the inductive hypothesis, we assume for a circuit of depth

𝑑 ≤ 𝑘 and 𝑘 ≥ 0 that the algorithm correctly returns the sign value

of c.
Similar to before, for a depth 𝑑 ≤ 𝑘 + 1, it is true that CL and

CR both return the correct sign of c. For the case that C.type = ×,
the sign value of both inputs are multiplied, which is the correct

behavior by definition 4.1. When C.type = +, only one input of C is

sampled, and the algorithm returns the correct sign value of c by
inductive hyptothesis.

Run-time Analysis. It is easy to check that except for lines 3

and 10, all lines take 𝑂 (1) time. Consider an execution of line 10.

We note that we will be adding a given set of variables to some set

at most once: since the sum of the sizes of the sets at a given level is

at most deg(C), each gate visited takes 𝑂 (log deg(C)). For Line 3,
note that we pick CL with probability

𝑎
𝑎+𝑏 where 𝑎 = C.Lweight and

𝑏 = C.Rweight. We can implement this step by picking a random

number 𝑟 ∈ [𝑎 + 𝑏] and then checking if 𝑟 ≤ 𝑎. It is easy to

check that 𝑎 + 𝑏 ≤ |C| (1, . . . , 1). This means we need to add and

compare log |C| (1, . . . , 1)-bit numbers, which can certainly be done

in timeM (log (|C(1 . . . , 1) |), log size(C)) (note that this is an over-

estimate). Denote Cost (C) (Eq. (35)) to be an upper bound of the

number of gates visited by SampleMonomial. Then the runtime is

𝑂

(
Cost(C) · log deg(C) · M (log (|C(1 . . . , 1) |), log size(C))

)
.

We now bound the number of recursive calls in SampleMonomial

by𝑂 ((deg(C) + 1) · depth(C)), which by the above will prove the
claimed runtime.

Let Cost (·) be a function that models an upper bound on the

number of gates that can be visited in the run of SampleMonomial.

We define Cost (·) recursively as follows.

Cost(C) =


1 + Cost(CL) + Cost(CR) if C.type = ×
1 +max (Cost(CL),Cost(CR)) if C.type = +

1 otherwise

(35)

First note that the number of gates visited in SampleMonomial is

≤ Cost(C). To show that eq. (35) upper bounds the number of nodes

visited by SampleMonomial, note that when SampleMonomial

visits a gate such that C.type = ×, line 8 visits each input of C, as
defined in (35). For the case when C.type = +, line 3 visits exactly
one of the input gates, which may or may not be the subcircuit

with the maximum number of gates traversed, which makes Cost

(·) an upperbound. Finally, it is trivial to see that when C.type
∈ {var,num}, i.e., a source gate, that only one gate is visited.

We prove the following inequality holds.

2 (deg(C) + 1) · depth(C) + 1 ≥ Cost(C) (36)

Note that eq. (36) implies the claimed runtime. We prove eq. (36)

for the number of gates traversed in SampleMonomial using induc-

tion over depth(C). Recall how degree is defined in definition 4.4.

For the base case deg(C) = {0, 1} , depth(C) = 0, Cost(C) = 1,

and it is trivial to see that the inequality 2deg(C) · depth(C) + 1 ≥
Cost(C) holds.

For the inductive hypothesis, we assume the bound holds for

any circuit where ℓ ≥ depth(C) ≥ 0. Now consider the case when

SampleMonomial has an arbitrary circuit C input with depth(C) =
ℓ + 1. By definition C.type ∈ {+,×}. Note that since depth(C) ≥
1, C must have input(s). Further we know that by the inductive

hypothesis the inputs C𝑖 for 𝑖 ∈ {L, R} of the sink gate C uphold the

bound

2 (deg(C𝑖) + 1) · depth(C𝑖) + 1 ≥ Cost(C𝑖). (37)

In particular, since for any 𝑖 , eq. (37) holds, then it immediately

follows that an inequality whose operands consist of a sum of the

aforementioned inequalities must also hold. This is readily seen

in the inequality of eq. (39) and eq. (40), where 2 (deg(CL) + 1) ·
depth(CL) ≥ Cost(CL), likewise for CR, and 1 ≥ 1. It is also true

that depth(CL) ≤ depth(C) − 1 and depth(CR) ≤ depth(C) − 1.
If C.type = +, then deg(C) = max (deg(CL), deg(CR)). Other-

wise C.type = × and deg(C) = deg(CL) +deg(CR) +1. In either case

it is true that depth(C) = max (depth(CL), depth(CR)) + 1.
If C.type = ×, then, by eq. (35), substituting values, the following

should hold,

2 (deg(CL) + deg(CR) + 2) · (max(depth(CL), depth(CR)) + 1) + 1
(38)

≥ 2 (deg(CL) + 1) · depth(CL) + 2 (deg(CR) + 1) · depth(CR) + 3
(39)

≥ 1 + Cost(CL) + Cost(CR) = Cost(C). (40)

To prove (39), first, eq. (38) expands to,

2deg(CL)·depthmax+2deg(CR)·depthmax+4depthmax+2deg(CL)+2deg(CR)+4+1
(41)

where depthmax is used to denote the maximum depth of the two

input subcircuits. Eq. (39) expands to

2deg(CL)·depth(CL)+2depth(CL)+2deg(CR)·depth(CR)+2depth(CR)+3
(42)

Putting Eq. (41) and Eq. (42) together we get

2deg(CL) · depthmax + 2deg(CR) · depthmax + 4depthmax + 2deg(CL) + 2deg(CR) + 5
≥ 2deg(CL) · depth(CL) + 2deg(CR) · depth(CR) + 2depth(CL) + 2depth(CR) + 3

(43)

Since the following is always true,

2deg(CL) · depthmax + 2deg(CR) · depthmax + 4depthmax + 5

Computing expected multiplicities for bag-TIDBs with bounded multiplicities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

≥ 2deg(CL) · depth(CL) + 2deg(CR) · depth(CR) + 2depth(CL) + 2depth(CR) + 3,

then it is the case that Eq. (43) is always true.

Now to justify (40) which holds for the following reasons. First,

eq. (40) is the result of Eq. (35) when C.type = ×. Eq. (39) is then
produced by substituting the upperbound of (37) for each Cost(C𝑖),
trivially establishing the upper bound of (40). This proves eq. (36)

for the × case.

For the case when C.type = +, substituting values yields
2 (max(deg(CL), deg(CR)) + 1) · (max(depth(CL), depth(CR)) + 1) + 1

(44)

≥ max (2 (deg(CL) + 1) · depth(CL) + 1, 2 (deg(CR) + 1) · depth(CR) + 1) + 1
(45)

≥ 1 +max(Cost(CL),Cost(CR)) = Cost(C) (46)

To prove (45), eq. (44) expands to

2degmaxdepthmax + 2degmax + 2depthmax + 2 + 1. (47)

Since degmax · depthmax ≥ deg(C𝑖) · depth(C𝑖), the following

upper bound holds for the expansion of eq. (45):

2degmaxdepthmax + 2depthmax + 2 (48)

Putting it together we obtain the following for (45):

2degmaxdepthmax + 2degmax + 2depthmax + 3
≥ 2degmaxdepthmax + 2depthmax + 2, (49)

where it can be readily seen that the inequality stands and (49)

follows. This proves (45).

Similar to the case of C.type = ×, (46) follows by equations (35)
and (37).

This proves (36) as desired. □

D.11 Experimental Results

Recall that by definition of BIDB, a query result cannot be derived

by a self-join between non-identical tuples belonging to the same

block. Note, that by Theorem 4.7, 𝛾 must be a constant in order for

Algorithm 1 to acheive linear time. We would like to determine

experimentally whether queries over BIDB instances in practice

generate a constant number of cancellations or not. Such an ex-

periment would ideally use a database instance with queries both

considered to be typical representations of what is seen in practice.

We ran our experiments using Windows 10 WSL Operating

System with an Intel Core i7 2.40GHz processor and 16GB RAM.

All experiments used the PostgreSQL 13.0 database system.

For the data we used the MayBMS data generator [1] tool to

randomly generate uncertain versions of TPCH tables. The queries

computed over the database instance are 𝑄1, 𝑄2, and 𝑄3 from [5],

all of which are modified versions of TPC-H queries 𝑄3, 𝑄6, and

𝑄7 where all aggregations have been dropped.

As written, the queries disallow BIDB cross terms. We first ran

all queries, noting the result size for each. Next the queries were

rewritten so as not to filter out the cross terms. The comparison

of the sizes of both result sets should then suggest in one way or

another whether or not there exist many cross terms in practice. As

seen, the experimental query results contain little to no cancelling

terms. Fig. 6 shows the result sizes of the queries, where column

CF is the result size when all cross terms are filtered out, column

CI shows the number of output tuples when the cancelled tuples

are included in the result, and the last column is the value of 𝛾 . The

experiments show 𝛾 to be in a range between [0, 0.1]%, indicating
that only a negligible or constant (compare the result sizes of 𝑄1 <

𝑄2 and their respective 𝛾 values) amount of tuples are cancelled

in practice when running queries over a typical BIDB instance.

Interestingly, only one of the three queries had tuples that violated

the BIDB constraint.

To conclude, the results in Fig. 6 show experimentally that 𝛾

is negligible in practice for BIDB queries. We also observe that (i)

tuple presence is independent across blocks, so the correspond-

ing probabilities (and hence 𝑝0) are independent of the number of

blocks, and (ii) BIDBs model uncertain attributes, so block size (and

hence 𝛾) is a function of the “messiness” of a dataset, rather than

its size. Thus, we expect Theorem 4.7 to hold in general.

Query CF CI 𝛾

𝑄1 46, 714 46, 768 0.1%

𝑄2 179.917 179, 917 0%

𝑄3 11, 535 11, 535 0%

Figure 6: Number of Cancellations for Queries Over BIDB.

E CIRCUITS

E.1 Representing Polynomials with Circuits

E.1.1 Circuits for query plans. We now formalize circuits and the

construction of circuits for RA+ queries. As mentioned earlier, we

represent lineage polynomials as arithmetic circuits over N-valued
variables with +, ×. A circuit for query 𝑄 and N[X]-encoded PDB

DN[X] is a directed acyclic graph
〈
𝑉𝑄,DN[X] , 𝐸𝑄,DN[X] , 𝜙𝑄,DN[X] , ℓ𝑄,DN[X]

〉
with vertices 𝑉𝑄,DN[X] and directed edges 𝐸𝑄,DN[X] ⊂ 𝑉𝑄,DN[X] 2.
The sink function 𝜙𝑄,DN[X] : U𝑛 → 𝑉𝑄,DN[X] is a partial function
that maps the tuples of the 𝑛-ary relation 𝑄 (DN[X]) to vertices.

We require that 𝜙𝑄,DN[X] ’s range be limited to sink vertices (i.e.,

vertices with out-degree 0). A function ℓ𝑄,DN[X] : 𝑉𝑄,DN[X] →
{ +,× } ∪ N ∪ X assigns a label to each node: Source nodes (i.e.,

vertices with in-degree 0) are labeled with constants or variables

(i.e., N∪X), while the remaining nodes are labeled with the symbol

+ or ×. We require that vertices have an in-degree of at most two.

Note that we can construct circuits for BIDBs in time linear in

the time required for deterministic query processing over a possi-

ble world of the BIDB under the aforementioned assumption that��DN[X] �� ≤ 𝑐 · |𝐷 |.
E.2 Modeling Circuit Construction

We now connect the size of a circuit (where the size of a cir-

cuit is the number of vertices in the corresponding DAG) for a

given RA+ query 𝑄 and N[X]-encoded PDB DN[X] to the run-

time 𝑇𝑑𝑒𝑡 (𝑄,𝐷Ω) of the PDB’s deterministic bounding database

𝐷Ω . We do this formally by showing that the size of the circuit is

asymptotically no worse than the corresponding runtime of a large

class of deterministic query processing algorithms.

Each vertex 𝑣 ∈ 𝑉𝑄,DN[X] in the arithmetic circuit for

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Huber, Kennedy, Rudra, et al.

〈
𝑉𝑄,DN[X] , 𝐸𝑄,DN[X] , 𝜙𝑄,DN[X] , ℓ𝑄,DN[X]

〉
encodes a polynomial, realized as

lin (𝑣) =


∑
𝑣′:(𝑣′,𝑣) ∈𝐸𝑄,DN[X]

lin (𝑣 ′) if ℓ (𝑣) = +∏
𝑣′:(𝑣′,𝑣) ∈𝐸𝑄,DN[X]

lin (𝑣 ′) if ℓ (𝑣) = ×
ℓ (𝑣) otherwise

We define the circuit for a RA+ query 𝑄 recursively by cases as

follows. In each case, let

〈
𝑉𝑄𝑖 ,DN[X] , 𝐸𝑄𝑖 ,DN[X] , 𝜙𝑄𝑖 ,DN[X] , ℓ𝑄𝑖 ,DN[X]

〉
denote the circuit for subquery 𝑄𝑖 . We implicitly include in all cir-

cuits a global zero node 𝑣0 s.t., ℓ𝑄,DN[X] (𝑣0) = 0 for any 𝑄,DN[X] .
Algorithm 4 defines how the circuit for a query result is con-

structed. We quickly review the number of vertices emitted in each

case.

Base Relation. This circuit has |𝐷Ω .𝑅 | vertices.
Selection. If we assume dead sinks are iteratively garbage collected,

this circuit has at most |𝑉𝑄1,DN[X] | vertices.
Projection. This formulation will produce vertices with an in-

degree greater than two, a problem that we correct by replacing

every vertex with an in-degree over two by an equivalent fan-in

two tree. The resulting structure has at most |𝑄1 | − 1 new vertices.

The corrected circuit thus has at most |𝑉𝑄1,DN[X] | + |𝑄1 | vertices.
Union. This circuit has |𝑉𝑄1,DN[X] | + |𝑉𝑄2,DN[X] | + |𝑄1∩𝑄2 | vertices.
𝑘-ary Join. As in projection, newly created vertices will have an

in-degree of 𝑘 , and a fan-in two tree is required. There are |𝑄1 ⊲⊳

. . . ⊲⊳ 𝑄𝑘 | such vertices, so the corrected circuit has |𝑉𝑄1,DN[X] | +

. . . + |𝑉𝑄𝑘 ,DN[X] | + (𝑘 − 1) |𝑄1 ⊲⊳ . . . ⊲⊳ 𝑄𝑘 | vertices.

E.2.1 Bounding circuit depth. We first show that the depth of the

circuit (depth; Definition 4.3) is bounded by the size of the query.

Denote by |𝑄 | the number of relational operators in query𝑄 , which

recall we assume is a constant.

Proposition E.1 (Circuit depth is bounded). Let 𝑄 be a re-

lational query and 𝐷Ω be a deterministic bounding database with 𝑛

tuples. There exists a (lineage) circuit C∗ encoding the lineage of all
tuples 𝑡 ∈ 𝑄 (𝐷Ω) for which depth(C∗) ≤ 𝑂 (𝑘 |𝑄 | log(𝑛)).

Proof. We show that the bound of Proposition E.1 holds for the

circuit constructed by Algorithm 4. First, observe that Algorithm 4

is (recursively) invoked exactly once for every relational operator or

base relation in𝑄 ; It thus suffices to show that a call to Algorithm 4

adds at most 𝑂𝑘 (log(𝑛)) to the depth of a circuit produced by any

recursive invocation. Second, observe that modulo the logarithmic

fan-in of the projection and join cases, the depth of the output

is at most one greater than the depth of any input (or at most 1

in the base case of relation atoms). For the join case, the number

of in-edges can be no greater than the join width, which itself

is bounded by 𝑘 . The depth thus increases by at most a constant

factor of ⌈log(𝑘)⌉ = 𝑂𝑘 (1). For the projection case, observe that

the fan-in is bounded by |𝑄 ′(𝐷Ω) |, which is in turn bounded by

𝑛𝑘 . The depth increase for any projection node is thus at most

⌈log(𝑛𝑘)⌉ = 𝑂 (𝑘 log(𝑛)), as desired. □

Algorithm 4 LC (𝑄,𝐷Ω, 𝐸,𝑉 , ℓ)
Input: 𝑄 : query

Input: 𝐷Ω : a deterministic bounding database

Input: 𝐸,𝑉 , ℓ : accumulators for the edge list, vertex list, and vertex

label list.

Output: C = ⟨𝐸,𝑉 , 𝜙, ℓ⟩: a circuit encoding the lineage of each

tuple in 𝑄 (𝐷Ω)
1: if 𝑄 is 𝑅 then ⊲ Case 1: 𝑄 is a relation atom

2: for 𝑡 ∈ 𝐷Ω .𝑅 do

3: 𝑉 ← 𝑉 ∪ {𝑣𝑡 }; ℓ ← ℓ ∪ {(𝑣𝑡 , 𝑅(𝑡))} ⊲ Allocate a fresh

node 𝑣𝑡
4: 𝜙 (𝑡) ← 𝑣𝑡
5: end for

6: else if 𝑄 is 𝜎𝜃 (𝑄 ′) then ⊲ Case 2: 𝑄 is a Selection

7: ⟨𝑉 , 𝐸, 𝜙 ′, ℓ⟩ ← 𝐿𝐶 (𝑄 ′, 𝐷Ω,𝑉 , 𝐸, ℓ)
8: for 𝑡 ∈ Dom(𝜙 ′) do
9: if 𝜃 (𝑡) then 𝜙 (𝑡) ← 𝜙 ′(𝑡) else 𝜙 (𝑡) ← 𝑣0
10: end for

11: else if 𝑄 is 𝜋 ®𝐴 (𝑄
′) then ⊲ Case 3: 𝑄 is a Projection

12: ⟨𝑉 , 𝐸, 𝜙 ′, ℓ⟩ ← 𝐿𝐶 (𝑄 ′, 𝐷Ω,𝑉 , 𝐸, ℓ)
13: for 𝑡 ∈ 𝜋 ®𝐴 (𝑄

′(𝐷Ω)) do
14: 𝑉 ← 𝑉 ∪ {𝑣𝑡 }; ℓ ← ℓ ∪ {(𝑣𝑡 , +)} ⊲ Allocate a fresh

node 𝑣𝑡
15: 𝜙 (𝑡) ← 𝑣𝑡
16: end for

17: for 𝑡 ∈ 𝑄 ′(𝐷Ω) do
18: 𝐸 ← 𝐸 ∪ {(𝜙 ′(𝑡), 𝜙 (𝜋 ®𝐴𝑡))}
19: end for

20: Correct nodes with in-degrees > 2 by appending an equiv-

alent fan-in two tree instead

21: else if 𝑄 is 𝑄1 ∪𝑄2 then ⊲ Case 4: 𝑄 is a Bag Union

22: ⟨𝑉 , 𝐸, 𝜙1, ℓ⟩ ← 𝐿𝐶 (𝑄1, 𝐷Ω,𝑉 , 𝐸, ℓ)
23: ⟨𝑉 , 𝐸, 𝜙2, ℓ⟩ ← 𝐿𝐶 (𝑄2, 𝐷Ω,𝑉 , 𝐸, ℓ)
24: 𝜙 ← 𝜙1 ∪ 𝜙2
25: for 𝑡 ∈ Dom(𝜙1) ∩ Dom(𝜙2) do
26: 𝑉 ← 𝑉 ∪ {𝑣𝑡 }; ℓ ← ℓ ∪ {(𝑣𝑡 , +)} ⊲ Allocate a fresh

node 𝑣𝑡
27: 𝜙 (𝑡) ← 𝑣𝑡
28: 𝐸 ← 𝐸 ∪ {(𝜙1 (𝑡), 𝑣𝑡), (𝜙2 (𝑡), 𝑣𝑡)}
29: end for

30: else if 𝑄 is 𝑄1 ⊲⊳ . . . ⊲⊳ 𝑄𝑚 then ⊲ Case 5: 𝑄 is a𝑚-ary Join

31: for 𝑖 ∈ [𝑚] do
32: ⟨𝑉 , 𝐸, 𝜙𝑖 , ℓ⟩ ← 𝐿𝐶 (𝑄𝑖 , 𝐷Ω,𝑉 , 𝐸, ℓ)
33: end for

34: for 𝑡 ∈ Dom(𝜙1) ⊲⊳ . . . ⊲⊳ Dom(𝜙𝑚) do
35: 𝑉 ← 𝑉 ∪ {𝑣𝑡 }; ℓ ← ℓ ∪ {(𝑣𝑡 ,×)} ⊲ Allocate a fresh

node 𝑣𝑡
36: 𝜙 (𝑡) ← 𝑣𝑡
37: 𝐸 ← 𝐸 ∪

{
(𝜙𝑖 (𝜋𝑠𝑐ℎ (𝑄𝑖 (𝐷Ω)) (𝑡)), 𝑣𝑡) | 𝑖 ∈ [𝑛]

}
38: end for

39: Correct nodes with in-degrees > 2 by appending an equiv-

alent fan-in two tree instead

40: end if

Computing expected multiplicities for bag-TIDBs with bounded multiplicities Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

E.2.2 Circuit size vs. runtime.

Lemma E.2. Given aN[X]-encoded PDBDN[X] with deterministic

bounding database 𝐷Ω , and an RA+ query 𝑄 , the runtime of 𝑄 over

𝐷Ω has the same or greater complexity as the size of the lineage of

𝑄 (DN[X]). That is, we have
���𝑉𝑄,DN[X] ��� ≤ 𝑘𝑇𝑑𝑒𝑡 (𝑄,𝐷Ω) + 1, where

𝑘 ≥ 1 is the maximal degree of any polynomial in 𝑄 (DN[X]).

Proof. We prove by induction that

���𝑉𝑄,DN[X] \ {𝑣0}��� ≤ 𝑘𝑇𝑑𝑒𝑡 (𝑄,𝐷Ω).
For clarity, we implicitly exclude 𝑣0 in the proof below.

The base case is a base relation: 𝑄 = 𝑅 and is trivially true

since |𝑉𝑅,DN[X] | = |𝐷Ω .𝑅 | = 𝑇𝑑𝑒𝑡 (𝑅, 𝐷Ω) (note that here the degree
𝑘 = 1). For the inductive step, we assume that we have circuits

for subqueries 𝑄1, . . . , 𝑄𝑚 such that |𝑉𝑄𝑖 ,DN[X] | ≤ 𝑘𝑖𝑇𝑑𝑒𝑡 (𝑄𝑖 , 𝐷Ω)
where 𝑘𝑖 is the degree of 𝑄𝑖 .

Selection. Assume that𝑄 = 𝜎𝜃 (𝑄1). In the circuit for𝑄 , |𝑉𝑄,DN[X] | =
|𝑉𝑄1,𝐷Ω | vertices, so from the inductive assumption and𝑇𝑑𝑒𝑡 (𝑄,𝐷Ω) =
𝑇𝑑𝑒𝑡 (𝑄1, 𝐷Ω) by definition, we have |𝑉𝑄,DN[X] | ≤ 𝑘𝑇𝑑𝑒𝑡 (𝑄,𝐷Ω).
Projection. Assume that𝑄 = 𝜋A (𝑄1). The circuit for𝑄 has at most

|𝑉𝑄1,DN[X] | + |𝑄1 | vertices.

|𝑉𝑄,DN[X] | ≤ |𝑉𝑄1,DN[X] | + |𝑄1 |

(From the inductive assumption)

≤ 𝑘𝑇𝑑𝑒𝑡 (𝑄1, 𝐷Ω) + |𝑄1 |

(By definition of 𝑇𝑑𝑒𝑡 (𝑄, 𝐷Ω))

≤ 𝑘𝑇𝑑𝑒𝑡 (𝑄,𝐷Ω) .

Union. Assume that𝑄 = 𝑄1∪𝑄2. The circuit for𝑄 has |𝑉𝑄1,DN[X] |+
|𝑉𝑄2,DN[X] | + |𝑄1 ∩𝑄2 | vertices.

|𝑉𝑄,DN[X] | ≤ |𝑉𝑄1,DN[X] | + |𝑉𝑄2,DN[X] | + |𝑄1 | + |𝑄2 |

(From the inductive assumption)

≤ 𝑘 (𝑇𝑑𝑒𝑡 (𝑄1, 𝐷Ω) +𝑇𝑑𝑒𝑡 (𝑄2, 𝐷Ω)) + (|𝑄1 | + |𝑄2 |)

(By definition of 𝑇𝑑𝑒𝑡 (𝑄, 𝐷Ω))

≤ 𝑘 (𝑇𝑑𝑒𝑡 (𝑄,𝐷Ω)) .

𝑚-ary Join. Assume that 𝑄 = 𝑄1 ⊲⊳ . . . ⊲⊳ 𝑄𝑚 . Note that 𝑘 =∑𝑚
𝑖=1 𝑘𝑖 ≥ 𝑚. The circuit for𝑄 has |𝑉𝑄1,DN[X] | + . . . + |𝑉𝑄𝑘 ,DN[X] | +
(𝑚 − 1) |𝑄1 ⊲⊳ . . . ⊲⊳ 𝑄𝑘 | vertices.

|𝑉𝑄,DN[X] | = |𝑉𝑄1,DN[X] | + . . . + |𝑉𝑄𝑘 ,DN[X] | + (𝑚 − 1) |𝑄1 ⊲⊳ . . . ⊲⊳ 𝑄𝑘 |

From the inductive assumption and noting ∀𝑖 : 𝑘𝑖 ≤ 𝑘 and𝑚 ≤ 𝑘

≤ 𝑘𝑇𝑑𝑒𝑡 (𝑄1, 𝐷Ω) + . . . + 𝑘𝑇𝑑𝑒𝑡 (𝑄𝑘 , 𝐷Ω) +
(𝑚 − 1) |𝑄1 ⊲⊳ . . . ⊲⊳ 𝑄𝑚 |
≤ 𝑘 (𝑇𝑑𝑒𝑡 (𝑄1, 𝐷Ω) + . . . +𝑇𝑑𝑒𝑡 (𝑄𝑚, 𝐷Ω) +
|𝑄1 ⊲⊳ . . . ⊲⊳ 𝑄𝑚 |)

(By definition of 𝑇𝑑𝑒𝑡 (𝑄, 𝐷Ω) and assumption on 𝑇𝑗𝑜𝑖𝑛 (·))

≤ 𝑘𝑇𝑑𝑒𝑡 (𝑄, 𝐷Ω) .

The property holds for all recursive queries, and the proof holds.

□

E.2.3 Runtime of LC. We next need to show that we can construct

the circuit in time linear in the deterministic runtime.

Lemma E.3. Given a query 𝑄 over a deterministic bounding data-

base𝐷Ω and the C∗ output byAlgorithm 4, the runtime𝑇𝐿𝐶 (𝑄, 𝐷Ω, C
∗) ≤

𝑂 (𝑇𝑑𝑒𝑡 (𝑄, 𝐷Ω)).

Proof. By analysis of Algorithm 4, invoked as C∗ ← 𝐿𝐶 (𝑄,𝐷Ω, {𝑣0}, ∅, {(𝑣0, 0)}).
We assume that the vertex list 𝑉 , edge list 𝐸, and vertex label

list ℓ are mutable accumulators with 𝑂 (1) ammortized append.

We assume that the tuple to sink mapping 𝜙 is a linked hashmap,

with 𝑂 (1) insertions and retrievals, and 𝑂 (𝑛) iteration over the

domain of keys. We assume that the n-ary join Dom(𝜙1) ⊲⊳ . . . ⊲⊳
Dom(𝜙𝑛) can be computed in time 𝑇𝑗𝑜𝑖𝑛 (Dom(𝜙1), . . . ,Dom(𝜙𝑛))
(Definition 2.13) and that an intersection Dom(𝜙1) ∩ Dom(𝜙2) can
be computed in time 𝑂 (|Dom(𝜙1) | + |Dom(𝜙2) |) (e.g., with a hash

table).

Before proving our runtime bound, we first observe that𝑇𝑑𝑒𝑡 (𝑄,𝐷) ≥
Ω(|𝑄 (𝐷) |). This is true by construction for the relation, projection,

and union cases, by Definition 2.13 for joins, and by the observation

that |𝜎 (𝑅) | ≤ |𝑅 |.
We showthat 𝑇𝑑𝑒𝑡 (𝑄, 𝐷Ω) is an upper-bound for the runtime

of Algorithm 4 by recursion. The base case of a relation atom re-

quires only an 𝑂 (|𝐷Ω .𝑅 |) iteration over the source tuples. For the

remaining cases, we make the recursive assumption that for every

subquery 𝑄 ′, it holds that 𝑂 (𝑇𝑑𝑒𝑡 (𝑄 ′, 𝐷Ω)) bounds the runtime of

Algorithm 4.

Selection. Selection requires a recursive call to Algorithm 4, which

by the recursive assumption is bounded by 𝑂 (𝑇𝑑𝑒𝑡 (𝑄 ′, 𝐷Ω)). Al-
gorithm 4 requires a loop over every element of 𝑄 ′(𝐷Ω). By the

observation above that 𝑇𝑑𝑒𝑡 (𝑄,𝐷) ≥ Ω(|𝑄 (𝐷) |), this iteration is

also bounded by 𝑂 (𝑇𝑑𝑒𝑡 (𝑄 ′, 𝐷Ω)).
Projection. Projection requires a recursive call to Algorithm 4,

which by the recursive assumption is bounded by𝑂 (𝑇𝑑𝑒𝑡 (𝑄 ′, 𝐷Ω)),
which in turn is a term in 𝑇𝑑𝑒𝑡

(
𝜋 ®𝐴𝑄

′, 𝐷Ω

)
. What remains is an

iteration over 𝜋 ®𝐴 (𝑄 (𝐷Ω)) (lines 13–16), an iteration over 𝑄 ′(𝐷Ω)
(lines 17–19), and the construction of a fan-in tree (line 20). The

first iteration is 𝑂 (|𝑄 (𝐷Ω) |) ≤ 𝑂 (𝑇𝑑𝑒𝑡 (𝑄,𝐷Ω)). The second iter-

ation and the construction of the bounded fan-in tree are both

𝑂 (|𝑄 ′(𝐷Ω) |) ≤ 𝑂 (𝑇𝑑𝑒𝑡 (𝑄 ′, 𝐷Ω)) ≤ 𝑂 (𝑇𝑑𝑒𝑡 (𝑄, 𝐷Ω)), by the the

observation above that 𝑇𝑑𝑒𝑡 (𝑄,𝐷) ≥ Ω(|𝑄 (𝐷) |).
Bag Union. As above, the recursive calls explicitly correspond to

terms in the expansion of𝑇𝑑𝑒𝑡 (𝑄1 ∪𝑄2, 𝐷Ω). Initializing 𝜙 (line 24)

can be accomplished in 𝑂 (Dom(𝜙1) + Dom(𝜙2)) = 𝑂 (|𝑄1 (𝐷Ω) | +
|𝑄2 (𝐷Ω) |) ≤ 𝑂 (𝑇𝑑𝑒𝑡 (𝑄1, 𝐷Ω) +𝑇𝑑𝑒𝑡 (𝑄2, 𝐷Ω)). The remainder re-

quires computing𝑄1∪𝑄2 (line 25) and iterating over it (lines 25–29),

which is 𝑂 (|𝑄1 | + |𝑄2 |) as noted above — this directly corresponds

to terms in 𝑇𝑑𝑒𝑡 (𝑄1 ∪𝑄2, 𝐷Ω).
𝑚-ary Join. As in the prior cases, recursive calls explicitly corre-

spond to terms in our target runtime. The remaining logic involves

(i) computing Dom(𝜙1) ⊲⊳ . . . ⊲⊳ Dom(𝜙𝑚), (ii) iterating over the

results, and (iii) creating a fan-in tree. Respectively, these are:

(i) 𝑇𝑗𝑜𝑖𝑛 (Dom(𝜙1), . . . ,Dom(𝜙𝑚))
(ii)𝑂 (|𝑄1 (𝐷Ω) ⊲⊳ . . . ⊲⊳ 𝑄𝑚 (𝐷Ω) |) ≤ 𝑂 (𝑇𝑗𝑜𝑖𝑛 (Dom(𝜙1), . . . ,Dom(𝜙𝑚)))
(Definition 2.13)

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Huber, Kennedy, Rudra, et al.

(iii) 𝑂 (𝑚 |𝑄1 (𝐷Ω) ⊲⊳ . . . ⊲⊳ 𝑄𝑚 (𝐷Ω) |) (as (ii), noting that𝑚 ≤ 𝑘 =

𝑂 (1)) □

F HIGHER MOMENTS

We make a simple observation to conclude the presentation of our

results. So far we have only focused on the expectation of Φ. In
addition, we could e.g. prove bounds of the probability of a tuple’s

multiplicity being at least 1. Progress can be made on this as follows:

For any positive integer𝑚 we can compute the𝑚-th moment of

the multiplicities, allowing us to e.g. use the Chebyschev inequality

or other high moment based probability bounds on the events we

might be interested in. We leave further investigations for future

work.

G THE KARP-LUBY ESTIMATOR

Computing the marginal probability of a tuple in the output of a set-

probabilistic database query has been studied extensively. To the

best of our knowledge, the current state of the art approximation

algorithm for this problem is the Karp-Luby estimator [32], which

first appeared in MayBMS/Sprout [40], and more recently as part

of an online “anytime” approximation algorithm [16, 21].

The estimator works by observing that for any ℓ random binary

(but not necessarily independent) events W1, . . . ,Wℓ , the proba-

bility of at least one event occurring (i.e., 𝑃𝑟 (W1 ∨ . . . ∨Wℓ)) is
bounded from above by the sum of the independent event proba-

bilities (i.e., 𝑃𝑟 (W1 ∨ . . . ∨Wℓ) ≤ 𝑃𝑟 (W1) + . . . + 𝑃𝑟 (Wℓ)). Start-
ing from this (‘easily’ computable and large) value, the estimator

proceeds to correct the estimate by estimating how much of an

over-estimate it is. Specifically, if P is the joint distribution over

W, the estimator computes an approximation of:

O = E
W∼P

[
|{ 𝑖 | W𝑖 = 1, 𝑖 ∈ [ℓ] }|

]
.

The accuracy of this estimate is improved by conditioning P on a

𝑊𝑖 chosen uniformly at random (which ensures that the sampled

count will be at least 1) and correcting the resulting estimate by

𝑃𝑟 (𝑊𝑖). With an estimate of O, it can easily be verified that the

probability of the disjunction can be computed as:

𝑃𝑟 (W1 ∨ . . . ∨Wℓ) = 𝑃𝑟 (W1) + . . . + 𝑃𝑟 (Wℓ) − O
The Karp-Luby estimator is employed on the SMB representa-

tion
19

of C (to solve the set-PDB version of Problem 1.6), where

each𝑊𝑖 represents the event that one monomial is true. By simple

inspection, if there are ℓ monomials, this estimator has runtime

Ω(ℓ). Further, a minimum of

⌈
3·ℓ ·log(2

𝛿
)

𝜖2

⌉
invocations of the estima-

tor are required to achieve 1 ± 𝜖 approximation with probability

at least 1 − 𝛿 [40], entailing a runtime at least quadratic in ℓ . As

an arbitrary lineage circuit C may encode Ω
(
|C|𝑘

)
monomials, the

worst case runtime is at least Ω
(
|C|2𝑘

)
(where 𝑘 is the ‘degree’ of

lineage polynomial encoded by C). By contrast note that by the dis-

cussion after Lemma 4.9 we can solve Problem 1.6 in time 𝑂
(
|C|2

)
for all BIDB circuits independent of the degree 𝑘 .

19
Note that since we are in the set semantics, in the lineage polynomial/formula,

addition is logical OR and multiplication is logical AND.

H PARAMETERIZED COMPLEXITY

In Sec. 3, we utilized common conjectures from fine-grained com-

plexity theory. The notion of #W[1] − ℎ𝑎𝑟𝑑 is a standard notion

in parameterized complexity, which by now is a standard complex-

ity tool in providing data complexity bounds on query process-

ing results [24]. E.g. the fact that 𝑘-matching is #W[1] − ℎ𝑎𝑟𝑑
implies that we cannot have an 𝑛Ω (1) runtime. However, these re-

sults do not carefully track the exponent in the hardness result. E.g.

#W[1] − ℎ𝑎𝑟𝑑 for the general 𝑘-matching problem does not imply

anything specific for the 3-matching problem. Similar questions

have led to intense research into the new sub-field of fine-grained

complexity (see [50]), where we care about the exponent in our

hardness assumptions as well– e.g. Conjecture 3.3 is based on the

popular Triangle detection hypothesis in this area (cf. [36]).

	Abstract
	1 Introduction
	1.1 Polynomial Equivalence
	1.2 Our Techniques

	2 Background and Notation
	2.1 Polynomial Definition and Terminology
	2.2 Binary-BIDB
	2.3 Formalizing prob:intro-stmt
	2.4 Relationship to Deterministic Query Runtimes

	3 Hardness of Exact Computation
	3.1 Preliminaries
	3.2 Multiple Distinct p Values
	3.3 Single p value

	4 1 Approximation Algorithm
	4.1 Preliminaries and some more notation
	4.2 Our main result

	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	7 Acknowledgements
	References
	A Generalizing Beyond Set Inputs
	A.1 TIDBs
	A.2 BIDBs

	B Missing details from Section 2
	B.1 K-relations and N[X]-encoded PDB s
	B.2 TIDBs and BIDBs in the N[X]-encoded PDB model
	B.3 Proof of prop:expection-of-polynom
	B.4 Proposition B.4
	B.5 Proof for Lemma 1.4
	B.6 Proof For Corollary 2.7

	C Missing details from Section 3
	C.1 lem:pdb-for-def-qk
	C.2 Proof of lem:tdet-om
	C.3 lem:qEk-multi-p
	C.4 Proof of Lemma C.2
	C.5 Proof of Theorem 3.6
	C.6 Subgraph Notation and O(1) Closed Formulas
	C.7 Proofs of eq:1e-eq:3p-3tri
	C.8 Tools to prove th:single-p-hard
	C.9 Proofs for lem:3m-G2, lem:tri, and lem:lin-sys
	C.10 Proof of th:single-p
	C.11 Proof of th:single-p-hard

	D Missing Details from Section 4
	D.1 Proof of Theorem D.5
	D.2 Proof of Theorem D.8
	D.3 Proof of cor:approx-algo-const-p
	D.4 Proof of lem:ctidb-gamma
	D.5 Proof of lem:val-ub
	D.6 OnePass Remarks
	D.7 OnePass Example
	D.8 Proof of OnePass (lem:one-pass)
	D.9 SampleMonomial Remarks
	D.10 Proof of SampleMonomial (lem:sample)
	D.11 Experimental Results

	E Circuits
	E.1 Representing Polynomials with Circuits
	E.2 Modeling Circuit Construction

	F Higher Moments
	G The Karp-Luby Estimator
	H Parameterized Complexity

