paper-BagRelationalPDBsAreHard/intro-new.tex
2021-04-07 22:49:21 -04:00

237 lines
21 KiB
TeX

%root: main.tex
%!TEX root=./main.tex
\section{Introduction}
\label{sec:intro}
A \emph{probabilistic database} $\pdb = (\idb, \pd)$ is set of deterministic databases $\idb = \{ \db_1, \ldots, \db_n\}$ called possible worlds, paired with a probability distribution $\pd$ over these worlds.
A well-studied problem in probabilistic databases is, given a query $\query$ and probabilistic database $\pdb$, computing the \emph{marginal probability} of a tuple $\tup$, (i.e., its probability of appearing in the result of query $\query$ over $\pdb$).
This problem is \sharpphard for set semantics, even for \emph{tuple-independent probabilistic databases}~\cite{DBLP:series/synthesis/2011Suciu} (TIDBs), which are a subclass of probabilistic databases where tuples are independent events. The dichotomy of Dalvi and Suciu~\cite{10.1145/1265530.1265571} separates the hard cases from cases that are in \ptime for unions of conjunctive queries (UCQs).
In this work we consider bag semantics, where each tuple is associated with a multiplicity $\db_i(\tup)$ in each possible world $\db_i$ and study the analogous problem of computing the expectation of the multiplicity of a query result tuple $\tup$ (denoted $\query(\db)(t)$):
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{equation}\label{eq:intro-bag-expectation}
\expct_{\overline{\mathbf{D}} \sim \probDist}[\query(\overline{\mathbf{D}})(t)] = \sum_{\db \in \idb} \query(\db)(t) \cdot \pd(\db) \hspace{2cm}\text{\textbf{(Expected Result Multiplicity)}}
\end{equation}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{figure}[t]
\begin{subfigure}[b]{0.49\linewidth}
\centering
{\small
\begin{tabular}{ c | c c c}
$OnTime$ & City$_\ell$ & $\Phi$ & \textbf{p}\\
\hline
& Buffalo & $L_a$ & 0.9 \\
& Chicago & $L_b$ & 0.5\\
& Bremen & $L_c$ & 0.5\\
& Zurich & $L_d$ & 1.0\\
\end{tabular}
}
\caption{Relation $OnTime$}
\label{subfig:ex-shipping-simp-loc}
\end{subfigure}%
\begin{subfigure}[b]{0.49\linewidth}
\centering
{\small
\begin{tabular}{ c | c c c c}
$Route$ & $\text{City}_1$ & $\text{City}_2$ & $\Phi$ & \textbf{p} \\
\hline
& Buffalo & Chicago & $R_a$ & 1.0 \\
& Chicago & Zurich & $R_b$ & 1.0 \\
%& $\cdots$ & $\cdots$ & $\cdots$ & $\cdots$ \\
& Chicago & Bremen & $R_c$ & 1.0 \\
\end{tabular}
}
\caption{Relation $Route$}
\label{subfig:ex-shipping-simp-route}
\end{subfigure}%
% \begin{subfigure}[b]{0.17\linewidth}
% \centering
% \caption{Circuit for $(Chicago)$}
% \label{subfig:ex-proj-push-circ-q3}
% \end{subfigure}
\begin{subfigure}[b]{0.66\linewidth}
\centering
{\small
\begin{tabular}{ c | c c c}
$\query_1$ & City & $\Phi$ & $\expct_{\idb \sim \probDist}[\query(\db)(t)]$ \\ \hline
& Buffalo & $L_a \cdot R_a$ & $0.9$ \\
& Chicago & $L_b \cdot R_b + L_b \cdot R_c$ & $0.5 \cdot 1.0 + 0.5 \cdot 1.0 = 1.0$ \\
%& $\cdots$ & $\cdots$ & $\cdots$ \\
\end{tabular}
}
\caption{$Q_1$'s Result}
\label{subfig:ex-shipping-simp-queries}
\end{subfigure}%
\begin{subfigure}[b]{0.33\linewidth}
\centering
\resizebox{!}{16mm} {
\begin{tikzpicture}[thick]
\node[tree_node] (a2) at (0, 0){$R_b$};
\node[tree_node] (b2) at (1, 0){$L_b$};
\node[tree_node] (c2) at (2, 0){$R_c$};
%level 1
\node[tree_node] (a1) at (0.5, 0.8){$\boldsymbol{\circmult}$};
\node[tree_node] (b1) at (1.5, 0.8){$\boldsymbol{\circmult}$};
%level 0
\node[tree_node] (a0) at (1.0, 1.6){$\boldsymbol{\circplus}$};
%edges
\draw[->] (a2) -- (a1);
\draw[->] (b2) -- (a1);
\draw[->] (b2) -- (b1);
\draw[->] (c2) -- (b1);
\draw[->] (a1) -- (a0);
\draw[->] (b1) -- (a0);
\end{tikzpicture}
}
\resizebox{!}{16mm} {
\begin{tikzpicture}[thick]
\node[tree_node] (a1) at (1, 0){$R_b$};
\node[tree_node] (b1) at (2, 0){$R_c$};
%level 1
\node[tree_node] (a2) at (0.75, 0.8){$L_b$};
\node[tree_node] (b2) at (1.5, 0.8){$\boldsymbol{\circplus}$};
%level 0
\node[tree_node] (a3) at (1.1, 1.6){$\boldsymbol{\circmult}$};
%edges
\draw[->] (a1) -- (b2);
\draw[->] (b1) -- (b2);
\draw[->] (a2) -- (a3);
\draw[->] (b2) -- (a3);
\end{tikzpicture}
}
\caption{Two circuits for $Q_1(Chicago)$}
\label{subfig:ex-proj-push-circ-q4}
\end{subfigure}%
\vspace*{-3mm}
\caption{\ti instance and query results for \Cref{ex:intro-tbls}.}%{$\ti$ relations for $\poly$}
\label{fig:ex-shipping-simp}
\trimfigurespacing
\end{figure}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{Example}\label{ex:intro-tbls}
Consider the bag-\ti relations shown in \Cref{fig:ex-shipping-simp}. We define a \ti under bag semantics analog to the set case: each tuple is associated with a probability of having a multiplicity of one (and otherwise has multiplicity zero) and tuples are independent random events. Ignore column $\Phi$ for now. In this example, we have shipping routes that are certain (probability 1.0) and information about whether shipping at locations is on time (with a certain probability). Query $\query_1$ shown below returns starting points of shipping routes where processing of shipping is on time.
$$Q_1 := \pi_{\text{City}_1}(Loc \bowtie_{\text{City}_\ell = \text{City}_1} Route)$$
\Cref{subfig:ex-shipping-simp-queries} shows the possible results of this query.
For example, there is a 90\% probability there is a single route starting in Buffalo that is on time, and the expected multiplicity of this result tuple is $0.9$.
There are two shipping routes starting in Chicago.
Since the Chicago location has a 50\% probability to be on schedule (we assume that delays are linked), the expected multiplicity of this result tuple is $0.5 + 0.5 = 1.0$.
\end{Example}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
A well-known result in probabilistic databases is that under set semantics the marginal probability of a query result $\tup$ can be computed based on the tuple's lineage. The lineage of a tuple is a Boolean formula (an element of the semiring $\text{PosBool}[\vct{X}]$ of positive Boolean expressions over variables $\vct{X}=(X_1,\dots,X_n)$) over random variables that encode the existence of input tuples. Each possible world $\db$ corresponds to an assignment $\{0,1\}^\numvar$ of the variables in $\vct{X}$ to either true (the tuple exists in this world) or false (the tuple does not exist in this world). Importantly, the following holds: if the lineage formula for $t$ evaluates to true over the assignment for a world $\db$, then $\tup \in \query(\db)$.
Thus, the marginal probability of tuple $\tup$ is equal to the probability that its lineage evaluates to true (with respect to the trivial analog of probability distribution $\probDist$ defined over $\vct{X}$).
For bag semantics, the lineage of a tuple is a polynomial over variables $\vct{X}=(X_1,\dots,X_n)$ with % \in \mathbb{N}^\numvar$ with
coefficients in the set of natural numbers $\mathbb{N}$ (an element of semiring $\mathbb{N}[\vct{X}]$).
Analogously to the set case, evaluating the lineage for $t$ over an assignment corresponding to a possible world (mapping variables to natural numbers representing input tuple multiplicities in this world) yields the multiplicity of the result tuple $\tup$ in this world. Thus, instead of using \cref{eq:intro-bag-expectation} to compute the expected result multiplicity of a tuple $\tup$, we can equivalently compute the expectation of the lineage polynomial of $\tup$ which we will denote as $\linsett{\query}{\pdb}{\tup}$ or $\Phi$ if the parameters are clear from the context. In this work, we study the complexity of computing the expectation of such polynomials encoded as arithmetic circuits.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{Example}\label{ex:intro-lineage}
Associating a lineage variable with every input tuple as shown in \cref{fig:ex-shipping-simp}, we can compute the lineage of every result tuple as shown in \cref{subfig:ex-shipping-simp-route}. For example, the tuple Chicago is in the result, because $L_b$ joins with both $R_b$ and $R_c$. Its lineage is $\Phi = L_b \cdot R_b + L_b \cdot R_c$. The expected multiplicity of this result tuple is calculated by summing the multiplicity of the result tuple, weighted by its probability, over all possible worlds.
In this example, $\Phi$ is a sum of products (SOP), and so observe that we can use linearity of expectation to solve the problem in linear time (in the size of $\linsett{\query}{\pdb}{\tup}$)
The expectation of the sum is the sum of the expectations of each monomial.
The expectation of each monomial is then computed by multiplying the probabilities of the variables (tuples) occurring in the monomial.
The expected multiplicity of Chicago is $1.0$.
\end{Example}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
The expected multiplicity of a query result can be computed in linear time (in the size of the result's lineage) if the lineage is in SOP form.
However, this need not be true for compressed representations of polynomials such as factorized polynomials and arithmetic circuits.
For instance, \Cref{subfig:ex-proj-push-circ-q4} shows two circuits encoding the lineage of the result tuple $(Chicago)$ from \Cref{ex:intro-lineage}.
The left circuit encodes the lineage as a SOP while the right circuit uses distributivity to push the addition gate below the multiplication, resulting in a smaller circuit.
Given that there is a large body of work that can output such compressed representations~\cite{DBLP:conf/pods/KhamisNR16,factorized-db}, %\BG{cite FDBs and FAQ},
an interesting question is whether computing expectations is still in linear time for such compressed representations.
If the answer is in the affirmative, and if lineage formulas can also be computed in linear time (in the lineage size), then bag-relational probabilistic databases can theoretically match the performance of deterministic databases.
Unfortunately, we prove that this is not the case: computing the expected count of a query result tuple is super-linear under standard complexity assumptions (\sharpwonehard) in the size of a lineage circuit.
Concretely, we make the following contributions:
(i) We show that computing the expected result multiplicity problem for conjunctive queries for bag-$\ti$ is \sharpwonehard in the size of a lineage circuit by reduction from counting the number of $k$-matchings over an arbitrary graph;
(ii) We present an $(1\pm\epsilon)$-\emph{multiplicative} approximation algorithm for bag-$\ti$s and show that its complexity is linear in the size of the compressed lineage encoding (e.g. when the circuit is a tree or is generated by recent worst-case optimal join algorithms or its FAQ followups~\cite{DBLP:conf/pods/KhamisNR16}; %;\BG{Fix not linear in all cases, restate after 4 is done}
(iii) We generalize the approximation algorithm to bag-$\bi$s, a more general model of probabilistic data;
(iv) We further prove that for \raPlus queries\AR{Some places we use \raPlus and UCQ in others: we should use one consistently (assuming they are both the same)}, we can approximate the expected output tuple multiplicities with only $O(\log{Z})$ overhead (where $Z$ is the number of output tuples) over the runtime of a broad class of query processing algorithms. We also observe that our results trivially extend to higher moments of the tuple multiplicity (instead of just the expectation).
%\mypar{Implications of our Results} As mentioned above
\mypar{Overview of our Techniques} All of our results rely on working with a {\em reduced} form of the lineage polynomial $\Phi$. In fact, it turns out that for TIDB (and BIDB) case, computing the expected multiplicity is {\em exactly} the same as evaluating this reduced polynomial over the probabilities that define the TIDB/BIDB. Next, we motivate this reduced polynomial by continuing~\Cref{ex:intro-tbls}.
%Moving forward, we focus exclusively on bags.
Consider the query $Q():-$$OnTime(\text{City}), Route(\text{City}_1, \text{City}_2),$ $OnTime(\text{City}')$ over the bag relations of \cref{fig:ex-shipping-simp}. It can be verified that $\Phi$ for $Q$ is $L_aL_b + L_bL_d + L_bL_c$. Now consider the product query $\poly^2():- Q \times Q$.
%The factorized representation of $\poly^2$ is (for simplicity we ignore the random variables of $Route$ since each variable has probability of $1$):
%\begin{equation*}
%\poly^2 = \left(L_aL_b + L_bL_d + L_bL_c\right) \cdot \left(L_aL_b + L_bL_d + L_bL_c\right)
%\end{equation*}
%This equivalent SOP representation is
Note that the lineage polynomial for $Q^2$ is given by $\Phi^2$:
\begin{equation*}
\left(L_aL_b + L_bL_d + L_bL_c\right)^2=L_a^2L_b^2 + L_b^2L_d^2 + L_b^2L_c^2 + 2L_aL_b^2L_d + 2L_aL_b^2L_c + 2L_b^2L_dL_c.
\end{equation*}
The expectation $\expct\pbox{\Phi^2}$ then is:
\begin{footnotesize}
\begin{equation*}
\expct\pbox{L_a}\expct\pbox{L_b^2} + \expct\pbox{L_b^2}\expct\pbox{L_d^2} + \expct\pbox{L_b^2}\expct\pbox{L_c^2} + 2\expct\pbox{L_a}\expct\pbox{L_b^2}\expct\pbox{L_d} + 2\expct\pbox{L_a}\expct\pbox{L_b^2}\expct\pbox{L_c} + 2\expct\pbox{L_b^2}\expct\pbox{L_d}\expct\pbox{L_c}
\end{equation*}
\end{footnotesize}
Note that if the domain of a random variable $W$ is $\{0, 1\}$, then for any $k > 0$, $\expct\pbox{W^k} = \expct\pbox{W}$, which means that $\expct\pbox{\Phi^2}$ simplifies to:
\begin{footnotesize}
\begin{equation*}
\expct\pbox{L_a^2}\expct\pbox{L_b} + \expct\pbox{L_b}\expct\pbox{L_d} + \expct\pbox{L_b}\expct\pbox{L_c} + 2\expct\pbox{L_a}\expct\pbox{L_b}\expct\pbox{L_d} + 2\expct\pbox{L_a}\expct\pbox{L_b}\expct\pbox{L_c} + 2\expct\pbox{L_b}\expct\pbox{L_d}\expct\pbox{L_c}
\end{equation*}
\end{footnotesize}
This property leads us to consider a structure related to $\poly$.
\begin{Definition}\label{def:reduced-poly}
For any polynomial $\poly(\vct{X})$, define the \emph{reduced polynomial} $\rpoly(\vct{X})$ to be the polynomial obtained by setting all exponents $e > 1$ in $\poly(\vct{X})$ to $1$.
\end{Definition}
With $\Phi^2$ as an example, we have:
\begin{align*}
\widetilde{\Phi^2}(L_a, L_b, L_c, L_d)
=&\; L_aL_b + L_bL_d + L_bW_c + 2L_aL_bL_d + 2L_aL_bL_c + 2L_bL_cL_d
\end{align*}
It can be verified that the reduced polynomial is a closed form of the expected count (i.e., $\expct\pbox{\Phi^2} = \rpoly(\probOf\pbox{L_a=1}, \probOf\pbox{L_b=1}, \probOf\pbox{L_c=1}), \probOf\pbox{L_d=1})$). In fact, we show in~\Cref{lem:exp-poly-rpoly} that this equivalence holds for {\em all} UCQs over TIDB/BIDB.
%The reduced form of a lineage polynomial can be obtained but requires a linear scan over the clauses of an SOP encoding of the polynomial. Note that for a compressed representation, this scheme would require an exponential number of computations in the size of the compressed representation. In \Cref{sec:hard}, we use $\rpoly$ to prove our hardness results .
To prove our hardness result we show that for the same $Q$ considered here, the query $Q^k$ is able to encode variaous hard graph counting problems-- we do so by analyzing how the coefficients in the (univariate) polynomial $\widetilde{\Phi}\left(p,\dots,p\right)$ relate to counts of various sub-graphs on $k$ edges in an arbitrary graph $G$ (which is used to define the relations in $Q$). For the upper bound is easy to check that if all the probabilties are constant then ${\Phi}\left(\probOf\pbox{X_1=1},\dots, \probOf\pbox{X_n=1}\right)$ (i.e. evaluating the original lineage polynomial over the probability values) is a constant factor approximation. To get an $(1\pm \epsilon)$-multiplicative approximation we sample monomials from $\Phi$ and `adjust' their contribution to $\widetilde{\Phi}\left(\probOf\pbox{X_1=1},\dots, \probOf\pbox{X_n=1}\right)$.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mypar{Paper Organization} We present relevant background and notation in \Cref{sec:background}. We then prove our main hardness results in \Cref{sec:hard} and present our approximation algorithm in \Cref{sec:algo}. We present some (easy) generalizations of our results in \Cref{sec:gen} and also discuss extensions from computing expectations of polynomials to the expected result multiplicity problem. Finally, we discuss related work in \Cref{sec:related-work} and conclude in \Cref{sec:concl-future-work}.
% Our hardness results follow by considering a suitable generalization of the lineage polynomial in \cref{eq:edge-query}. First it is easy to generalize the polynomial to $\poly_G(X_1,\dots,X_n)$ that represents the edge set of a graph $G$ in $n$ vertices. Then $\poly_G^k(X_1,\dots,X_n)$ (i.e., $\inparen{\poly_G(X_1,\dots,X_n)}^k$) encodes as its monomials all subgraphs of $G$ with at most $k$ edges in it. This implies that the corresponding reduced polynomial $\rpoly_G^k(\prob,\dots,\prob)$ (see \Cref{def:reduced-poly}) can be written as $\sum_{i=0}^{2k} c_i\cdot \prob^i$ and we observe that $c_{2k}$ is proportional to the number of $k$-matchings (which computing is \sharpwonehard) in $G$. Thus, if we have access to $\rpoly_G^k(\prob_i,\dots,\prob_i)$ for distinct values of $\prob_i$ for $0\le i\le 2k$, then we can set up a system of linear equations and compute $c_{2k}$ (and hence the number of $k$-matchings in $G$). This result, however, does not rule out the possibility that computing $\rpoly_G^k(\prob,\dots, \prob)$ for a {\em single specific} value of $\prob$ might be easy: indeed it is easy for $\prob=0$ or $\prob=1$. However, we are able to show that for any other value of $\prob$, computing $\rpoly_G^k(\prob,\dots, \prob)$ exactly will most probably require super-linear time. This reduction needs more work (and we cannot yet extend our results to $k>3$). Further, we have to rely on more recent conjectures in {\em fine-grained} complexity on e.g. the complexity of counting the number of triangles in $G$ and not more standard parameterized hardness like \sharpwonehard.
% The starting point of our approximation algorithm was the simple observation that for any lineage polynomial $\poly(X_1,\dots,X_n)$, we have $\rpoly(1,\dots,1)=Q(1,\dots,1)$ and if all the coefficients of $\poly$ are constants, then $\poly(\prob,\dots, \prob)$ (which can be easily computed in linear time) is a $\prob^k$ approximation to the value $\rpoly(\prob,\dots, \prob)$ that we are after. If $\prob$ (i.e., the \emph{input} tuple probabilities) and $k=\degree(\poly)$ are constants, then this gives a constant factor approximation. We then use sampling to get a better approximation factor of $(1\pm \eps)$: we sample monomials from $\poly(X_1,\dots,X_\numvar)$ and do an appropriate weighted sum of their coefficients. Standard tail bounds then allow us to get our desired approximation scheme. To get a linear runtime, it turns out that we need the following properties from our compressed representation of $\poly$: (i) be able to compute $\poly(1,\ldots, 1)$ in linear time and (ii) be able to sample monomials from $\poly(X_1,\dots,X_n)$ quickly as well.
%For the ease of exposition, we start off with expression trees (see~\Cref{fig:circuit-q2-intro} for an example) and show that they satisfy both of these properties. Later we show that it is easy to show that these properties also extend to polynomial circuits as well (we essentially show that in the required time bound, we can simulate access to the `unrolled' expression tree by considering the polynomial circuit).
% and then relating the size of the compressed lineage to the cost of answering a deterministic query.
% This suggests that perhaps even Bag-PDBs have higher query processing complexity than deterministic databases.
% In this paper, we confirm this intuition, first proving that computing the expected count of a query result tuple is super-linear (\sharpwonehard) in the size of a compressed lineage representation, and then relating the size of the compressed lineage to the cost of answering a deterministic query.
% In view of this hardness result (i.e., step 2 of the workflow is the bottleneck in the bag setting as well), we develop an approximation algorithm for expected counts of SPJU query Bag-PDB output, that is, to our knowledge, the first linear time (in the size of the factorized lineage) $(1-\epsilon)$-\emph{multiplicative} approximation, eliminating step 2 from being the bottleneck of the workflow.
% By extension, this algorithm only has a constant factor slower runtime relative to deterministic query processing.\footnote{
% Monte-carlo sampling~\cite{jampani2008mcdb} is also trivially a constant factor slower, but can only guarantee additive rather than our stronger multiplicative bounds.
% }
% This is an important result, because it implies that computing approximate expectations for bag output PDBs of SPJU queries can indeed be competitive with deterministic query evaluation over bag databases.
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "main"
%%% End: