Merge pull request #380 from mateiz/py-bayes

Add Naive Bayes to Python MLlib, and some API fixes

- Added a Python wrapper for Naive Bayes
- Updated the Scala Naive Bayes to match the style of our other
  algorithms better and in particular make it easier to call from Java
  (added builder pattern, removed default value in train method)
- Updated Python MLlib functions to not require a SparkContext; we can
  get that from the RDD the user gives
- Added a toString method in LabeledPoint
- Made the Python MLlib tests run as part of run-tests as well (before
  they could only be run individually through each file)
This commit is contained in:
Patrick Wendell 2014-01-13 23:08:26 -08:00
commit fdaabdc673
20 changed files with 297 additions and 58 deletions

View file

@ -5,6 +5,6 @@ markdown: kramdown
# of Spark, Scala, and Mesos.
SPARK_VERSION: 0.9.0-incubating-SNAPSHOT
SPARK_VERSION_SHORT: 0.9.0
SCALA_VERSION: 2.10
SCALA_VERSION: "2.10"
MESOS_VERSION: 0.13.0
SPARK_ISSUE_TRACKER_URL: https://spark-project.atlassian.net

View file

@ -21,6 +21,8 @@ depends on native Fortran routines. You may need to install the
if it is not already present on your nodes. MLlib will throw a linking error if it cannot
detect these libraries automatically.
To use MLlib in Python, you will also need [NumPy](http://www.numpy.org) version 1.7 or newer.
# Binary Classification
Binary classification is a supervised learning problem in which we want to
@ -316,6 +318,13 @@ other signals), you can use the trainImplicit method to get better results.
val model = ALS.trainImplicit(ratings, 1, 20, 0.01)
{% endhighlight %}
# Using MLLib in Java
All of MLlib's methods use Java-friendly types, so you can import and call them there the same
way you do in Scala. The only caveat is that the methods take Scala RDD objects, while the
Spark Java API uses a separate `JavaRDD` class. You can convert a Java RDD to a Scala one by
calling `.rdd()` on your `JavaRDD` object.
# Using MLLib in Python
Following examples can be tested in the PySpark shell.
@ -330,7 +339,7 @@ from numpy import array
# Load and parse the data
data = sc.textFile("mllib/data/sample_svm_data.txt")
parsedData = data.map(lambda line: array([float(x) for x in line.split(' ')]))
model = LogisticRegressionWithSGD.train(sc, parsedData)
model = LogisticRegressionWithSGD.train(parsedData)
# Build the model
labelsAndPreds = parsedData.map(lambda point: (int(point.item(0)),
@ -356,7 +365,7 @@ data = sc.textFile("mllib/data/ridge-data/lpsa.data")
parsedData = data.map(lambda line: array([float(x) for x in line.replace(',', ' ').split(' ')]))
# Build the model
model = LinearRegressionWithSGD.train(sc, parsedData)
model = LinearRegressionWithSGD.train(parsedData)
# Evaluate the model on training data
valuesAndPreds = parsedData.map(lambda point: (point.item(0),
@ -382,7 +391,7 @@ data = sc.textFile("kmeans_data.txt")
parsedData = data.map(lambda line: array([float(x) for x in line.split(' ')]))
# Build the model (cluster the data)
clusters = KMeans.train(sc, parsedData, 2, maxIterations=10,
clusters = KMeans.train(parsedData, 2, maxIterations=10,
runs=30, initialization_mode="random")
# Evaluate clustering by computing Within Set Sum of Squared Errors
@ -411,7 +420,7 @@ data = sc.textFile("mllib/data/als/test.data")
ratings = data.map(lambda line: array([float(x) for x in line.split(',')]))
# Build the recommendation model using Alternating Least Squares
model = ALS.train(sc, ratings, 1, 20)
model = ALS.train(ratings, 1, 20)
# Evaluate the model on training data
testdata = ratings.map(lambda p: (int(p[0]), int(p[1])))
@ -426,5 +435,5 @@ signals), you can use the trainImplicit method to get better results.
{% highlight python %}
# Build the recommendation model using Alternating Least Squares based on implicit ratings
model = ALS.trainImplicit(sc, ratings, 1, 20)
model = ALS.trainImplicit(ratings, 1, 20)
{% endhighlight %}

View file

@ -52,7 +52,7 @@ In addition, PySpark fully supports interactive use---simply run `./bin/pyspark`
# Installing and Configuring PySpark
PySpark requires Python 2.6 or higher.
PySpark requires Python 2.7 or higher.
PySpark applications are executed using a standard CPython interpreter in order to support Python modules that use C extensions.
We have not tested PySpark with Python 3 or with alternative Python interpreters, such as [PyPy](http://pypy.org/) or [Jython](http://www.jython.org/).
@ -149,6 +149,12 @@ sc = SparkContext(conf = conf)
[API documentation](api/pyspark/index.html) for PySpark is available as Epydoc.
Many of the methods also contain [doctests](http://docs.python.org/2/library/doctest.html) that provide additional usage examples.
# Libraries
[MLlib](mllib-guide.html) is also available in PySpark. To use it, you'll need
[NumPy](http://www.numpy.org) version 1.7 or newer. The [MLlib guide](mllib-guide.html) contains
some example applications.
# Where to Go from Here
PySpark also includes several sample programs in the [`python/examples` folder](https://github.com/apache/incubator-spark/tree/master/python/examples).

View file

@ -0,0 +1,6 @@
0, 1 0 0
0, 2 0 0
1, 0 1 0
1, 0 2 0
2, 0 0 1
2, 0 0 2

View file

@ -183,6 +183,23 @@ class PythonMLLibAPI extends Serializable {
dataBytesJRDD, initialWeightsBA)
}
/**
* Java stub for NaiveBayes.train()
*/
def trainNaiveBayes(dataBytesJRDD: JavaRDD[Array[Byte]], lambda: Double)
: java.util.List[java.lang.Object] =
{
val data = dataBytesJRDD.rdd.map(xBytes => {
val x = deserializeDoubleVector(xBytes)
LabeledPoint(x(0), x.slice(1, x.length))
})
val model = NaiveBayes.train(data, lambda)
val ret = new java.util.LinkedList[java.lang.Object]()
ret.add(serializeDoubleVector(model.pi))
ret.add(serializeDoubleMatrix(model.theta))
ret
}
/**
* Java stub for Python mllib KMeans.train()
*/

View file

@ -97,7 +97,7 @@ object LogisticRegressionWithSGD {
* @param numIterations Number of iterations of gradient descent to run.
* @param stepSize Step size to be used for each iteration of gradient descent.
* @param miniBatchFraction Fraction of data to be used per iteration.
* @param initialWeights Initial set of weights to be used. Array should be equal in size to
* @param initialWeights Initial set of weights to be used. Array should be equal in size to
* the number of features in the data.
*/
def train(
@ -183,6 +183,8 @@ object LogisticRegressionWithSGD {
val sc = new SparkContext(args(0), "LogisticRegression")
val data = MLUtils.loadLabeledData(sc, args(1))
val model = LogisticRegressionWithSGD.train(data, args(3).toInt, args(2).toDouble)
println("Weights: " + model.weights.mkString("[", ", ", "]"))
println("Intercept: " + model.intercept)
sc.stop()
}

View file

@ -21,17 +21,18 @@ import scala.collection.mutable
import org.jblas.DoubleMatrix
import org.apache.spark.Logging
import org.apache.spark.{SparkContext, Logging}
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import org.apache.spark.mllib.util.MLUtils
/**
* Model for Naive Bayes Classifiers.
*
* @param pi Log of class priors, whose dimension is C.
* @param theta Log of class conditional probabilities, whose dimension is CXD.
* @param theta Log of class conditional probabilities, whose dimension is CxD.
*/
class NaiveBayesModel(pi: Array[Double], theta: Array[Array[Double]])
class NaiveBayesModel(val pi: Array[Double], val theta: Array[Array[Double]])
extends ClassificationModel with Serializable {
// Create a column vector that can be used for predictions
@ -50,10 +51,21 @@ class NaiveBayesModel(pi: Array[Double], theta: Array[Array[Double]])
/**
* Trains a Naive Bayes model given an RDD of `(label, features)` pairs.
*
* @param lambda The smooth parameter
* This is the Multinomial NB ([[http://tinyurl.com/lsdw6p]]) which can handle all kinds of
* discrete data. For example, by converting documents into TF-IDF vectors, it can be used for
* document classification. By making every vector a 0-1 vector, it can also be used as
* Bernoulli NB ([[http://tinyurl.com/p7c96j6]]).
*/
class NaiveBayes private (val lambda: Double = 1.0)
extends Serializable with Logging {
class NaiveBayes private (var lambda: Double)
extends Serializable with Logging
{
def this() = this(1.0)
/** Set the smoothing parameter. Default: 1.0. */
def setLambda(lambda: Double): NaiveBayes = {
this.lambda = lambda
this
}
/**
* Run the algorithm with the configured parameters on an input RDD of LabeledPoint entries.
@ -106,14 +118,49 @@ object NaiveBayes {
*
* This is the Multinomial NB ([[http://tinyurl.com/lsdw6p]]) which can handle all kinds of
* discrete data. For example, by converting documents into TF-IDF vectors, it can be used for
* document classification. By making every vector a 0-1 vector. it can also be used as
* document classification. By making every vector a 0-1 vector, it can also be used as
* Bernoulli NB ([[http://tinyurl.com/p7c96j6]]).
*
* This version of the method uses a default smoothing parameter of 1.0.
*
* @param input RDD of `(label, array of features)` pairs. Every vector should be a frequency
* vector or a count vector.
*/
def train(input: RDD[LabeledPoint]): NaiveBayesModel = {
new NaiveBayes().run(input)
}
/**
* Trains a Naive Bayes model given an RDD of `(label, features)` pairs.
*
* This is the Multinomial NB ([[http://tinyurl.com/lsdw6p]]) which can handle all kinds of
* discrete data. For example, by converting documents into TF-IDF vectors, it can be used for
* document classification. By making every vector a 0-1 vector, it can also be used as
* Bernoulli NB ([[http://tinyurl.com/p7c96j6]]).
*
* @param input RDD of `(label, array of features)` pairs. Every vector should be a frequency
* vector or a count vector.
* @param lambda The smooth parameter
* @param lambda The smoothing parameter
*/
def train(input: RDD[LabeledPoint], lambda: Double = 1.0): NaiveBayesModel = {
def train(input: RDD[LabeledPoint], lambda: Double): NaiveBayesModel = {
new NaiveBayes(lambda).run(input)
}
def main(args: Array[String]) {
if (args.length != 2 && args.length != 3) {
println("Usage: NaiveBayes <master> <input_dir> [<lambda>]")
System.exit(1)
}
val sc = new SparkContext(args(0), "NaiveBayes")
val data = MLUtils.loadLabeledData(sc, args(1))
val model = if (args.length == 2) {
NaiveBayes.train(data)
} else {
NaiveBayes.train(data, args(2).toDouble)
}
println("Pi: " + model.pi.mkString("[", ", ", "]"))
println("Theta:\n" + model.theta.map(_.mkString("[", ", ", "]")).mkString("[", "\n ", "]"))
sc.stop()
}
}

View file

@ -183,6 +183,8 @@ object SVMWithSGD {
val sc = new SparkContext(args(0), "SVM")
val data = MLUtils.loadLabeledData(sc, args(1))
val model = SVMWithSGD.train(data, args(4).toInt, args(2).toDouble, args(3).toDouble)
println("Weights: " + model.weights.mkString("[", ", ", "]"))
println("Intercept: " + model.intercept)
sc.stop()
}

View file

@ -23,4 +23,8 @@ package org.apache.spark.mllib.regression
* @param label Label for this data point.
* @param features List of features for this data point.
*/
case class LabeledPoint(val label: Double, val features: Array[Double])
case class LabeledPoint(label: Double, features: Array[Double]) {
override def toString: String = {
"LabeledPoint(%s, %s)".format(label, features.mkString("[", ", ", "]"))
}
}

View file

@ -121,7 +121,7 @@ object LassoWithSGD {
* @param stepSize Step size to be used for each iteration of gradient descent.
* @param regParam Regularization parameter.
* @param miniBatchFraction Fraction of data to be used per iteration.
* @param initialWeights Initial set of weights to be used. Array should be equal in size to
* @param initialWeights Initial set of weights to be used. Array should be equal in size to
* the number of features in the data.
*/
def train(
@ -205,6 +205,8 @@ object LassoWithSGD {
val sc = new SparkContext(args(0), "Lasso")
val data = MLUtils.loadLabeledData(sc, args(1))
val model = LassoWithSGD.train(data, args(4).toInt, args(2).toDouble, args(3).toDouble)
println("Weights: " + model.weights.mkString("[", ", ", "]"))
println("Intercept: " + model.intercept)
sc.stop()
}

View file

@ -162,6 +162,8 @@ object LinearRegressionWithSGD {
val sc = new SparkContext(args(0), "LinearRegression")
val data = MLUtils.loadLabeledData(sc, args(1))
val model = LinearRegressionWithSGD.train(data, args(3).toInt, args(2).toDouble)
println("Weights: " + model.weights.mkString("[", ", ", "]"))
println("Intercept: " + model.intercept)
sc.stop()
}

View file

@ -122,7 +122,7 @@ object RidgeRegressionWithSGD {
* @param stepSize Step size to be used for each iteration of gradient descent.
* @param regParam Regularization parameter.
* @param miniBatchFraction Fraction of data to be used per iteration.
* @param initialWeights Initial set of weights to be used. Array should be equal in size to
* @param initialWeights Initial set of weights to be used. Array should be equal in size to
* the number of features in the data.
*/
def train(
@ -208,6 +208,8 @@ object RidgeRegressionWithSGD {
val data = MLUtils.loadLabeledData(sc, args(1))
val model = RidgeRegressionWithSGD.train(data, args(4).toInt, args(2).toDouble,
args(3).toDouble)
println("Weights: " + model.weights.mkString("[", ", ", "]"))
println("Intercept: " + model.intercept)
sc.stop()
}

View file

@ -0,0 +1,72 @@
package org.apache.spark.mllib.classification;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.junit.After;
import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;
import java.io.Serializable;
import java.util.Arrays;
import java.util.List;
public class JavaNaiveBayesSuite implements Serializable {
private transient JavaSparkContext sc;
@Before
public void setUp() {
sc = new JavaSparkContext("local", "JavaNaiveBayesSuite");
}
@After
public void tearDown() {
sc.stop();
sc = null;
System.clearProperty("spark.driver.port");
}
private static final List<LabeledPoint> POINTS = Arrays.asList(
new LabeledPoint(0, new double[] {1.0, 0.0, 0.0}),
new LabeledPoint(0, new double[] {2.0, 0.0, 0.0}),
new LabeledPoint(1, new double[] {0.0, 1.0, 0.0}),
new LabeledPoint(1, new double[] {0.0, 2.0, 0.0}),
new LabeledPoint(2, new double[] {0.0, 0.0, 1.0}),
new LabeledPoint(2, new double[] {0.0, 0.0, 2.0})
);
private int validatePrediction(List<LabeledPoint> points, NaiveBayesModel model) {
int correct = 0;
for (LabeledPoint p: points) {
if (model.predict(p.features()) == p.label()) {
correct += 1;
}
}
return correct;
}
@Test
public void runUsingConstructor() {
JavaRDD<LabeledPoint> testRDD = sc.parallelize(POINTS, 2).cache();
NaiveBayes nb = new NaiveBayes().setLambda(1.0);
NaiveBayesModel model = nb.run(testRDD.rdd());
int numAccurate = validatePrediction(POINTS, model);
Assert.assertEquals(POINTS.size(), numAccurate);
}
@Test
public void runUsingStaticMethods() {
JavaRDD<LabeledPoint> testRDD = sc.parallelize(POINTS, 2).cache();
NaiveBayesModel model1 = NaiveBayes.train(testRDD.rdd());
int numAccurate1 = validatePrediction(POINTS, model1);
Assert.assertEquals(POINTS.size(), numAccurate1);
NaiveBayesModel model2 = NaiveBayes.train(testRDD.rdd(), 0.5);
int numAccurate2 = validatePrediction(POINTS, model2);
Assert.assertEquals(POINTS.size(), numAccurate2);
}
}

View file

@ -16,7 +16,7 @@
#
from numpy import ndarray, copyto, float64, int64, int32, ones, array_equal, array, dot, shape
from pyspark import SparkContext
from pyspark import SparkContext, RDD
from pyspark.serializers import Serializer
import struct

View file

@ -15,6 +15,8 @@
# limitations under the License.
#
import numpy
from numpy import array, dot, shape
from pyspark import SparkContext
from pyspark.mllib._common import \
@ -29,8 +31,8 @@ class LogisticRegressionModel(LinearModel):
"""A linear binary classification model derived from logistic regression.
>>> data = array([0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 1.0, 3.0]).reshape(4,2)
>>> lrm = LogisticRegressionWithSGD.train(sc, sc.parallelize(data))
>>> lrm.predict(array([1.0])) != None
>>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(data))
>>> lrm.predict(array([1.0])) > 0
True
"""
def predict(self, x):
@ -41,20 +43,21 @@ class LogisticRegressionModel(LinearModel):
class LogisticRegressionWithSGD(object):
@classmethod
def train(cls, sc, data, iterations=100, step=1.0,
mini_batch_fraction=1.0, initial_weights=None):
def train(cls, data, iterations=100, step=1.0,
miniBatchFraction=1.0, initialWeights=None):
"""Train a logistic regression model on the given data."""
sc = data.context
return _regression_train_wrapper(sc, lambda d, i:
sc._jvm.PythonMLLibAPI().trainLogisticRegressionModelWithSGD(d._jrdd,
iterations, step, mini_batch_fraction, i),
LogisticRegressionModel, data, initial_weights)
iterations, step, miniBatchFraction, i),
LogisticRegressionModel, data, initialWeights)
class SVMModel(LinearModel):
"""A support vector machine.
>>> data = array([0.0, 0.0, 1.0, 1.0, 1.0, 2.0, 1.0, 3.0]).reshape(4,2)
>>> svm = SVMWithSGD.train(sc, sc.parallelize(data))
>>> svm.predict(array([1.0])) != None
>>> svm = SVMWithSGD.train(sc.parallelize(data))
>>> svm.predict(array([1.0])) > 0
True
"""
def predict(self, x):
@ -64,13 +67,63 @@ class SVMModel(LinearModel):
class SVMWithSGD(object):
@classmethod
def train(cls, sc, data, iterations=100, step=1.0, reg_param=1.0,
mini_batch_fraction=1.0, initial_weights=None):
def train(cls, data, iterations=100, step=1.0, regParam=1.0,
miniBatchFraction=1.0, initialWeights=None):
"""Train a support vector machine on the given data."""
sc = data.context
return _regression_train_wrapper(sc, lambda d, i:
sc._jvm.PythonMLLibAPI().trainSVMModelWithSGD(d._jrdd,
iterations, step, reg_param, mini_batch_fraction, i),
SVMModel, data, initial_weights)
iterations, step, regParam, miniBatchFraction, i),
SVMModel, data, initialWeights)
class NaiveBayesModel(object):
"""
Model for Naive Bayes classifiers.
Contains two parameters:
- pi: vector of logs of class priors (dimension C)
- theta: matrix of logs of class conditional probabilities (CxD)
>>> data = array([0.0, 0.0, 1.0, 0.0, 0.0, 2.0, 1.0, 1.0, 0.0]).reshape(3,3)
>>> model = NaiveBayes.train(sc.parallelize(data))
>>> model.predict(array([0.0, 1.0]))
0
>>> model.predict(array([1.0, 0.0]))
1
"""
def __init__(self, pi, theta):
self.pi = pi
self.theta = theta
def predict(self, x):
"""Return the most likely class for a data vector x"""
return numpy.argmax(self.pi + dot(x, self.theta))
class NaiveBayes(object):
@classmethod
def train(cls, data, lambda_=1.0):
"""
Train a Naive Bayes model given an RDD of (label, features) vectors.
This is the Multinomial NB (U{http://tinyurl.com/lsdw6p}) which can
handle all kinds of discrete data. For example, by converting
documents into TF-IDF vectors, it can be used for document
classification. By making every vector a 0-1 vector, it can also be
used as Bernoulli NB (U{http://tinyurl.com/p7c96j6}).
@param data: RDD of NumPy vectors, one per element, where the first
coordinate is the label and the rest is the feature vector
(e.g. a count vector).
@param lambda_: The smoothing parameter
"""
sc = data.context
dataBytes = _get_unmangled_double_vector_rdd(data)
ans = sc._jvm.PythonMLLibAPI().trainNaiveBayes(dataBytes._jrdd, lambda_)
return NaiveBayesModel(
_deserialize_double_vector(ans[0]),
_deserialize_double_matrix(ans[1]))
def _test():
import doctest

View file

@ -28,12 +28,12 @@ class KMeansModel(object):
"""A clustering model derived from the k-means method.
>>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4,2)
>>> clusters = KMeans.train(sc, sc.parallelize(data), 2, maxIterations=10, runs=30, initialization_mode="random")
>>> clusters = KMeans.train(sc.parallelize(data), 2, maxIterations=10, runs=30, initializationMode="random")
>>> clusters.predict(array([0.0, 0.0])) == clusters.predict(array([1.0, 1.0]))
True
>>> clusters.predict(array([8.0, 9.0])) == clusters.predict(array([9.0, 8.0]))
True
>>> clusters = KMeans.train(sc, sc.parallelize(data), 2)
>>> clusters = KMeans.train(sc.parallelize(data), 2)
"""
def __init__(self, centers_):
self.centers = centers_
@ -52,12 +52,13 @@ class KMeansModel(object):
class KMeans(object):
@classmethod
def train(cls, sc, data, k, maxIterations=100, runs=1,
initialization_mode="k-means||"):
def train(cls, data, k, maxIterations=100, runs=1,
initializationMode="k-means||"):
"""Train a k-means clustering model."""
sc = data.context
dataBytes = _get_unmangled_double_vector_rdd(data)
ans = sc._jvm.PythonMLLibAPI().trainKMeansModel(dataBytes._jrdd,
k, maxIterations, runs, initialization_mode)
k, maxIterations, runs, initializationMode)
if len(ans) != 1:
raise RuntimeError("JVM call result had unexpected length")
elif type(ans[0]) != bytearray:

View file

@ -32,11 +32,11 @@ class MatrixFactorizationModel(object):
>>> r2 = (1, 2, 2.0)
>>> r3 = (2, 1, 2.0)
>>> ratings = sc.parallelize([r1, r2, r3])
>>> model = ALS.trainImplicit(sc, ratings, 1)
>>> model = ALS.trainImplicit(ratings, 1)
>>> model.predict(2,2) is not None
True
>>> testset = sc.parallelize([(1, 2), (1, 1)])
>>> model.predictAll(testset).count == 2
>>> model.predictAll(testset).count() == 2
True
"""
@ -57,14 +57,16 @@ class MatrixFactorizationModel(object):
class ALS(object):
@classmethod
def train(cls, sc, ratings, rank, iterations=5, lambda_=0.01, blocks=-1):
def train(cls, ratings, rank, iterations=5, lambda_=0.01, blocks=-1):
sc = ratings.context
ratingBytes = _get_unmangled_rdd(ratings, _serialize_rating)
mod = sc._jvm.PythonMLLibAPI().trainALSModel(ratingBytes._jrdd,
rank, iterations, lambda_, blocks)
return MatrixFactorizationModel(sc, mod)
@classmethod
def trainImplicit(cls, sc, ratings, rank, iterations=5, lambda_=0.01, blocks=-1, alpha=0.01):
def trainImplicit(cls, ratings, rank, iterations=5, lambda_=0.01, blocks=-1, alpha=0.01):
sc = ratings.context
ratingBytes = _get_unmangled_rdd(ratings, _serialize_rating)
mod = sc._jvm.PythonMLLibAPI().trainImplicitALSModel(ratingBytes._jrdd,
rank, iterations, lambda_, blocks, alpha)

View file

@ -47,54 +47,57 @@ class LinearRegressionModel(LinearRegressionModelBase):
"""A linear regression model derived from a least-squares fit.
>>> data = array([0.0, 0.0, 1.0, 1.0, 3.0, 2.0, 2.0, 3.0]).reshape(4,2)
>>> lrm = LinearRegressionWithSGD.train(sc, sc.parallelize(data), initial_weights=array([1.0]))
>>> lrm = LinearRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
"""
class LinearRegressionWithSGD(object):
@classmethod
def train(cls, sc, data, iterations=100, step=1.0,
mini_batch_fraction=1.0, initial_weights=None):
def train(cls, data, iterations=100, step=1.0,
miniBatchFraction=1.0, initialWeights=None):
"""Train a linear regression model on the given data."""
sc = data.context
return _regression_train_wrapper(sc, lambda d, i:
sc._jvm.PythonMLLibAPI().trainLinearRegressionModelWithSGD(
d._jrdd, iterations, step, mini_batch_fraction, i),
LinearRegressionModel, data, initial_weights)
d._jrdd, iterations, step, miniBatchFraction, i),
LinearRegressionModel, data, initialWeights)
class LassoModel(LinearRegressionModelBase):
"""A linear regression model derived from a least-squares fit with an
l_1 penalty term.
>>> data = array([0.0, 0.0, 1.0, 1.0, 3.0, 2.0, 2.0, 3.0]).reshape(4,2)
>>> lrm = LassoWithSGD.train(sc, sc.parallelize(data), initial_weights=array([1.0]))
>>> lrm = LassoWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
"""
class LassoWithSGD(object):
@classmethod
def train(cls, sc, data, iterations=100, step=1.0, reg_param=1.0,
mini_batch_fraction=1.0, initial_weights=None):
def train(cls, data, iterations=100, step=1.0, regParam=1.0,
miniBatchFraction=1.0, initialWeights=None):
"""Train a Lasso regression model on the given data."""
sc = data.context
return _regression_train_wrapper(sc, lambda d, i:
sc._jvm.PythonMLLibAPI().trainLassoModelWithSGD(d._jrdd,
iterations, step, reg_param, mini_batch_fraction, i),
LassoModel, data, initial_weights)
iterations, step, regParam, miniBatchFraction, i),
LassoModel, data, initialWeights)
class RidgeRegressionModel(LinearRegressionModelBase):
"""A linear regression model derived from a least-squares fit with an
l_2 penalty term.
>>> data = array([0.0, 0.0, 1.0, 1.0, 3.0, 2.0, 2.0, 3.0]).reshape(4,2)
>>> lrm = RidgeRegressionWithSGD.train(sc, sc.parallelize(data), initial_weights=array([1.0]))
>>> lrm = RidgeRegressionWithSGD.train(sc.parallelize(data), initialWeights=array([1.0]))
"""
class RidgeRegressionWithSGD(object):
@classmethod
def train(cls, sc, data, iterations=100, step=1.0, reg_param=1.0,
mini_batch_fraction=1.0, initial_weights=None):
def train(cls, data, iterations=100, step=1.0, regParam=1.0,
miniBatchFraction=1.0, initialWeights=None):
"""Train a ridge regression model on the given data."""
sc = data.context
return _regression_train_wrapper(sc, lambda d, i:
sc._jvm.PythonMLLibAPI().trainRidgeModelWithSGD(d._jrdd,
iterations, step, reg_param, mini_batch_fraction, i),
RidgeRegressionModel, data, initial_weights)
iterations, step, regParam, miniBatchFraction, i),
RidgeRegressionModel, data, initialWeights)
def _test():
import doctest

View file

@ -76,6 +76,10 @@ def main(infile, outfile):
iterator = deserializer.load_stream(infile)
serializer.dump_stream(func(split_index, iterator), outfile)
except Exception as e:
# Write the error to stderr in addition to trying to passi t back to
# Java, in case it happened while serializing a record
print >> sys.stderr, "PySpark worker failed with exception:"
print >> sys.stderr, traceback.format_exc()
write_int(SpecialLengths.PYTHON_EXCEPTION_THROWN, outfile)
write_with_length(traceback.format_exc(), outfile)
sys.exit(-1)

View file

@ -40,6 +40,11 @@ run_test "-m doctest pyspark/broadcast.py"
run_test "-m doctest pyspark/accumulators.py"
run_test "-m doctest pyspark/serializers.py"
run_test "pyspark/tests.py"
#run_test "pyspark/mllib/_common.py"
#run_test "pyspark/mllib/classification.py"
#run_test "pyspark/mllib/clustering.py"
#run_test "pyspark/mllib/recommendation.py"
#run_test "pyspark/mllib/regression.py"
if [[ $FAILED != 0 ]]; then
echo -en "\033[31m" # Red