Commit graph

123 commits

Author SHA1 Message Date
Dhruve Ashar 1ebe7ffe07 [SPARK-21181] Release byteBuffers to suppress netty error messages
## What changes were proposed in this pull request?
We are explicitly calling release on the byteBuf's used to encode the string to Base64 to suppress the memory leak error message reported by netty. This is to make it less confusing for the user.

### Changes proposed in this fix
By explicitly invoking release on the byteBuf's we are decrement the internal reference counts for the wrappedByteBuf's. Now, when the GC kicks in, these would be reclaimed as before, just that netty wouldn't report any memory leak error messages as the internal ref. counts are now 0.

## How was this patch tested?
Ran a few spark-applications and examined the logs. The error message no longer appears.

Original PR was opened against branch-2.1 => https://github.com/apache/spark/pull/18392

Author: Dhruve Ashar <dhruveashar@gmail.com>

Closes #18407 from dhruve/master.
2017-06-23 10:36:29 -07:00
Li Yichao d107b3b910 [SPARK-20640][CORE] Make rpc timeout and retry for shuffle registration configurable.
## What changes were proposed in this pull request?

Currently the shuffle service registration timeout and retry has been hardcoded. This works well for small workloads but under heavy workload when the shuffle service is busy transferring large amount of data we see significant delay in responding to the registration request, as a result we often see the executors fail to register with the shuffle service, eventually failing the job. We need to make these two parameters configurable.

## How was this patch tested?

* Updated `BlockManagerSuite` to test registration timeout and max attempts configuration actually works.

cc sitalkedia

Author: Li Yichao <lyc@zhihu.com>

Closes #18092 from liyichao/SPARK-20640.
2017-06-21 21:54:29 +08:00
Dongjoon Hyun ecc5631351 [MINOR][BUILD] Fix Java linter errors
## What changes were proposed in this pull request?

This PR cleans up a few Java linter errors for Apache Spark 2.2 release.

## How was this patch tested?

```bash
$ dev/lint-java
Using `mvn` from path: /usr/local/bin/mvn
Checkstyle checks passed.
```

We can check the result at Travis CI, [here](https://travis-ci.org/dongjoon-hyun/spark/builds/244297894).

Author: Dongjoon Hyun <dongjoon@apache.org>

Closes #18345 from dongjoon-hyun/fix_lint_java_2.
2017-06-19 20:17:54 +01:00
jinxing 93dd0c518d [SPARK-20994] Remove redundant characters in OpenBlocks to save memory for shuffle service.
## What changes were proposed in this pull request?

In current code, blockIds in `OpenBlocks` are stored in the iterator on shuffle service.
There are some redundant characters in  blockId(`"shuffle_" + shuffleId + "_" + mapId + "_" + reduceId`). This pr proposes to improve the footprint and alleviate the memory pressure on shuffle service.

Author: jinxing <jinxing6042@126.com>

Closes #18231 from jinxing64/SPARK-20994-v2.
2017-06-16 20:09:45 +08:00
Marcelo Vanzin 0cba495120 [SPARK-20641][CORE] Add key-value store abstraction and LevelDB implementation.
This change adds an abstraction and LevelDB implementation for a key-value
store that will be used to store UI and SHS data.

The interface is described in KVStore.java (see javadoc). Specifics
of the LevelDB implementation are discussed in the javadocs of both
LevelDB.java and LevelDBTypeInfo.java.

Included also are a few small benchmarks just to get some idea of
latency. Because they're too slow for regular unit test runs, they're
disabled by default.

Tested with the included unit tests, and also as part of the overall feature
implementation (including running SHS with hundreds of apps).

Author: Marcelo Vanzin <vanzin@cloudera.com>

Closes #17902 from vanzin/shs-ng/M1.
2017-06-06 13:39:10 -05:00
Kazuaki Ishizaki ef9fd920c3 [SPARK-20750][SQL] Built-in SQL Function Support - REPLACE
## What changes were proposed in this pull request?

This PR adds built-in SQL function `(REPLACE(<string_expression>, <search_string> [, <replacement_string>])`

`REPLACE()` return that string that is replaced all occurrences with given string.

## How was this patch tested?

added new test suites

Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com>

Closes #18047 from kiszk/SPARK-20750.
2017-05-29 11:47:31 -07:00
jinxing 3f94e64aa8 [SPARK-19659] Fetch big blocks to disk when shuffle-read.
## What changes were proposed in this pull request?

Currently the whole block is fetched into memory(off heap by default) when shuffle-read. A block is defined by (shuffleId, mapId, reduceId). Thus it can be large when skew situations. If OOM happens during shuffle read, job will be killed and users will be notified to "Consider boosting spark.yarn.executor.memoryOverhead". Adjusting parameter and allocating more memory can resolve the OOM. However the approach is not perfectly suitable for production environment, especially for data warehouse.
Using Spark SQL as data engine in warehouse, users hope to have a unified parameter(e.g. memory) but less resource wasted(resource is allocated but not used). The hope is strong especially when migrating data engine to Spark from another one(e.g. Hive). Tuning the parameter for thousands of SQLs one by one is very time consuming.
It's not always easy to predict skew situations, when happen, it make sense to fetch remote blocks to disk for shuffle-read, rather than kill the job because of OOM.

In this pr, I propose to fetch big blocks to disk(which is also mentioned in SPARK-3019):

1. Track average size and also the outliers(which are larger than 2*avgSize) in MapStatus;
2. Request memory from `MemoryManager` before fetch blocks and release the memory to `MemoryManager` when `ManagedBuffer` is released.
3. Fetch remote blocks to disk when failing acquiring memory from `MemoryManager`, otherwise fetch to memory.

This is an improvement for memory control when shuffle blocks and help to avoid OOM in scenarios like below:
1. Single huge block;
2. Sizes of many blocks are underestimated in `MapStatus` and the actual footprint of blocks is much larger than the estimated.

## How was this patch tested?
Added unit test in `MapStatusSuite` and `ShuffleBlockFetcherIteratorSuite`.

Author: jinxing <jinxing6042@126.com>

Closes #16989 from jinxing64/SPARK-19659.
2017-05-25 16:11:30 +08:00
Mark Grover 3630911004 [SPARK-20756][YARN] yarn-shuffle jar references unshaded guava
and contains scala classes

## What changes were proposed in this pull request?
This change ensures that all references to guava from within the yarn shuffle jar pointed to the shaded guava class already provided in the jar.

Also, it explicitly excludes scala classes from being added to the jar.

## How was this patch tested?
Ran unit tests on the module and they passed.
javap now returns the expected result - reference to the shaded guava under `org/spark_project` (previously this was referring to `com.google...`
```
javap -cp common/network-yarn/target/scala-2.11/spark-2.3.0-SNAPSHOT-yarn-shuffle.jar -c org/apache/spark/network/yarn/YarnShuffleService | grep Lists
      57: invokestatic  #138                // Method org/spark_project/guava/collect/Lists.newArrayList:()Ljava/util/ArrayList;
```

Guava is still shaded in the jar:
```
jar -tf common/network-yarn/target/scala-2.11/spark-2.3.0-SNAPSHOT-yarn-shuffle.jar | grep guava | head
META-INF/maven/com.google.guava/
META-INF/maven/com.google.guava/guava/
META-INF/maven/com.google.guava/guava/pom.properties
META-INF/maven/com.google.guava/guava/pom.xml
org/spark_project/guava/
org/spark_project/guava/annotations/
org/spark_project/guava/annotations/Beta.class
org/spark_project/guava/annotations/GwtCompatible.class
org/spark_project/guava/annotations/GwtIncompatible.class
org/spark_project/guava/annotations/VisibleForTesting.class
```
(not sure if the above META-INF/* is a problem or not)

I took this jar, deployed it on a yarn cluster with shuffle service enabled, and made sure the YARN node managers came up. An application with a shuffle was run and it succeeded.

Author: Mark Grover <mark@apache.org>

Closes #17990 from markgrover/spark-20756.
2017-05-22 10:10:41 -07:00
Xianyang Liu fcb88f9211 [MINOR][BUILD] Fix lint-java breaks.
## What changes were proposed in this pull request?

This PR proposes to fix the lint-breaks as below:
```
[ERROR] src/main/java/org/apache/spark/unsafe/Platform.java:[51] (regexp) RegexpSingleline: No trailing whitespace allowed.
[ERROR] src/main/scala/org/apache/spark/sql/streaming/Trigger.java:[45,25] (naming) MethodName: Method name 'ProcessingTime' must match pattern '^[a-z][a-z0-9][a-zA-Z0-9_]*$'.
[ERROR] src/main/scala/org/apache/spark/sql/streaming/Trigger.java:[62,25] (naming) MethodName: Method name 'ProcessingTime' must match pattern '^[a-z][a-z0-9][a-zA-Z0-9_]*$'.
[ERROR] src/main/scala/org/apache/spark/sql/streaming/Trigger.java:[78,25] (naming) MethodName: Method name 'ProcessingTime' must match pattern '^[a-z][a-z0-9][a-zA-Z0-9_]*$'.
[ERROR] src/main/scala/org/apache/spark/sql/streaming/Trigger.java:[92,25] (naming) MethodName: Method name 'ProcessingTime' must match pattern '^[a-z][a-z0-9][a-zA-Z0-9_]*$'.
[ERROR] src/main/scala/org/apache/spark/sql/streaming/Trigger.java:[102,25] (naming) MethodName: Method name 'Once' must match pattern '^[a-z][a-z0-9][a-zA-Z0-9_]*$'.
[ERROR] src/test/java/org/apache/spark/streaming/kinesis/JavaKinesisInputDStreamBuilderSuite.java:[28,8] (imports) UnusedImports: Unused import - org.apache.spark.streaming.api.java.JavaDStream.
```

after:
```
dev/lint-java
Checkstyle checks passed.
```
[Test Result](https://travis-ci.org/ConeyLiu/spark/jobs/229666169)

## How was this patch tested?

Travis CI

Author: Xianyang Liu <xianyang.liu@intel.com>

Closes #17890 from ConeyLiu/codestyle.
2017-05-10 13:56:34 +01:00
Sean Owen 16fab6b0ef [SPARK-20523][BUILD] Clean up build warnings for 2.2.0 release
## What changes were proposed in this pull request?

Fix build warnings primarily related to Breeze 0.13 operator changes, Java style problems

## How was this patch tested?

Existing tests

Author: Sean Owen <sowen@cloudera.com>

Closes #17803 from srowen/SPARK-20523.
2017-05-03 10:18:35 +01:00
jinxing 85c6ce6193 [SPARK-20426] Lazy initialization of FileSegmentManagedBuffer for shuffle service.
## What changes were proposed in this pull request?
When application contains large amount of shuffle blocks. NodeManager requires lots of memory to keep metadata(`FileSegmentManagedBuffer`) in `StreamManager`. When the number of shuffle blocks is big enough. NodeManager can run OOM. This pr proposes to do lazy initialization of `FileSegmentManagedBuffer` in shuffle service.

## How was this patch tested?

Manually test.

Author: jinxing <jinxing6042@126.com>

Closes #17744 from jinxing64/SPARK-20426.
2017-04-27 14:06:07 -05:00
Tom Graves 7fecf51301 [SPARK-19812] YARN shuffle service fails to relocate recovery DB acro…
…ss NFS directories

## What changes were proposed in this pull request?

Change from using java Files.move to use Hadoop filesystem operations to move the directories.  The java Files.move does not work when moving directories across NFS mounts and in fact also says that if the directory has entries you should do a recursive move. We are already using Hadoop filesystem here so just use the local filesystem from there as it handles this properly.

Note that the DB here is actually a directory of files and not just a single file, hence the change in the name of the local var.

## How was this patch tested?

Ran YarnShuffleServiceSuite unit tests.  Unfortunately couldn't easily add one here since involves NFS.
Ran manual tests to verify that the DB directories were properly moved across NFS mounted directories. Have been running this internally for weeks.

Author: Tom Graves <tgraves@apache.org>

Closes #17748 from tgravescs/SPARK-19812.
2017-04-26 08:23:31 -05:00
Josh Rosen f44c8a843c [SPARK-20453] Bump master branch version to 2.3.0-SNAPSHOT
This patch bumps the master branch version to `2.3.0-SNAPSHOT`.

Author: Josh Rosen <joshrosen@databricks.com>

Closes #17753 from JoshRosen/SPARK-20453.
2017-04-24 21:48:04 -07:00
Shixiong Zhu 734dfbfcfe [SPARK-17564][TESTS] Fix flaky RequestTimeoutIntegrationSuite.furtherRequestsDelay
## What changes were proposed in this pull request?

This PR  fixs the following failure:
```
sbt.ForkMain$ForkError: java.lang.AssertionError: null
	at org.junit.Assert.fail(Assert.java:86)
	at org.junit.Assert.assertTrue(Assert.java:41)
	at org.junit.Assert.assertTrue(Assert.java:52)
	at org.apache.spark.network.RequestTimeoutIntegrationSuite.furtherRequestsDelay(RequestTimeoutIntegrationSuite.java:230)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:497)
	at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:50)
	at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12)
	at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:47)
	at org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17)
	at org.junit.internal.runners.statements.RunBefores.evaluate(RunBefores.java:26)
	at org.junit.internal.runners.statements.RunAfters.evaluate(RunAfters.java:27)
	at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:325)
	at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:78)
	at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:57)
	at org.junit.runners.ParentRunner$3.run(ParentRunner.java:290)
	at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:71)
	at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:288)
	at org.junit.runners.ParentRunner.access$000(ParentRunner.java:58)
	at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:268)
	at org.junit.runners.ParentRunner.run(ParentRunner.java:363)
	at org.junit.runners.Suite.runChild(Suite.java:128)
	at org.junit.runners.Suite.runChild(Suite.java:27)
	at org.junit.runners.ParentRunner$3.run(ParentRunner.java:290)
	at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:71)
	at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:288)
	at org.junit.runners.ParentRunner.access$000(ParentRunner.java:58)
	at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:268)
	at org.junit.runners.ParentRunner.run(ParentRunner.java:363)
	at org.junit.runner.JUnitCore.run(JUnitCore.java:137)
	at org.junit.runner.JUnitCore.run(JUnitCore.java:115)
	at com.novocode.junit.JUnitRunner$1.execute(JUnitRunner.java:132)
	at sbt.ForkMain$Run$2.call(ForkMain.java:296)
	at sbt.ForkMain$Run$2.call(ForkMain.java:286)
	at java.util.concurrent.FutureTask.run(FutureTask.java:266)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
	at java.lang.Thread.run(Thread.java:745)
```

It happens several times per month on [Jenkins](http://spark-tests.appspot.com/test-details?suite_name=org.apache.spark.network.RequestTimeoutIntegrationSuite&test_name=furtherRequestsDelay). The failure is because `callback1` may not be called before `assertTrue(callback1.failure instanceof IOException);`. It's pretty easy to reproduce this error by adding a sleep before this line: 379b0b0bbd/common/network-common/src/test/java/org/apache/spark/network/RequestTimeoutIntegrationSuite.java (L267)

The fix is straightforward: just use the latch to wait until `callback1` is called.

## How was this patch tested?

Jenkins

Author: Shixiong Zhu <shixiong@databricks.com>

Closes #17599 from zsxwing/SPARK-17564.
2017-04-10 20:41:08 -07:00
Sean Owen a26e3ed5e4 [SPARK-20156][CORE][SQL][STREAMING][MLLIB] Java String toLowerCase "Turkish locale bug" causes Spark problems
## What changes were proposed in this pull request?

Add Locale.ROOT to internal calls to String `toLowerCase`, `toUpperCase`, to avoid inadvertent locale-sensitive variation in behavior (aka the "Turkish locale problem").

The change looks large but it is just adding `Locale.ROOT` (the locale with no country or language specified) to every call to these methods.

## How was this patch tested?

Existing tests.

Author: Sean Owen <sowen@cloudera.com>

Closes #17527 from srowen/SPARK-20156.
2017-04-10 20:11:56 +01:00
Sean Owen 1f0de3c1c8 [SPARK-19991][CORE][YARN] FileSegmentManagedBuffer performance improvement
## What changes were proposed in this pull request?

Avoid `NoSuchElementException` every time `ConfigProvider.get(val, default)` falls back to default. This apparently causes non-trivial overhead in at least one path, and can easily be avoided.

See https://github.com/apache/spark/pull/17329

## How was this patch tested?

Existing tests

Author: Sean Owen <sowen@cloudera.com>

Closes #17567 from srowen/SPARK-19991.
2017-04-09 08:44:02 +01:00
samelamin 258bff2c3f [SPARK-19999] Workaround JDK-8165231 to identify PPC64 architectures as supporting unaligned access
java.nio.Bits.unaligned() does not return true for the ppc64le arch.
see https://bugs.openjdk.java.net/browse/JDK-8165231
## What changes were proposed in this pull request?
check architecture

## How was this patch tested?

unit test

Author: samelamin <hussam.elamin@gmail.com>
Author: samelamin <sam_elamin@discovery.com>

Closes #17472 from samelamin/SPARK-19999.
2017-03-30 16:08:26 +01:00
Marcelo Vanzin b56ad2b1ec [SPARK-19556][CORE] Do not encrypt block manager data in memory.
This change modifies the way block data is encrypted to make the more
common cases faster, while penalizing an edge case. As a side effect
of the change, all data that goes through the block manager is now
encrypted only when needed, including the previous path (broadcast
variables) where that did not happen.

The way the change works is by not encrypting data that is stored in
memory; so if a serialized block is in memory, it will only be encrypted
once it is evicted to disk.

The penalty comes when transferring that encrypted data from disk. If the
data ends up in memory again, it is as efficient as before; but if the
evicted block needs to be transferred directly to a remote executor, then
there's now a performance penalty, since the code now uses a custom
FileRegion implementation to decrypt the data before transferring.

This also means that block data transferred between executors now is
not encrypted (and thus relies on the network library encryption support
for secrecy). Shuffle blocks are still transferred in encrypted form,
since they're handled in a slightly different way by the code. This also
keeps compatibility with existing external shuffle services, which transfer
encrypted shuffle blocks, and avoids having to make the external service
aware of encryption at all.

The serialization and deserialization APIs in the SerializerManager now
do not do encryption automatically; callers need to explicitly wrap their
streams with an appropriate crypto stream before using those.

As a result of these changes, some of the workarounds added in SPARK-19520
are removed here.

Testing: a new trait ("EncryptionFunSuite") was added that provides an easy
way to run a test twice, with encryption on and off; broadcast, block manager
and caching tests were modified to use this new trait so that the existing
tests exercise both encrypted and non-encrypted paths. I also ran some
applications with encryption turned on to verify that they still work,
including streaming tests that failed without the fix for SPARK-19520.

Author: Marcelo Vanzin <vanzin@cloudera.com>

Closes #17295 from vanzin/SPARK-19556.
2017-03-29 20:27:41 +08:00
Prashant Sharma 0caade6340 [SPARK-20027][DOCS] Compilation fix in java docs.
## What changes were proposed in this pull request?

During build/sbt publish-local, build breaks due to javadocs errors. This patch fixes those errors.

## How was this patch tested?

Tested by running the sbt build.

Author: Prashant Sharma <prashsh1@in.ibm.com>

Closes #17358 from ScrapCodes/docs-fix.
2017-03-22 13:52:03 +00:00
Tejas Patil e420fd4592 [SPARK-19843][SQL][FOLLOWUP] Classdoc for IntWrapper and LongWrapper
## What changes were proposed in this pull request?

This is as per suggestion by rxin at : https://github.com/apache/spark/pull/17184#discussion_r104841735

## How was this patch tested?

NA as this is a documentation change

Author: Tejas Patil <tejasp@fb.com>

Closes #17205 from tejasapatil/SPARK-19843_followup.
2017-03-08 09:38:05 -08:00
Tejas Patil c96d14abae [SPARK-19843][SQL] UTF8String => (int / long) conversion expensive for invalid inputs
## What changes were proposed in this pull request?

Jira : https://issues.apache.org/jira/browse/SPARK-19843

Created wrapper classes (`IntWrapper`, `LongWrapper`) to wrap the result of parsing (which are primitive types). In case of problem in parsing, the method would return a boolean.

## How was this patch tested?

- Added new unit tests
- Ran a prod job which had conversion from string -> int and verified the outputs

## Performance

Tiny regression when all strings are valid integers

```
conversion to int:       Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
--------------------------------------------------------------------------------
trunk                         502 /  522         33.4          29.9       1.0X
SPARK-19843                   493 /  503         34.0          29.4       1.0X
```

Huge gain when all strings are invalid integers
```
conversion to int:      Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
-------------------------------------------------------------------------------
trunk                     33913 / 34219          0.5        2021.4       1.0X
SPARK-19843                  154 /  162        108.8           9.2     220.0X
```

Author: Tejas Patil <tejasp@fb.com>

Closes #17184 from tejasapatil/SPARK-19843_is_numeric_maybe.
2017-03-07 20:19:30 -08:00
hyukjinkwon 4ba9c6c453 [MINOR][BUILD] Fix lint-java breaks in Java
## What changes were proposed in this pull request?

This PR proposes to fix the lint-breaks as below:

```
[ERROR] src/test/java/org/apache/spark/network/TransportResponseHandlerSuite.java:[29,8] (imports) UnusedImports: Unused import - org.apache.spark.network.buffer.ManagedBuffer.
[ERROR] src/main/java/org/apache/spark/unsafe/types/UTF8String.java:[156,10] (modifier) ModifierOrder: 'Nonnull' annotation modifier does not precede non-annotation modifiers.
[ERROR] src/main/java/org/apache/spark/SparkFirehoseListener.java:[122] (sizes) LineLength: Line is longer than 100 characters (found 105).
[ERROR] src/main/java/org/apache/spark/util/collection/unsafe/sort/UnsafeExternalSorter.java:[164,78] (coding) OneStatementPerLine: Only one statement per line allowed.
[ERROR] src/test/java/test/org/apache/spark/JavaAPISuite.java:[1157] (sizes) LineLength: Line is longer than 100 characters (found 121).
[ERROR] src/test/java/org/apache/spark/streaming/JavaMapWithStateSuite.java:[149] (sizes) LineLength: Line is longer than 100 characters (found 113).
[ERROR] src/test/java/test/org/apache/spark/streaming/Java8APISuite.java:[146] (sizes) LineLength: Line is longer than 100 characters (found 122).
[ERROR] src/test/java/test/org/apache/spark/streaming/JavaAPISuite.java:[32,8] (imports) UnusedImports: Unused import - org.apache.spark.streaming.Time.
[ERROR] src/test/java/test/org/apache/spark/streaming/JavaAPISuite.java:[611] (sizes) LineLength: Line is longer than 100 characters (found 101).
[ERROR] src/test/java/test/org/apache/spark/streaming/JavaAPISuite.java:[1317] (sizes) LineLength: Line is longer than 100 characters (found 102).
[ERROR] src/test/java/test/org/apache/spark/sql/JavaDatasetAggregatorSuite.java:[91] (sizes) LineLength: Line is longer than 100 characters (found 102).
[ERROR] src/test/java/test/org/apache/spark/sql/JavaDatasetSuite.java:[113] (sizes) LineLength: Line is longer than 100 characters (found 101).
[ERROR] src/test/java/test/org/apache/spark/sql/JavaDatasetSuite.java:[164] (sizes) LineLength: Line is longer than 100 characters (found 110).
[ERROR] src/test/java/test/org/apache/spark/sql/JavaDatasetSuite.java:[212] (sizes) LineLength: Line is longer than 100 characters (found 114).
[ERROR] src/test/java/org/apache/spark/mllib/tree/JavaDecisionTreeSuite.java:[36] (sizes) LineLength: Line is longer than 100 characters (found 101).
[ERROR] src/main/java/org/apache/spark/examples/streaming/JavaKinesisWordCountASL.java:[26,8] (imports) UnusedImports: Unused import - com.amazonaws.regions.RegionUtils.
[ERROR] src/test/java/org/apache/spark/streaming/kinesis/JavaKinesisStreamSuite.java:[20,8] (imports) UnusedImports: Unused import - com.amazonaws.regions.RegionUtils.
[ERROR] src/test/java/org/apache/spark/streaming/kinesis/JavaKinesisStreamSuite.java:[94] (sizes) LineLength: Line is longer than 100 characters (found 103).
[ERROR] src/main/java/org/apache/spark/examples/ml/JavaTokenizerExample.java:[30,8] (imports) UnusedImports: Unused import - org.apache.spark.sql.api.java.UDF1.
[ERROR] src/main/java/org/apache/spark/examples/ml/JavaTokenizerExample.java:[72] (sizes) LineLength: Line is longer than 100 characters (found 104).
[ERROR] src/main/java/org/apache/spark/examples/mllib/JavaRankingMetricsExample.java:[121] (sizes) LineLength: Line is longer than 100 characters (found 101).
[ERROR] src/main/java/org/apache/spark/examples/sql/JavaSQLDataSourceExample.java:[28,8] (imports) UnusedImports: Unused import - org.apache.spark.api.java.JavaRDD.
[ERROR] src/main/java/org/apache/spark/examples/sql/JavaSQLDataSourceExample.java:[29,8] (imports) UnusedImports: Unused import - org.apache.spark.api.java.JavaSparkContext.
```

## How was this patch tested?

Manually via

```bash
./dev/lint-java
```

Author: hyukjinkwon <gurwls223@gmail.com>

Closes #17072 from HyukjinKwon/java-lint.
2017-02-27 08:44:26 +00:00
Tejas Patil 3e40f6c3d6 [SPARK-17495][SQL] Add more tests for hive hash
## What changes were proposed in this pull request?

This PR adds tests hive-hash by comparing the outputs generated against Hive 1.2.1. Following datatypes are covered by this PR:
- null
- boolean
- byte
- short
- int
- long
- float
- double
- string
- array
- map
- struct

Datatypes that I have _NOT_ covered but I will work on separately are:
- Decimal (handled separately in https://github.com/apache/spark/pull/17056)
- TimestampType
- DateType
- CalendarIntervalType

## How was this patch tested?

NA

Author: Tejas Patil <tejasp@fb.com>

Closes #17049 from tejasapatil/SPARK-17495_remaining_types.
2017-02-24 09:46:42 -08:00
Sean Owen 1487c9af20
[SPARK-19534][TESTS] Convert Java tests to use lambdas, Java 8 features
## What changes were proposed in this pull request?

Convert tests to use Java 8 lambdas, and modest related fixes to surrounding code.

## How was this patch tested?

Jenkins tests

Author: Sean Owen <sowen@cloudera.com>

Closes #16964 from srowen/SPARK-19534.
2017-02-19 09:42:50 -08:00
Nathan Howell 21fde57f15 [SPARK-18352][SQL] Support parsing multiline json files
## What changes were proposed in this pull request?

If a new option `wholeFile` is set to `true` the JSON reader will parse each file (instead of a single line) as a value. This is done with Jackson streaming and it should be capable of parsing very large documents, assuming the row will fit in memory.

Because the file is not buffered in memory the corrupt record handling is also slightly different when `wholeFile` is enabled: the corrupt column will contain the filename instead of the literal JSON if there is a parsing failure. It would be easy to extend this to add the parser location (line, column and byte offsets) to the output if desired.

These changes have allowed types other than `String` to be parsed. Support for `UTF8String` and `Text` have been added (alongside `String` and `InputFormat`) and no longer require a conversion to `String` just for parsing.

I've also included a few other changes that generate slightly better bytecode and (imo) make it more obvious when and where boxing is occurring in the parser. These are included as separate commits, let me know if they should be flattened into this PR or moved to a new one.

## How was this patch tested?

New and existing unit tests. No performance or load tests have been run.

Author: Nathan Howell <nhowell@godaddy.com>

Closes #16386 from NathanHowell/SPARK-18352.
2017-02-16 20:51:19 -08:00
Sean Owen 0e2405490f
[SPARK-19550][BUILD][CORE][WIP] Remove Java 7 support
- Move external/java8-tests tests into core, streaming, sql and remove
- Remove MaxPermGen and related options
- Fix some reflection / TODOs around Java 8+ methods
- Update doc references to 1.7/1.8 differences
- Remove Java 7/8 related build profiles
- Update some plugins for better Java 8 compatibility
- Fix a few Java-related warnings

For the future:

- Update Java 8 examples to fully use Java 8
- Update Java tests to use lambdas for simplicity
- Update Java internal implementations to use lambdas

## How was this patch tested?

Existing tests

Author: Sean Owen <sowen@cloudera.com>

Closes #16871 from srowen/SPARK-19493.
2017-02-16 12:32:45 +00:00
Shixiong Zhu 905fdf0c24 [SPARK-17714][CORE][TEST-MAVEN][TEST-HADOOP2.6] Avoid using ExecutorClassLoader to load Netty generated classes
## What changes were proposed in this pull request?

Netty's `MessageToMessageEncoder` uses [Javassist](91a0bdc17a/common/src/main/java/io/netty/util/internal/JavassistTypeParameterMatcherGenerator.java (L62)) to generate a matcher class and the implementation calls `Class.forName` to check if this class is already generated. If `MessageEncoder` or `MessageDecoder` is created in `ExecutorClassLoader.findClass`, it will cause `ClassCircularityError`. This is because loading this Netty generated class will call `ExecutorClassLoader.findClass` to search this class, and `ExecutorClassLoader` will try to use RPC to load it and cause to load the non-exist matcher class again. JVM will report `ClassCircularityError` to prevent such infinite recursion.

##### Why it only happens in Maven builds

It's because Maven and SBT have different class loader tree. The Maven build will set a URLClassLoader as the current context class loader to run the tests and expose this issue. The class loader tree is as following:

```
bootstrap class loader ------ ... ----- REPL class loader ---- ExecutorClassLoader
|
|
URLClasssLoader
```

The SBT build uses the bootstrap class loader directly and `ReplSuite.test("propagation of local properties")` is the first test in ReplSuite, which happens to load `io/netty/util/internal/__matchers__/org/apache/spark/network/protocol/MessageMatcher` into the bootstrap class loader (Note: in maven build, it's loaded into URLClasssLoader so it cannot be found in ExecutorClassLoader). This issue can be reproduced in SBT as well. Here are the produce steps:
- Enable `hadoop.caller.context.enabled`.
- Replace `Class.forName` with `Utils.classForName` in `object CallerContext`.
- Ignore `ReplSuite.test("propagation of local properties")`.
- Run `ReplSuite` using SBT.

This PR just creates a singleton MessageEncoder and MessageDecoder and makes sure they are created before switching to ExecutorClassLoader. TransportContext will be created when creating RpcEnv and that happens before creating ExecutorClassLoader.

## How was this patch tested?

Jenkins

Author: Shixiong Zhu <shixiong@databricks.com>

Closes #16859 from zsxwing/SPARK-17714.
2017-02-13 12:03:36 -08:00
Josh Rosen 1c4d10b10c [SPARK-19529] TransportClientFactory.createClient() shouldn't call awaitUninterruptibly()
## What changes were proposed in this pull request?

This patch replaces a single `awaitUninterruptibly()` call with a plain `await()` call in Spark's `network-common` library in order to fix a bug which may cause tasks to be uncancellable.

In Spark's Netty RPC layer, `TransportClientFactory.createClient()` calls `awaitUninterruptibly()` on a Netty future while waiting for a connection to be established. This creates problem when a Spark task is interrupted while blocking in this call (which can happen in the event of a slow connection which will eventually time out). This has bad impacts on task cancellation when `interruptOnCancel = true`.

As an example of the impact of this problem, I experienced significant numbers of uncancellable "zombie tasks" on a production cluster where several tasks were blocked trying to connect to a dead shuffle server and then continued running as zombies after I cancelled the associated Spark stage. The zombie tasks ran for several minutes with the following stack:

```
java.lang.Object.wait(Native Method)
java.lang.Object.wait(Object.java:460)
io.netty.util.concurrent.DefaultPromise.await0(DefaultPromise.java:607)
io.netty.util.concurrent.DefaultPromise.awaitUninterruptibly(DefaultPromise.java:301)
org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:224)
org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:179) => holding Monitor(java.lang.Object1849476028})
org.apache.spark.network.shuffle.ExternalShuffleClient$1.createAndStart(ExternalShuffleClient.java:105)
org.apache.spark.network.shuffle.RetryingBlockFetcher.fetchAllOutstanding(RetryingBlockFetcher.java:140)
org.apache.spark.network.shuffle.RetryingBlockFetcher.start(RetryingBlockFetcher.java:120)
org.apache.spark.network.shuffle.ExternalShuffleClient.fetchBlocks(ExternalShuffleClient.java:114)
org.apache.spark.storage.ShuffleBlockFetcherIterator.sendRequest(ShuffleBlockFetcherIterator.scala:169)
org.apache.spark.storage.ShuffleBlockFetcherIterator.fetchUpToMaxBytes(ShuffleBlockFetcherIterator.scala:
350)
org.apache.spark.storage.ShuffleBlockFetcherIterator.initialize(ShuffleBlockFetcherIterator.scala:286)
org.apache.spark.storage.ShuffleBlockFetcherIterator.<init>(ShuffleBlockFetcherIterator.scala:120)
org.apache.spark.shuffle.BlockStoreShuffleReader.read(BlockStoreShuffleReader.scala:45)
org.apache.spark.sql.execution.ShuffledRowRDD.compute(ShuffledRowRDD.scala:169)
org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
[...]
```

As far as I can tell, `awaitUninterruptibly()` might have been used in order to avoid having to declare that methods throw `InterruptedException` (this code is written in Java, hence the need to use checked exceptions). This patch simply replaces this with a regular, interruptible `await()` call,.

This required several interface changes to declare a new checked exception (these are internal interfaces, though, and this change doesn't significantly impact binary compatibility).

An alternative approach would be to wrap `InterruptedException` into `IOException` in order to avoid having to change interfaces. The problem with this approach is that the `network-shuffle` project's `RetryingBlockFetcher` code treats `IOExceptions` as transitive failures when deciding whether to retry fetches, so throwing a wrapped `IOException` might cause an interrupted shuffle fetch to be retried, further prolonging the lifetime of a cancelled zombie task.

Note that there are three other `awaitUninterruptibly()` in the codebase, but those calls have a hard 10 second timeout and are waiting on a `close()` operation which is expected to complete near instantaneously, so the impact of uninterruptibility there is much smaller.

## How was this patch tested?

Manually.

Author: Josh Rosen <joshrosen@databricks.com>

Closes #16866 from JoshRosen/SPARK-19529.
2017-02-13 11:04:27 -08:00
Marcelo Vanzin 8f3f73abc1 [SPARK-19139][CORE] New auth mechanism for transport library.
This change introduces a new auth mechanism to the transport library,
to be used when users enable strong encryption. This auth mechanism
has better security than the currently used DIGEST-MD5.

The new protocol uses symmetric key encryption to mutually authenticate
the endpoints, and is very loosely based on ISO/IEC 9798.

The new protocol falls back to SASL when it thinks the remote end is old.
Because SASL does not support asking the server for multiple auth protocols,
which would mean we could re-use the existing SASL code by just adding a
new SASL provider, the protocol is implemented outside of the SASL API
to avoid the boilerplate of adding a new provider.

Details of the auth protocol are discussed in the included README.md
file.

This change partly undos the changes added in SPARK-13331; AES encryption
is now decoupled from SASL authentication. The encryption code itself,
though, has been re-used as part of this change.

## How was this patch tested?

- Unit tests
- Tested Spark 2.2 against Spark 1.6 shuffle service with SASL enabled
- Tested Spark 2.2 against Spark 2.2 shuffle service with SASL fallback disabled

Author: Marcelo Vanzin <vanzin@cloudera.com>

Closes #16521 from vanzin/SPARK-19139.
2017-01-24 10:44:04 -08:00
Wenchen Fan 6b34e745bb [SPARK-19178][SQL] convert string of large numbers to int should return null
## What changes were proposed in this pull request?

When we convert a string to integral, we will convert that string to `decimal(20, 0)` first, so that we can turn a string with decimal format to truncated integral, e.g. `CAST('1.2' AS int)` will return `1`.

However, this brings problems when we convert a string with large numbers to integral, e.g. `CAST('1234567890123' AS int)` will return `1912276171`, while Hive returns null as we expected.

This is a long standing bug(seems it was there the first day Spark SQL was created), this PR fixes this bug by adding the native support to convert `UTF8String` to integral.

## How was this patch tested?

new regression tests

Author: Wenchen Fan <wenchen@databricks.com>

Closes #16550 from cloud-fan/string-to-int.
2017-01-12 22:52:34 -08:00
Sean Owen d7bce3bd31
[SPARK-18993][BUILD] Unable to build/compile Spark in IntelliJ due to missing Scala deps in spark-tags
## What changes were proposed in this pull request?

This adds back a direct dependency on Scala library classes from spark-tags because its Scala annotations need them.

## How was this patch tested?

Existing tests

Author: Sean Owen <sowen@cloudera.com>

Closes #16418 from srowen/SPARK-18993.
2016-12-28 12:17:33 +00:00
Pete Robbins 1311448ea8
[SPARK-18963] o.a.s.unsafe.types.UTF8StringSuite.writeToOutputStreamIntArray test
fails on big endian. Only change byte order on little endian

## What changes were proposed in this pull request?

Fix test to only change byte order on LE platforms

## How was this patch tested?

Test run on Big Endian and Little Endian platforms

Author: Pete Robbins <robbinspg@gmail.com>

Closes #16375 from robbinspg/SPARK-18963.
2016-12-23 12:15:44 +00:00
Shixiong Zhu f252cb5d16 [SPARK-18972][CORE] Fix the netty thread names for RPC
## What changes were proposed in this pull request?

Right now the name of threads created by Netty for Spark RPC are `shuffle-client-**` and `shuffle-server-**`. It's pretty confusing.

This PR just uses the module name in TransportConf to set the thread name. In addition, it also includes the following minor fixes:

- TransportChannelHandler.channelActive and channelInactive should call the corresponding super methods.
- Make ShuffleBlockFetcherIterator throw NoSuchElementException if it has no more elements. Otherwise,  if the caller calls `next` without `hasNext`, it will just hang.

## How was this patch tested?

Jenkins

Author: Shixiong Zhu <shixiong@databricks.com>

Closes #16380 from zsxwing/SPARK-18972.
2016-12-22 16:22:55 -08:00
Ryan Williams afd9bc1d8a [SPARK-17807][CORE] split test-tags into test-JAR
Remove spark-tag's compile-scope dependency (and, indirectly, spark-core's compile-scope transitive-dependency) on scalatest by splitting test-oriented tags into spark-tags' test JAR.

Alternative to #16303.

Author: Ryan Williams <ryan.blake.williams@gmail.com>

Closes #16311 from ryan-williams/tt.
2016-12-21 16:37:20 -08:00
hyukjinkwon ed84cd0684
[MINOR][BUILD] Fix lint-check failures and javadoc8 break
## What changes were proposed in this pull request?

This PR proposes to fix lint-check failures and javadoc8 break.

Few errors were introduced as below:

**lint-check failures**

```
[ERROR] src/test/java/org/apache/spark/network/TransportClientFactorySuite.java:[45,1] (imports) RedundantImport: Duplicate import to line 43 - org.apache.spark.network.util.MapConfigProvider.
[ERROR] src/main/java/org/apache/spark/unsafe/types/CalendarInterval.java:[255,10] (modifier) RedundantModifier: Redundant 'final' modifier.
```

**javadoc8**

```
[error] .../spark/sql/core/target/java/org/apache/spark/sql/streaming/StreamingQueryProgress.java:19: error: bad use of '>'
[error]  *                   "max" -> "2016-12-05T20:54:20.827Z"  // maximum event time seen in this trigger
[error]                             ^
[error] .../spark/sql/core/target/java/org/apache/spark/sql/streaming/StreamingQueryProgress.java:20: error: bad use of '>'
[error]  *                   "min" -> "2016-12-05T20:54:20.827Z"  // minimum event time seen in this trigger
[error]                             ^
[error] .../spark/sql/core/target/java/org/apache/spark/sql/streaming/StreamingQueryProgress.java:21: error: bad use of '>'
[error]  *                   "avg" -> "2016-12-05T20:54:20.827Z"  // average event time seen in this trigger
[error]                             ^
[error] .../spark/sql/core/target/java/org/apache/spark/sql/streaming/StreamingQueryProgress.java:22: error: bad use of '>'
[error]  *                   "watermark" -> "2016-12-05T20:54:20.827Z"  // watermark used in this trigger
[error]
```

## How was this patch tested?

Manually checked as below:

**lint-check failures**

```
./dev/lint-java
Checkstyle checks passed.
```

**javadoc8**

This seems hidden in the API doc but I manually checked after removing access modifier as below:

It looks not rendering properly (scaladoc).

![2016-12-16 3 40 34](https://cloud.githubusercontent.com/assets/6477701/21255175/8df1fe6e-c3ad-11e6-8cda-ce7f76c6677a.png)

After this PR, it renders as below:

- scaladoc
  ![2016-12-16 3 40 23](https://cloud.githubusercontent.com/assets/6477701/21255135/4a11dab6-c3ad-11e6-8ab2-b091c4f45029.png)

- javadoc
  ![2016-12-16 3 41 10](https://cloud.githubusercontent.com/assets/6477701/21255137/4bba1d9c-c3ad-11e6-9b88-62f1f697b56a.png)

Author: hyukjinkwon <gurwls223@gmail.com>

Closes #16307 from HyukjinKwon/lint-javadoc8.
2016-12-16 17:49:43 +00:00
Marcelo Vanzin bc59951bab [SPARK-18773][CORE] Make commons-crypto config translation consistent.
This change moves the logic that translates Spark configuration to
commons-crypto configuration to the network-common module. It also
extends TransportConf and ConfigProvider to provide the necessary
interfaces for the translation to work.

As part of the change, I removed SystemPropertyConfigProvider, which
was mostly used as an "empty config" in unit tests, and adjusted the
very few tests that required a specific config.

I also changed the config keys for AES encryption to live under the
"spark.network." namespace, which is more correct than their previous
names under "spark.authenticate.".

Tested via existing unit test.

Author: Marcelo Vanzin <vanzin@cloudera.com>

Closes #16200 from vanzin/SPARK-18773.
2016-12-12 16:27:04 -08:00
Shixiong Zhu eeed38eaf8 [SPARK-18744][CORE] Remove workaround for Netty memory leak
## What changes were proposed in this pull request?

We added some codes in https://github.com/apache/spark/pull/14961 because of https://github.com/netty/netty/issues/5833

Now we can remove them as it's fixed in Netty 4.0.42.Final.

## How was this patch tested?

Jenkins

Author: Shixiong Zhu <shixiong@databricks.com>

Closes #16167 from zsxwing/remove-netty-workaround.
2016-12-06 13:33:05 -08:00
Reynold Xin c7c7265950 [SPARK-18695] Bump master branch version to 2.2.0-SNAPSHOT
## What changes were proposed in this pull request?
This patch bumps master branch version to 2.2.0-SNAPSHOT.

## How was this patch tested?
N/A

Author: Reynold Xin <rxin@databricks.com>

Closes #16126 from rxin/SPARK-18695.
2016-12-02 21:09:37 -08:00
Nathan Howell c82f16c15e [SPARK-18658][SQL] Write text records directly to a FileOutputStream
## What changes were proposed in this pull request?

This replaces uses of `TextOutputFormat` with an `OutputStream`, which will either write directly to the filesystem or indirectly via a compressor (if so configured). This avoids intermediate buffering.

The inverse of this (reading directly from a stream) is necessary for streaming large JSON records (when `wholeFile` is enabled) so I wanted to keep the read and write paths symmetric.

## How was this patch tested?

Existing unit tests.

Author: Nathan Howell <nhowell@godaddy.com>

Closes #16089 from NathanHowell/SPARK-18658.
2016-12-01 21:40:49 -08:00
Reynold Xin d3c90b74ed [SPARK-18663][SQL] Simplify CountMinSketch aggregate implementation
## What changes were proposed in this pull request?
SPARK-18429 introduced count-min sketch aggregate function for SQL, but the implementation and testing is more complicated than needed. This simplifies the test cases and removes support for data types that don't have clear equality semantics:

1. Removed support for floating point and decimal types.

2. Removed the heavy randomized tests. The underlying CountMinSketch implementation already had pretty good test coverage through randomized tests, and the SPARK-18429 implementation is just to add an aggregate function wrapper around CountMinSketch. There is no need for randomized tests at three different levels of the implementations.

## How was this patch tested?
A lot of the change is to simplify test cases.

Author: Reynold Xin <rxin@databricks.com>

Closes #16093 from rxin/SPARK-18663.
2016-12-01 21:38:52 -08:00
wangzhenhua d57a594b8b [SPARK-18429][SQL] implement a new Aggregate for CountMinSketch
## What changes were proposed in this pull request?

This PR implements a new Aggregate to generate count min sketch, which is a wrapper of CountMinSketch.

## How was this patch tested?

add test cases

Author: wangzhenhua <wangzhenhua@huawei.com>

Closes #15877 from wzhfy/cms.
2016-11-29 13:16:46 -08:00
Xianyang Liu 7569cf6cb8
[SPARK-18420][BUILD] Fix the errors caused by lint check in Java
## What changes were proposed in this pull request?

Small fix, fix the errors caused by lint check in Java

- Clear unused objects and `UnusedImports`.
- Add comments around the method `finalize` of `NioBufferedFileInputStream`to turn off checkstyle.
- Cut the line which is longer than 100 characters into two lines.

## How was this patch tested?
Travis CI.
```
$ build/mvn -T 4 -q -DskipTests -Pyarn -Phadoop-2.3 -Pkinesis-asl -Phive -Phive-thriftserver install
$ dev/lint-java
```
Before:
```
Checkstyle checks failed at following occurrences:
[ERROR] src/main/java/org/apache/spark/network/util/TransportConf.java:[21,8] (imports) UnusedImports: Unused import - org.apache.commons.crypto.cipher.CryptoCipherFactory.
[ERROR] src/test/java/org/apache/spark/network/sasl/SparkSaslSuite.java:[516,5] (modifier) RedundantModifier: Redundant 'public' modifier.
[ERROR] src/main/java/org/apache/spark/io/NioBufferedFileInputStream.java:[133] (coding) NoFinalizer: Avoid using finalizer method.
[ERROR] src/main/java/org/apache/spark/sql/catalyst/expressions/UnsafeMapData.java:[71] (sizes) LineLength: Line is longer than 100 characters (found 113).
[ERROR] src/main/java/org/apache/spark/sql/catalyst/expressions/UnsafeArrayData.java:[112] (sizes) LineLength: Line is longer than 100 characters (found 110).
[ERROR] src/test/java/org/apache/spark/sql/catalyst/expressions/HiveHasherSuite.java:[31,17] (modifier) ModifierOrder: 'static' modifier out of order with the JLS suggestions.
[ERROR]src/main/java/org/apache/spark/examples/ml/JavaLogisticRegressionWithElasticNetExample.java:[64] (sizes) LineLength: Line is longer than 100 characters (found 103).
[ERROR] src/main/java/org/apache/spark/examples/ml/JavaInteractionExample.java:[22,8] (imports) UnusedImports: Unused import - org.apache.spark.ml.linalg.Vectors.
[ERROR] src/main/java/org/apache/spark/examples/ml/JavaInteractionExample.java:[51] (regexp) RegexpSingleline: No trailing whitespace allowed.
```

After:
```
$ build/mvn -T 4 -q -DskipTests -Pyarn -Phadoop-2.3 -Pkinesis-asl -Phive -Phive-thriftserver install
$ dev/lint-java
Using `mvn` from path: /home/travis/build/ConeyLiu/spark/build/apache-maven-3.3.9/bin/mvn
Checkstyle checks passed.
```

Author: Xianyang Liu <xyliu0530@icloud.com>

Closes #15865 from ConeyLiu/master.
2016-11-16 11:59:00 +00:00
Michael Armbrust c07187823a [SPARK-18124] Observed delay based Event Time Watermarks
This PR adds a new method `withWatermark` to the `Dataset` API, which can be used specify an _event time watermark_.  An event time watermark allows the streaming engine to reason about the point in time after which we no longer expect to see late data.  This PR also has augmented `StreamExecution` to use this watermark for several purposes:
  - To know when a given time window aggregation is finalized and thus results can be emitted when using output modes that do not allow updates (e.g. `Append` mode).
  - To minimize the amount of state that we need to keep for on-going aggregations, by evicting state for groups that are no longer expected to change.  Although, we do still maintain all state if the query requires (i.e. if the event time is not present in the `groupBy` or when running in `Complete` mode).

An example that emits windowed counts of records, waiting up to 5 minutes for late data to arrive.
```scala
df.withWatermark("eventTime", "5 minutes")
  .groupBy(window($"eventTime", "1 minute") as 'window)
  .count()
  .writeStream
  .format("console")
  .mode("append") // In append mode, we only output finalized aggregations.
  .start()
```

### Calculating the watermark.
The current event time is computed by looking at the `MAX(eventTime)` seen this epoch across all of the partitions in the query minus some user defined _delayThreshold_.  An additional constraint is that the watermark must increase monotonically.

Note that since we must coordinate this value across partitions occasionally, the actual watermark used is only guaranteed to be at least `delay` behind the actual event time.  In some cases we may still process records that arrive more than delay late.

This mechanism was chosen for the initial implementation over processing time for two reasons:
  - it is robust to downtime that could affect processing delay
  - it does not require syncing of time or timezones between the producer and the processing engine.

### Other notable implementation details
 - A new trigger metric `eventTimeWatermark` outputs the current value of the watermark.
 - We mark the event time column in the `Attribute` metadata using the key `spark.watermarkDelay`.  This allows downstream operations to know which column holds the event time.  Operations like `window` propagate this metadata.
 - `explain()` marks the watermark with a suffix of `-T${delayMs}` to ease debugging of how this information is propagated.
 - Currently, we don't filter out late records, but instead rely on the state store to avoid emitting records that are both added and filtered in the same epoch.

### Remaining in this PR
 - [ ] The test for recovery is currently failing as we don't record the watermark used in the offset log.  We will need to do so to ensure determinism, but this is deferred until #15626 is merged.

### Other follow-ups
There are some natural additional features that we should consider for future work:
 - Ability to write records that arrive too late to some external store in case any out-of-band remediation is required.
 - `Update` mode so you can get partial results before a group is evicted.
 - Other mechanisms for calculating the watermark.  In particular a watermark based on quantiles would be more robust to outliers.

Author: Michael Armbrust <michael@databricks.com>

Closes #15702 from marmbrus/watermarks.
2016-11-14 16:46:26 -08:00
Junjie Chen 4f15d94cfe [SPARK-13331] AES support for over-the-wire encryption
## What changes were proposed in this pull request?

DIGEST-MD5 mechanism is used for SASL authentication and secure communication. DIGEST-MD5 mechanism supports 3DES, DES, and RC4 ciphers. However, 3DES, DES and RC4 are slow relatively.

AES provide better performance and security by design and is a replacement for 3DES according to NIST. Apache Common Crypto is a cryptographic library optimized with AES-NI, this patch employ Apache Common Crypto as enc/dec backend for SASL authentication and secure channel to improve spark RPC.
## How was this patch tested?

Unit tests and Integration test.

Author: Junjie Chen <junjie.j.chen@intel.com>

Closes #15172 from cjjnjust/shuffle_rpc_encrypt.
2016-11-11 10:37:58 -08:00
Reynold Xin dd16b52cf7 [SPARK-17800] Introduce InterfaceStability annotation
## What changes were proposed in this pull request?
This patch introduces three new annotations under InterfaceStability:
- Stable
- Evolving
- Unstable

This is inspired by Hadoop's InterfaceStability, and the first step towards switching over to a new API stability annotation framework.

## How was this patch tested?
N/A

Author: Reynold Xin <rxin@databricks.com>

Closes #15374 from rxin/SPARK-17800.
2016-10-07 10:24:42 -07:00
Tejas Patil a99743d053 [SPARK-17495][SQL] Add Hash capability semantically equivalent to Hive's
## What changes were proposed in this pull request?

Jira : https://issues.apache.org/jira/browse/SPARK-17495

Spark internally uses Murmur3Hash for partitioning. This is different from the one used by Hive. For queries which use bucketing this leads to different results if one tries the same query on both engines. For us, we want users to have backward compatibility to that one can switch parts of applications across the engines without observing regressions.

This PR includes `HiveHash`, `HiveHashFunction`, `HiveHasher` which mimics Hive's hashing at https://github.com/apache/hive/blob/master/serde/src/java/org/apache/hadoop/hive/serde2/objectinspector/ObjectInspectorUtils.java#L638

I am intentionally not introducing any usages of this hash function in rest of the code to keep this PR small. My eventual goal is to have Hive bucketing support in Spark. Once this PR gets in, I will make hash function pluggable in relevant areas (eg. `HashPartitioning`'s `partitionIdExpression` has Murmur3 hardcoded : https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/physical/partitioning.scala#L265)

## How was this patch tested?

Added `HiveHashSuite`

Author: Tejas Patil <tejasp@fb.com>

Closes #15047 from tejasapatil/SPARK-17495_hive_hash.
2016-10-04 18:59:31 -07:00
sumansomasundar 7d51608835
[SPARK-16962][CORE][SQL] Fix misaligned record accesses for SPARC architectures
## What changes were proposed in this pull request?

Made changes to record length offsets to make them uniform throughout various areas of Spark core and unsafe

## How was this patch tested?

This change affects only SPARC architectures and was tested on X86 architectures as well for regression.

Author: sumansomasundar <suman.somasundar@oracle.com>

Closes #14762 from sumansomasundar/master.
2016-10-04 10:31:56 +01:00
Kazuaki Ishizaki 85b0a15754 [SPARK-15962][SQL] Introduce implementation with a dense format for UnsafeArrayData
## What changes were proposed in this pull request?

This PR introduces more compact representation for ```UnsafeArrayData```.

```UnsafeArrayData``` needs to accept ```null``` value in each entry of an array. In the current version, it has three parts
```
[numElements] [offsets] [values]
```
`Offsets` has the number of `numElements`, and represents `null` if its value is negative. It may increase memory footprint, and introduces an indirection for accessing each of `values`.

This PR uses bitvectors to represent nullability for each element like `UnsafeRow`, and eliminates an indirection for accessing each element. The new ```UnsafeArrayData``` has four parts.
```
[numElements][null bits][values or offset&length][variable length portion]
```
In the `null bits` region, we store 1 bit per element, represents whether an element is null. Its total size is ceil(numElements / 8) bytes, and it is aligned to 8-byte boundaries.
In the `values or offset&length` region, we store the content of elements. For fields that hold fixed-length primitive types, such as long, double, or int, we store the value directly in the field. For fields with non-primitive or variable-length values, we store a relative offset (w.r.t. the base address of the array) that points to the beginning of the variable-length field and length (they are combined into a long). Each is word-aligned. For `variable length portion`, each is aligned to 8-byte boundaries.

The new format can reduce memory footprint and improve performance of accessing each element. An example of memory foot comparison:
1024x1024 elements integer array
Size of ```baseObject``` for ```UnsafeArrayData```: 8 + 1024x1024 + 1024x1024 = 2M bytes
Size of ```baseObject``` for ```UnsafeArrayData```: 8 + 1024x1024/8 + 1024x1024 = 1.25M bytes

In summary, we got 1.0-2.6x performance improvements over the code before applying this PR.
Here are performance results of [benchmark programs](04d2e4b6db/sql/core/src/test/scala/org/apache/spark/sql/execution/benchmark/UnsafeArrayDataBenchmark.scala):

**Read UnsafeArrayData**: 1.7x and 1.6x performance improvements over the code before applying this PR
````
OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 4.4.11-200.fc22.x86_64
Intel Xeon E3-12xx v2 (Ivy Bridge)

Without SPARK-15962
Read UnsafeArrayData:                    Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------
Int                                            430 /  436        390.0           2.6       1.0X
Double                                         456 /  485        367.8           2.7       0.9X

With SPARK-15962
Read UnsafeArrayData:                    Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------
Int                                            252 /  260        666.1           1.5       1.0X
Double                                         281 /  292        597.7           1.7       0.9X
````
**Write UnsafeArrayData**: 1.0x and 1.1x performance improvements over the code before applying this PR
````
OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 4.0.4-301.fc22.x86_64
Intel Xeon E3-12xx v2 (Ivy Bridge)

Without SPARK-15962
Write UnsafeArrayData:                   Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------
Int                                            203 /  273        103.4           9.7       1.0X
Double                                         239 /  356         87.9          11.4       0.8X

With SPARK-15962
Write UnsafeArrayData:                   Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------
Int                                            196 /  249        107.0           9.3       1.0X
Double                                         227 /  367         92.3          10.8       0.9X
````

**Get primitive array from UnsafeArrayData**: 2.6x and 1.6x performance improvements over the code before applying this PR
````
OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 4.0.4-301.fc22.x86_64
Intel Xeon E3-12xx v2 (Ivy Bridge)

Without SPARK-15962
Get primitive array from UnsafeArrayData: Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------
Int                                            207 /  217        304.2           3.3       1.0X
Double                                         257 /  363        245.2           4.1       0.8X

With SPARK-15962
Get primitive array from UnsafeArrayData: Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------
Int                                            151 /  198        415.8           2.4       1.0X
Double                                         214 /  394        293.6           3.4       0.7X
````

**Create UnsafeArrayData from primitive array**: 1.7x and 2.1x performance improvements over the code before applying this PR
````
OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 4.0.4-301.fc22.x86_64
Intel Xeon E3-12xx v2 (Ivy Bridge)

Without SPARK-15962
Create UnsafeArrayData from primitive array: Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------
Int                                            340 /  385        185.1           5.4       1.0X
Double                                         479 /  705        131.3           7.6       0.7X

With SPARK-15962
Create UnsafeArrayData from primitive array: Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------
Int                                            206 /  211        306.0           3.3       1.0X
Double                                         232 /  406        271.6           3.7       0.9X
````

1.7x and 1.4x performance improvements in [```UDTSerializationBenchmark```](https://github.com/apache/spark/blob/master/mllib/src/test/scala/org/apache/spark/mllib/linalg/UDTSerializationBenchmark.scala)  over the code before applying this PR
````
OpenJDK 64-Bit Server VM 1.8.0_91-b14 on Linux 4.4.11-200.fc22.x86_64
Intel Xeon E3-12xx v2 (Ivy Bridge)

Without SPARK-15962
VectorUDT de/serialization:              Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------
serialize                                      442 /  533          0.0      441927.1       1.0X
deserialize                                    217 /  274          0.0      217087.6       2.0X

With SPARK-15962
VectorUDT de/serialization:              Best/Avg Time(ms)    Rate(M/s)   Per Row(ns)   Relative
------------------------------------------------------------------------------------------------
serialize                                      265 /  318          0.0      265138.5       1.0X
deserialize                                    155 /  197          0.0      154611.4       1.7X
````

## How was this patch tested?

Added unit tests into ```UnsafeArraySuite```

Author: Kazuaki Ishizaki <ishizaki@jp.ibm.com>

Closes #13680 from kiszk/SPARK-15962.
2016-09-27 14:18:32 +08:00
Weiqing Yang 1ea49916ac [MINOR][BUILD] Fix CheckStyle Error
## What changes were proposed in this pull request?
This PR is to fix the code style errors before 2.0.1 release.

## How was this patch tested?
Manual.

Before:
```
./dev/lint-java
Using `mvn` from path: /usr/local/bin/mvn
Checkstyle checks failed at following occurrences:
[ERROR] src/main/java/org/apache/spark/network/client/TransportClient.java:[153] (sizes) LineLength: Line is longer than 100 characters (found 107).
[ERROR] src/main/java/org/apache/spark/network/client/TransportClient.java:[196] (sizes) LineLength: Line is longer than 100 characters (found 108).
[ERROR] src/main/java/org/apache/spark/network/client/TransportClient.java:[239] (sizes) LineLength: Line is longer than 100 characters (found 115).
[ERROR] src/main/java/org/apache/spark/network/server/TransportRequestHandler.java:[119] (sizes) LineLength: Line is longer than 100 characters (found 107).
[ERROR] src/main/java/org/apache/spark/network/server/TransportRequestHandler.java:[129] (sizes) LineLength: Line is longer than 100 characters (found 104).
[ERROR] src/main/java/org/apache/spark/network/util/LevelDBProvider.java:[124,11] (modifier) ModifierOrder: 'static' modifier out of order with the JLS suggestions.
[ERROR] src/main/java/org/apache/spark/network/util/TransportConf.java:[26] (regexp) RegexpSingleline: No trailing whitespace allowed.
[ERROR] src/main/java/org/apache/spark/util/collection/unsafe/sort/PrefixComparators.java:[33] (sizes) LineLength: Line is longer than 100 characters (found 110).
[ERROR] src/main/java/org/apache/spark/util/collection/unsafe/sort/PrefixComparators.java:[38] (sizes) LineLength: Line is longer than 100 characters (found 110).
[ERROR] src/main/java/org/apache/spark/util/collection/unsafe/sort/PrefixComparators.java:[43] (sizes) LineLength: Line is longer than 100 characters (found 106).
[ERROR] src/main/java/org/apache/spark/util/collection/unsafe/sort/PrefixComparators.java:[48] (sizes) LineLength: Line is longer than 100 characters (found 110).
[ERROR] src/main/java/org/apache/spark/util/collection/unsafe/sort/UnsafeInMemorySorter.java:[0] (misc) NewlineAtEndOfFile: File does not end with a newline.
[ERROR] src/main/java/org/apache/spark/util/collection/unsafe/sort/UnsafeSorterSpillReader.java:[67] (sizes) LineLength: Line is longer than 100 characters (found 106).
[ERROR] src/main/java/org/apache/spark/network/yarn/YarnShuffleService.java:[200] (regexp) RegexpSingleline: No trailing whitespace allowed.
[ERROR] src/main/java/org/apache/spark/network/yarn/YarnShuffleService.java:[309] (regexp) RegexpSingleline: No trailing whitespace allowed.
[ERROR] src/main/java/org/apache/spark/network/yarn/YarnShuffleService.java:[332] (regexp) RegexpSingleline: No trailing whitespace allowed.
[ERROR] src/main/java/org/apache/spark/network/yarn/YarnShuffleService.java:[348] (regexp) RegexpSingleline: No trailing whitespace allowed.
 ```
After:
```
./dev/lint-java
Using `mvn` from path: /usr/local/bin/mvn
Checkstyle checks passed.
```

Author: Weiqing Yang <yangweiqing001@gmail.com>

Closes #15170 from Sherry302/fixjavastyle.
2016-09-20 21:48:25 -07:00
Marcelo Vanzin 7e418e99cf [SPARK-17611][YARN][TEST] Make shuffle service test really test auth.
Currently, the code is just swallowing exceptions, and not really checking
whether the auth information was being recorded properly. Fix both problems,
and also avoid tests inadvertently affecting other tests by modifying the
shared config variable (by making it not shared).

Author: Marcelo Vanzin <vanzin@cloudera.com>

Closes #15161 from vanzin/SPARK-17611.
2016-09-20 14:17:49 -07:00