pdbench/MayBMS-tpch/uncertain-tpch/rnd.c

239 lines
5.2 KiB
C

/*
* $Id: rnd.c,v 1.1.1.1 2007/03/14 15:01:09 olteanu Exp $
*
* Revision History
* ===================
* $Log: rnd.c,v $
* Revision 1.1.1.1 2007/03/14 15:01:09 olteanu
*
*
* Revision 1.1.1.1 2007/03/01 18:11:56 olteanu
*
*
* Revision 1.7 2006/07/31 17:23:09 jms
* fix to parallelism problem
*
* Revision 1.6 2005/10/25 17:26:38 jms
* check in integration between microsoft changes and baseline code
*
* Revision 1.5 2005/10/14 23:16:54 jms
* fix for answer set compliance
*
* Revision 1.4 2005/09/23 22:29:35 jms
* fix to assume 64b support in the 32b RNG calls. Should speed generation, and corrects a problem with FK between Customer and Orders
*
* Revision 1.3 2005/03/04 21:43:23 jms
* correct segfult in random()
*
* Revision 1.2 2005/01/03 20:08:59 jms
* change line terminations
*
* Revision 1.1.1.1 2004/11/24 23:31:47 jms
* re-establish external server
*
* Revision 1.7 2004/04/08 17:34:15 jms
* cleanup SOLARIS/SUN ifdefs; now all use SUN
*
* Revision 1.6 2004/03/26 20:22:56 jms
* correct Solaris header
*
* Revision 1.5 2004/03/02 20:50:50 jms
* MP/RAS porting changes
*
* Revision 1.4 2004/02/18 16:37:33 jms
* add int32_t for solaris
*
* Revision 1.3 2004/02/18 16:26:49 jms
* 32/64 bit changes for overflow handling needed additional changes when ported back to windows
*
* Revision 1.2 2004/02/18 16:17:32 jms
* add 32bit specific changes to UnifInt
*
* Revision 1.1.1.1 2003/08/08 21:50:34 jms
* recreation after CVS crash
*
* Revision 1.3 2003/08/08 21:35:26 jms
* first integration of rng64 for o_custkey and l_partkey
*
* Revision 1.2 2003/08/07 17:58:34 jms
* Convery RNG to 64bit space as preparation for new large scale RNG
*
* Revision 1.1.1.1 2003/04/03 18:54:21 jms
* initial checkin
*
*
*/
/*
* RANDOM.C -- Implements Park & Miller's "Minimum Standard" RNG
*
* (Reference: CACM, Oct 1988, pp 1192-1201)
*
* NextRand: Computes next random integer
* UnifInt: Yields an long uniformly distributed between given bounds
* UnifReal: ields a real uniformly distributed between given bounds
* Exponential: Yields a real exponentially distributed with given mean
*
*/
#include "config.h"
#include <stdio.h>
#include <math.h>
#ifdef LINUX
#include <stdint.h>
#endif
#ifdef IBM
#include <inttypes.h>
#endif
#ifdef SUN
#include <inttypes.h>
#endif
#ifdef ATT
#include <sys/bitypes.h>
#endif
#ifdef WIN32
#define int32_t __int32
#endif
#include "dss.h"
#include "rnd.h"
char *env_config PROTO((char *tag, char *dflt));
void NthElement(DSS_HUGE, DSS_HUGE *);
void
dss_random(DSS_HUGE *tgt, DSS_HUGE lower, DSS_HUGE upper, long stream)
{
*tgt = UnifInt(lower, upper, stream);
Seed[stream].usage += 1;
return;
}
void
row_start(int t) \
{
int i;
for (i=0; i <= MAX_STREAM; i++)
Seed[i].usage = 0 ;
return;
}
void
row_stop(int t) \
{
int i;
/* need to allow for handling the master and detail together */
if (t == ORDER_LINE)
t = ORDER;
if (t == PART_PSUPP)
t = PART;
for (i=0; i <= MAX_STREAM; i++)
if ((Seed[i].table == t) || (Seed[i].table == tdefs[t].child))
{
if (set_seeds && (Seed[i].usage > Seed[i].boundary))
{
fprintf(stderr, "\nSEED CHANGE: seed[%d].usage = %d\n",
i, Seed[i].usage);
Seed[i].boundary = Seed[i].usage;
}
else
{
NthElement((Seed[i].boundary - Seed[i].usage), &Seed[i].value);
#ifdef RNG_TEST
Seed[i].nCalls += Seed[i].boundary - Seed[i].usage;
#endif
}
}
return;
}
void
dump_seeds(int tbl)
{
int i;
for (i=0; i <= MAX_STREAM; i++)
if (Seed[i].table == tbl)
#ifdef RNG_TEST
printf("%d(%ld):\t%ld\n", i, Seed[i].nCalls, Seed[i].value);
#else
printf("%d:\t%ld\n", i, Seed[i].value);
#endif
return;
}
/******************************************************************
NextRand: Computes next random integer
*******************************************************************/
/*
* long NextRand( long nSeed )
*/
DSS_HUGE
NextRand(DSS_HUGE nSeed)
/*
* nSeed is the previous random number; the returned value is the
* next random number. The routine generates all numbers in the
* range 1 .. nM-1.
*/
{
nSeed = (nSeed * 16807) % 2147483647;
return (nSeed);
}
/******************************************************************
UnifInt: Yields an long uniformly distributed between given bounds
*******************************************************************/
/*
* long UnifInt( long nLow, long nHigh, long nStream )
*/
DSS_HUGE
UnifInt(DSS_HUGE nLow, DSS_HUGE nHigh, long nStream)
/*
* Returns an integer uniformly distributed between nLow and nHigh,
* including * the endpoints. nStream is the random number stream.
* Stream 0 is used if nStream is not in the range 0..MAX_STREAM.
*/
{
double dRange;
DSS_HUGE nTemp,
nRange;
int32_t nLow32 = (int32_t)nLow,
nHigh32 = (int32_t)nHigh;
if (nStream < 0 || nStream > MAX_STREAM)
nStream = 0;
if ((nHigh == MAX_LONG) && (nLow == 0))
{
dRange = DOUBLE_CAST (nHigh32 - nLow32 + 1);
nRange = nHigh32 - nLow32 + 1;
}
else
{
dRange = DOUBLE_CAST (nHigh - nLow + 1);
nRange = nHigh - nLow + 1;
}
Seed[nStream].value = NextRand(Seed[nStream].value);
#ifdef RNG_TEST
Seed[nStream].nCalls += 1;
#endif
nTemp = (long) (((double) Seed[nStream].value / dM) * (dRange));
return (nLow + nTemp);
}