paper-BagRelationalPDBsAreHard/related-work-extra.tex

11 lines
2.1 KiB
TeX

%!TEX root=./main.tex
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Compressed Representations of Polynomials and Boolean Formulas}\label{sec:compr-repr-polyn}
There is a large body of work on compact using representations of Boolean formulas (e.g, various types of circuits including OBDDs~\cite{jha-12-pdwm}) and polynomials (e.g.,factorizations~\cite{factorized-db}) some of which have been utilized for probabilistic query processing, e.g.,~\cite{jha-12-pdwm}. Compact representations of Boolean formulas for which probabilities can be computed in linear time include OBDDs, SDDs, d-DNNF, and FBDD. In terms of circuits over semiring expression,~\cite{DM14c} studies circuits for absorptive semirings while~\cite{S18a} studies circuits that include negation (expressed as the monus operation of a semiring). Algebraic Decision Diagrams~\cite{bahar-93-al} (ADDs) generalize BDDs to variables with more than two values. Chen et al.~\cite{chen-10-cswssr} introduced the generalized disjunctive normal form.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Parameterized Complexity}\label{sec:param-compl}
In~\Cref{sec:hard}, we utilized common conjectures from fine-grained complexity theory. The notion of $\sharpwonehard$ is a standard notion in {\em parameterized complexity}, which by now is a standard complexity tool in providing data complexity bounds on query processing results~\cite{param-comp}. E.g. the fact that $k$-matching is $\sharpwonehard$ implies that we cannot have an $n^{\Omega(1)}$ runtime. However, these results do not carefully track the exponent in the hardness result. E.g. $\sharpwonehard$ for the general $k$-matching problem does not imply anything specific for the $3$-matching problem. Similar questions has led to intense research into the new sub-field of {\em fine-grained complexity} (see~\cite{virgi-survey}), where we care about the exponent in our hardness assumptions as well-- e.g.~\Cref{conj:graph} is based on the popular {\em Triangle detection hypothesis} in this area (cf.~\cite{triang-hard}).