paper-BagRelationalPDBsAreHard/app_samp-monom-analysis.tex

169 lines
18 KiB
TeX

%root: main.tex
\subsection{\sampmon Remarks}\label{subsec:sampmon-remarks}
\input{app_sample-monomial-pseudo-code}
We briefly describe the top-down traversal of \sampmon. For a parent $+$ gate, the input to be visited is sampled from the weighted distribution precomputed by \onepass.
When a parent $\times$ node is visited, both inputs are visited.
The algorithm computes two properties: the set of all variable leaf nodes visited, and the product of the signs of visited coefficient leaf nodes.
%
We will assume the TreeSet data structure to maintain sets with logarithmic time insertion and linear time traversal of its elements.
While we would like to take advantage of the space efficiency gained in using a circuit \circuit instead an expression tree \etree, we do not know that such a method exists when computing a sample of the input polynomial representation.
The efficiency gains of circuits over trees is found in the capability of circuits to only require space for each \emph{distinct} term in the compressed representation. This saves space in such polynomials containing non-distinct terms multiplied or added to each other, e.g., $x^4$. However, to avoid biased sampling, it is imperative to sample from both inputs of a multiplication gate, independently, which is indeed the approach of \sampmon.
\subsection{Proof of \Cref{lem:sample}}\label{sec:proof-sample-monom}
\begin{proof}
%\paragraph*{\sampmon returns a valid monomial}
We first need to show that $\sampmon$ indeed returns a monomial $\monom$,\footnote{Technically it returns $\var(\monom)$ but for less cumbersome notation we will refer to $\var(\monom)$ simply by $\monom$ in this proof.} such that $(\monom, \coef)$ is in $\expansion{\circuit}$, which we do by induction on the depth of $\circuit$.
For the base case, let the depth $d$ of $\circuit$ be $0$. We have that the root node is either a constant $\coef$ for which by line~\ref{alg:sample-num-return} we return $\{~\}$, or we have that $\circuit.\type = \var$ and $\circuit.\val = x$, and by line~\ref{alg:sample-var-return} we return $\{x\}$. Both cases sample a monomial%satisfy \Cref{def:monomial}
, and the base case is proven.
For the inductive hypothesis, assume that for $d \leq k$ for some $k \geq 0$, that it is indeed the case that $\sampmon$ returns a monomial.
For the inductive step, let us take a circuit $\circuit$ with $d = k + 1$. Note that each input has depth $d \leq k$, and by inductive hypothesis both of them return a valid monomial. Then the root can be either a $\circplus$ or $\circmult$ node. For the case of a $\circplus$ root node, line~\ref{alg:sample-plus-bsamp} of $\sampmon$ will choose one of the inputs of the root. By inductive hypothesis it is the case that a monomial in \expansion{\circuit} is being returned from either input. Then it follows that for the case of $+$ root node a valid monomial is returned by $\sampmon$. When the root is a $\circmult$ node, line~\ref{alg:sample-times-union} %and~\ref{alg:sample-times-product} multiply
computes the set union of the monomials returned by the two inputs of the root, and it is trivial to see
%by definition~\ref{def:monomial}
%the product of two monomials is also a monomial, and
by \Cref{def:expand-circuit} that \monom is a valid monomial in some $(\monom, \coef) \in \expansion{\circuit}$.
We will next prove by induction on the depth $d$ of $\circuit$ that the $(\monom,\coef) \in \expansion{\circuit}$ is the \monom returned by $\sampmon$ with a probability %`that is in accordance with the monomial sampled,
$\frac{|\coef|}{\abs{\circuit}\polyinput{1}{1}}$.
For the base case $d = 0$, by definition~\ref{def:circuit} we know that the root has to be either a coefficient or a variable. For either case, the probability of the value returned is $1$ since there is only one value to sample from. When the root is a variable $x$ the algorithm correctly returns $(\{x\}, 1 )$. When the root is a coefficient, \sampmon ~correctly returns $(\{~\}, sign(\coef_i))$.
For the inductive hypothesis, assume that for $d \leq k$ and $k \geq 0$ $\sampmon$ indeed samples $\monom$ in $(\monom, \coef)$ in $\expansion{\circuit}$ with probability $\frac{|\coef|}{\abs{\circuit}\polyinput{1}{1}}$.%bove is true.%lemma~\ref{lem:sample} is true.
We prove now for $d = k + 1$ the inductive step holds. It is the case that the root of $\circuit$ has up to two inputs $\circuit_\linput$ and $\circuit_\rinput$. Since $\circuit_\linput$ and $\circuit_\rinput$ are both depth $d \leq k$, by inductive hypothesis, $\sampmon$ will sample both monomials $\monom_\lchild$ in $(\monom_\lchild, \coef_\lchild)$ of $\expansion{\circuit_\linput}$ and $\monom_\rchild$ in $(\monom_\rchild, \coef_\rchild)$ of $\expansion{\circuit_\rinput}$, from $\circuit_\linput$ and $\circuit_\rinput$ with probability $\frac{|\coef_\lchild|}{\abs{\circuit_\linput}\polyinput{1}{1}}$ and $\frac{|\coef_\rchild|}{\abs{\circuit_\rinput}\polyinput{1}{1}}$.
The root has to be either a $\circplus$ or $\circmult$ node.
Consider the case when the root is $\circmult$. Note that we are sampling a term from $\expansion{\circuit}$. Consider $(\monom, \coef)$ in $\expansion{\circuit}$, where $\monom$ is the sampled monomial. Notice also that it is the case that $\monom = \monom_\lchild \circmult \monom_\rchild$, where $\monom_\lchild$ is coming from $\circuit_\linput$ and $\monom_\rchild$ from $\circuit_\rinput$. The probability that \sampmon$(\circuit_{\lchild})$ returns $\monom_\lchild$ is $\frac{|\coef_{\monom_\lchild}|}{|\circuit_\linput|(1,\ldots, 1)}$ and $\frac{|\coef_{\monom_\rchild}|}{\abs{\circuit_\rinput}\polyinput{1}{1}}$ for $\monom_\rchild$. Since both $\monom_\lchild$ and $\monom_\rchild$ are sampled with independent randomness, the final probability for sample $\monom$ is then $\frac{|\coef_{\monom_\lchild}| \cdot |\coef_{\monom_\rchild}|}{|\circuit_\linput|(1,\ldots, 1) \cdot |\circuit_\rinput|(1,\ldots, 1)}$. For $(\monom, \coef)$ in \expansion{\circuit}, it is indeed the case that $|\coef| = |\coef_{\monom_\lchild}| \cdot |\coef_{\monom_\rchild}|$ and that $\abs{\circuit}(1,\ldots, 1) = |\circuit_\linput|(1,\ldots, 1) \cdot |\circuit_\rinput|(1,\ldots, 1)$, and therefore $\monom$ is sampled with correct probability $\frac{|\coef|}{\abs{\circuit}(1,\ldots, 1)}$.
For the case when $\circuit.\val = \circplus$, \sampmon ~will sample monomial $\monom$ from one of its inputs. By inductive hypothesis we know that any $\monom_\lchild$ in $\expansion{\circuit_\linput}$ and any $\monom_\rchild$ in $\expansion{\circuit_\rinput}$ will both be sampled with correct probability $\frac{|\coef_{\monom_\lchild}|}{\circuit_{\lchild}(1,\ldots, 1)}$ and $\frac{|\coef_{\monom_\rchild}|}{|\circuit_\rinput|(1,\ldots, 1)}$, where either $\monom_\lchild$ or $\monom_\rchild$ will equal $\monom$, depending on whether $\circuit_\linput$ or $\circuit_\rinput$ is sampled. Assume that $\monom$ is sampled from $\circuit_\linput$, and note that a symmetric argument holds for the case when $\monom$ is sampled from $\circuit_\rinput$. Notice also that the probability of choosing $\circuit_\linput$ from $\circuit$ is $\frac{\abs{\circuit_\linput}\polyinput{1}{1}}{\abs{\circuit_\linput}\polyinput{1}{1} + \abs{\circuit_\rinput}\polyinput{1}{1}}$ as computed by $\onepass$. Then, since $\sampmon$ goes top-down, and each sampling choice is independent (which follows from the randomness in the root of $\circuit$ being independent from the randomness used in its subtrees), the probability for $\monom$ to be sampled from $\circuit$ is equal to the product of the probability that $\circuit_\linput$ is sampled from $\circuit$ and $\monom$ is sampled in $\circuit_\linput$, and
\begin{align*}
&\probOf(\sampmon(\circuit) = \monom) = \\
&\probOf(\sampmon(\circuit_\linput) = \monom) \cdot \probOf(SampledChild(\circuit) = \circuit_\linput)\\
&= \frac{|\coef_\monom|}{|\circuit_\linput|(1,\ldots, 1)} \cdot \frac{\abs{\circuit_\linput}(1,\ldots, 1)}{|\circuit_\linput|(1,\ldots, 1) + |\circuit_\rinput|(1,\ldots, 1)}\\
&= \frac{|\coef_\monom|}{\abs{\circuit}(1,\ldots, 1)},
\end{align*}
and we obtain the desired result.
\paragraph*{Run-time Analysis}
It is easy to check that except for lines~\ref{alg:sample-times-union} and~\ref{alg:sample-plus-bsamp}, all lines take $O(1)$ time. For \Cref{alg:sample-times-union}, consider an execution of \Cref{alg:sample-times-union}. We note that we will be adding a given set of variables to some set at most once: since the sum of the sizes of the sets at a given level is at most $\degree(\circuit)$, each gate visited takes $O(\log{\degree(\circuit)})$. For \Cref{alg:sample-plus-bsamp}, note that we pick $\circuit_\linput$ with probability $\frac a{a+b}$ where $a=\circuit.\vari{Lweight}$ and $b=\circuit.\vari{Rweight}$. We can implement this step by picking a random number $r\in[a+b]$ and then checking if $r\le a$. It is easy to check that $a+b\le \abs{\circuit}(1,\dots,1)$. This means we need to add and compare $\log{\abs{\circuit}(1,\ldots, 1)}$-bit numbers, which can certainly be done in time $\multc{\log\left(\abs{\circuit(1\ldots, 1)}\right)}{\log{\size(\circuit)}}$ (note that this is an over-estimate).
% we have $> O(1)$ time when $\abs{\circuit}(1,\ldots, 1) > \size(\circuit)$. when this is the case that for each sample, we have $\frac{\log{\abs{\circuit}(1,\ldots, 1)}}{\log{\size(\circuit)}}$ operations, since we need to read in and then compare numbers of of $\log{{\abs{\circuit}(1,\ldots, 1)}}$ bits.
Denote \cost(\circuit) (\Cref{eq:cost-sampmon}) to be an upper bound of the number of nodes visited by \sampmon. Then the runtime is $O\left(\cost(\circuit)\cdot \log{\degree(\circuit)}\cdot \multc{\log\left(\abs{\circuit(1\ldots, 1)}\right)}{\log{\size(\circuit)}}\right)$.
We now bound the number of recursive calls in $\sampmon$ by $O\left((\degree(\circuit) + 1)\right.$$\left.\cdot\right.$ $\left.\depth(\circuit)\right)$, which by the above will prove the claimed runtime.
Let \cost$(\cdot)$ be a function that models an upper bound on the number of gates that can be visited in the run of \sampmon. We define \cost$(\cdot)$ recursively as follows.
\begin{equation}
\cost(\circuit) =
\begin{cases}
1 + \cost(\circuit_\linput) + \cost(\circuit_\rinput) & \textbf{if } \text{\circuit.\type = }\circmult\\
1 + \max\left(\cost(\circuit_\linput), \cost(\circuit_\rinput)\right) & \textbf{if } \text{\circuit.\type = \circplus}\\
1 & \textbf{otherwise}
\end{cases}\label{eq:cost-sampmon}
\end{equation}
First note that the number of gates visited in \sampmon is $\leq\cost(\circuit)$. To show that \Cref{eq:cost-sampmon} upper bounds the number of nodes visited by \sampmon, note that when \sampmon visits a gate such that \circuit.\type $ =\circmult$, line~\ref{alg:sample-times-for-loop} visits each input of \circuit, as defined in (\ref{eq:cost-sampmon}). For the case when \circuit.\type $= \circplus$, line~\ref{alg:sample-plus-bsamp} visits exactly one of the input gates, which may or may not be the subcircuit with the maximum number of gates traversed, which makes \cost$(\cdot)$ an upperbound. Finally, it is trivial to see that when \circuit.\type $\in \{\var, \tnum\}$, i.e., a source gate, that only one gate is visited.
We prove the following inequality holds.
\begin{equation}
2\left(\degree(\circuit) + 1\right) \cdot \depth(\circuit) + 1 \geq \cost(\circuit)\label{eq:strict-upper-bound}
\end{equation}
Note that \Cref{eq:strict-upper-bound} implies the claimed runtime. We prove \Cref{eq:strict-upper-bound} for the number of gates traversed in \sampmon using induction over $\depth(\circuit)$. Recall how degree is defined in \Cref{def:degree}.
For the base case $\degree(\circuit) = \depth(\circuit) = 0$, $\cost(\circuit) = 1$, and it is trivial to see that the inequality $2\degree(\circuit) \cdot \depth(\circuit) + 1 \geq \cost(\circuit)$ holds.
For the inductive hypothesis, we assume the bound holds for any circuit where $\ell \geq \depth(\circuit) \geq 0$.
Now consider the case when \sampmon has an arbitrary circuit \circuit input with $\depth(\circuit) = \ell + 1$. By definition \circuit.\type $\in \{\circplus, \circmult\}$. Note that since $\depth(\circuit) \geq 1$, \circuit must have input(s). Further we know that by the inductive hypothesis the inputs $\circuit_i$ for $i \in \{\linput, \rinput\}$ of the sink gate \circuit uphold the bound
\begin{equation}
2\left(\degree(\circuit_i) + 1\right)\cdot \depth(\circuit_i) + 1 \geq \cost(\circuit_i).\label{eq:ih-bound-cost}
\end{equation}
It is also true that $\depth(\circuit_\linput) \leq \depth(\circuit) - 1$ and $\depth(\circuit_\rinput) \leq \depth(\circuit) - 1$.
If \circuit.\type $= \circplus$, then $\degree(\circuit) = \max\left(\degree(\circuit_\linput), \degree(\circuit_\rinput)\right)$. Otherwise \circuit.\type = $\circmult$ and $\degree(\circuit) = \degree(\circuit_\linput) + \degree(\circuit_\rinput) + 1$. In either case it is true that $\depth(\circuit) = \max(\depth(\circuit_\linput), \depth(\circuit_\rinput)) + 1$.
If \circuit.\type $= \circmult$, then,
substituting values, the following should hold,
\begin{align}
&2\left(\degree(\circuit_\linput) + \degree(\circuit_\rinput) + 2\right) \cdot \left(\max(\depth(\circuit_\linput), \depth(\circuit_\rinput)) + 1\right) + 1 \nonumber\\%\label{eq:times-lhs}\\
&\qquad\geq 2\left(\degree(\circuit_\linput) + 1\right) \cdot \depth(\circuit_\linput) + 2\left(\degree(\circuit_\rinput) + 1\right)\cdot \depth(\circuit_\rinput) + 3\label{eq:times-middle} \\
&\qquad\geq 1 + \cost(\circuit_\linput) + \cost(\circuit_\rinput) = \cost(\circuit) \label{eq:times-rhs}.
\end{align}
To prove (\ref{eq:times-middle}), first, the LHS expands to, %\Cref{eq:times-lhs},
\begin{equation}
%(\ref{eq:times-lhs})
2\degree(\circuit_\linput)\cdot\depth_{\max} + 2\degree(\circuit_\rinput)\cdot\depth_{\max} + 4\depth_{\max} + 2\degree(\circuit_\linput) + 2\degree(\circuit_\rinput) + 4 + 1\label{eq:times-lhs-expanded}
\end{equation}
where $\depth_{\max}$ is used to denote the maximum depth of the two input subcircuits. The RHS expands to
\begin{equation}
2\degree(\circuit_\linput)\cdot\depth(\circuit_\linput) + 2\depth(\circuit_\linput) + 2\degree(\circuit_\rinput)\cdot\depth(\circuit_\rinput) + 2\depth(\circuit_\rinput) + 3\label{eq:times-middle-expanded}
\end{equation}
Putting \Cref{eq:times-lhs-expanded} and \Cref{eq:times-middle-expanded} together we get
\begin{align}
&2\degree(\circuit_\linput)\cdot\depth_{\max} + 2\degree(\circuit_\rinput)\cdot\depth_{\max} + 4\depth_{\max} + 2\degree(\circuit_\linput) + 2\degree(\circuit_\rinput) + 5\nonumber\\
&\qquad\geq 2\degree(\circuit_\linput)\cdot\depth(\circuit_\linput) + 2\degree(\circuit_\rinput)\cdot\depth(\circuit_\rinput) + 2\depth(\circuit_\linput) + 2\depth(\circuit_\rinput) + 3\label{eq:times-lhs-middle}
\end{align}
Since the following is always true,
\begin{align*}
&2\degree(\circuit_\linput)\cdot\depth_{\max} + 2\degree(\circuit_\rinput)\cdot\depth_{\max} + 4\depth_{\max} + 5\\
&\qquad \geq 2\degree(\circuit_\linput)\cdot\depth(\circuit_\linput) + 2\degree(\circuit_\rinput)\cdot\depth(\circuit_\rinput) + 2\depth(\circuit_\linput) + 2\depth(\circuit_\rinput) + 3,
\end{align*}
then it is the case that \Cref{eq:times-lhs-middle} is \emph{always} true.
%Let us now simplify the inequality (\ref{eq:times-middle}).
%\begin{align}
%&2\degree(\circuit_\linput)\cdot\depth_{\max} + 2\degree(\circuit_\rinput)\cdot\depth_{\max} + 2\degree(\circuit_\linput) + 2\degree(\circuit_\rinput) + 2\depth_{\max} + 3 \nonumber\\
%&\qquad \geq 2\degree(\circuit_\linput) \cdot \depth(\circuit_\linput) + 2 \degree(\circuit_\rinput) \cdot \depth(\circuit_\rinput) + 3\label{eq:times-lhs-middle-step1}
%%&\implies 2\degree(\circuit_\linput) + 2\degree(\circuit_\rinput) + 1 \geq 3
%\end{align}
%Note that it is always the case that
%\begin{equation*}
%2\degree(\circuit_\linput)\cdot\depth_{\max} + 2\degree(\circuit_\rinput)\cdot\depth_{\max} + 3 \geq 2\degree(\circuit_\linput) \cdot \depth(\circuit_\linput) + 2 \degree(\circuit_\rinput) \cdot \depth(\circuit_\rinput) + 3
%\end{equation*}
%and \Cref{eq:times-lhs-middle-step1} follows.
Now to justify (\ref{eq:times-rhs}) which holds for the following reasons. First, the RHS %\Cref{eq:times-rhs}
is the result of \Cref{eq:cost-sampmon} when $\circuit.\type = \circmult$. The LHS %\Cref{eq:times-middle}
is then produced by substituting the upperbound of (\ref{eq:ih-bound-cost}) for each $\cost(\circuit_i)$, trivially establishing the upper bound of (\ref{eq:times-rhs}). This proves \Cref{eq:strict-upper-bound} for the $\circmult$ case.
For the case when \circuit.\type $= \circplus$, substituting values yields
\begin{align}
&2\left(\max(\degree(\circuit_\linput), \degree(\circuit_\rinput)) + 1\right) \cdot \left(\max(\depth(\circuit_\linput), \depth(\circuit_\rinput)) + 1\right) +1\nonumber\\%\label{eq:plus-lhs-inequality}\\
&\qquad \geq \max\left(2\left(\degree(\circuit_\linput) + 1\right) \cdot \depth(\circuit_\linput) + 1, 2\left(\degree(\circuit_\rinput) + 1\right) \cdot \depth(\circuit_\rinput) +1\right) + 1\label{eq:plus-middle}\\
&\qquad \geq 1 + \max(\cost(\circuit_\linput), \cost(\circuit_\rinput)) = \cost(\circuit)\label{eq:plus-rhs}
\end{align}
To prove (\ref{eq:plus-middle}), the LHS expands to %(\ref{eq:plus-lhs-inequality}) as
\begin{equation}
2\degree_{\max}\depth_{\max} + 2\degree_{\max} + 2\depth_{\max} + 2 + 1.\label{eq:plus-lhs-expanded}
\end{equation}
Since $\degree_{\max} \cdot \depth_{\max} \geq \degree(\circuit_i)\cdot \depth(\circuit_i),$ the following upper bound holds for the expanded RHS of (\ref{eq:plus-middle}):
\begin{equation}
2\degree_{\max}\depth_{\max} + 2\depth_{\max} + 2 %\geq \max\left(2\degree(\circuit_\linput) \cdot \depth(\circuit_\linput) + 1, 2\degree(\circuit_\rinput) \cdot \depth(\circuit_\rinput) +1\right) + 1.
\label{eq:plus-middle-expanded}
\end{equation}
Putting it together we obtain the following for (\ref{eq:plus-middle}):
\begin{align}
&2\degree_{\max}\depth_{\max} + 2\degree_{\max} + 2\depth_{\max} + 3\nonumber\\
&\qquad \geq 2\degree_{\max}\depth_{\max} + 2\depth_{\max} + 2, \label{eq:plus-upper-bound-final}
\end{align}
where it can be readily seen that the inequality stand and (\ref{eq:plus-upper-bound-final}) follows. This proves (\ref{eq:plus-middle}).
Similar to the case of $\circuit.\type = \circmult$, (\ref{eq:plus-rhs}) follows by equations $(\ref{eq:cost-sampmon})$ and $(\ref{eq:ih-bound-cost})$.
This proves (\ref{eq:strict-upper-bound}) as desired.
\qed
\end{proof}
% and thus the claimed $O(k\log{k}\cdot \frac{\log{\abs{\circuit}(1,\ldots, 1)}}{\size(\circuit)}\cdot\depth(\circuit))$ runtime for $k = \degree(\circuit)$ follows.