package spark import java.io.EOFException import java.net.URL import java.io.ObjectInputStream import java.util.concurrent.atomic.AtomicLong import java.util.HashSet import java.util.Random import java.util.Date import scala.collection.mutable.ArrayBuffer import scala.collection.mutable.Map import scala.collection.mutable.HashMap import org.apache.hadoop.io.BytesWritable import org.apache.hadoop.io.NullWritable import org.apache.hadoop.io.Text import org.apache.hadoop.io.Writable import org.apache.hadoop.mapred.FileOutputCommitter import org.apache.hadoop.mapred.HadoopWriter import org.apache.hadoop.mapred.JobConf import org.apache.hadoop.mapred.OutputCommitter import org.apache.hadoop.mapred.OutputFormat import org.apache.hadoop.mapred.SequenceFileOutputFormat import org.apache.hadoop.mapred.TextOutputFormat import SparkContext._ /** * A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. Represents an immutable, * partitioned collection of elements that can be operated on in parallel. * * Each RDD is characterized by five main properties: * - A list of splits (partitions) * - A function for computing each split * - A list of dependencies on other RDDs * - Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned) * - Optionally, a list of preferred locations to compute each split on (e.g. block locations for * HDFS) * * All the scheduling and execution in Spark is done based on these methods, allowing each RDD to * implement its own way of computing itself. * * This class also contains transformation methods available on all RDDs (e.g. map and filter). In * addition, PairRDDFunctions contains extra methods available on RDDs of key-value pairs, and * SequenceFileRDDFunctions contains extra methods for saving RDDs to Hadoop SequenceFiles. */ abstract class RDD[T: ClassManifest](@transient sc: SparkContext) extends Serializable { // Methods that must be implemented by subclasses def splits: Array[Split] def compute(split: Split): Iterator[T] val dependencies: List[Dependency[_]] // Optionally overridden by subclasses to specify how they are partitioned val partitioner: Option[Partitioner] = None // Optionally overridden by subclasses to specify placement preferences def preferredLocations(split: Split): Seq[String] = Nil def context = sc // Get a unique ID for this RDD val id = sc.newRddId() // Variables relating to caching private var shouldCache = false // Change this RDD's caching def cache(): RDD[T] = { shouldCache = true this } // Read this RDD; will read from cache if applicable, or otherwise compute final def iterator(split: Split): Iterator[T] = { if (shouldCache) { SparkEnv.get.cacheTracker.getOrCompute[T](this, split) } else { compute(split) } } // Transformations (return a new RDD) def map[U: ClassManifest](f: T => U): RDD[U] = new MappedRDD(this, sc.clean(f)) def flatMap[U: ClassManifest](f: T => Traversable[U]): RDD[U] = new FlatMappedRDD(this, sc.clean(f)) def filter(f: T => Boolean): RDD[T] = new FilteredRDD(this, sc.clean(f)) def sample(withReplacement: Boolean, fraction: Double, seed: Int): RDD[T] = new SampledRDD(this, withReplacement, fraction, seed) def takeSample(withReplacement: Boolean, num: Int, seed: Int): Array[T] = { var fraction = 0.0 var total = 0 var multiplier = 3.0 var initialCount = count() var maxSelected = 0 if (initialCount > Integer.MAX_VALUE) { maxSelected = Integer.MAX_VALUE } else { maxSelected = initialCount.toInt } if (num > initialCount) { total = maxSelected fraction = Math.min(multiplier * (maxSelected + 1) / initialCount, 1.0) } else if (num < 0) { throw(new IllegalArgumentException("Negative number of elements requested")) } else { fraction = Math.min(multiplier * (num + 1) / initialCount, 1.0) total = num.toInt } var samples = this.sample(withReplacement, fraction, seed).collect() while (samples.length < total) { samples = this.sample(withReplacement, fraction, seed).collect() } val arr = samples.take(total) return arr } def union(other: RDD[T]): RDD[T] = new UnionRDD(sc, Array(this, other)) def ++(other: RDD[T]): RDD[T] = this.union(other) def glom(): RDD[Array[T]] = new GlommedRDD(this) def cartesian[U: ClassManifest](other: RDD[U]): RDD[(T, U)] = new CartesianRDD(sc, this, other) def groupBy[K: ClassManifest](f: T => K, numSplits: Int): RDD[(K, Seq[T])] = { val cleanF = sc.clean(f) this.map(t => (cleanF(t), t)).groupByKey(numSplits) } def groupBy[K: ClassManifest](f: T => K): RDD[(K, Seq[T])] = groupBy[K](f, sc.defaultParallelism) def pipe(command: String): RDD[String] = new PipedRDD(this, command) def pipe(command: Seq[String]): RDD[String] = new PipedRDD(this, command) def mapPartitions[U: ClassManifest](f: Iterator[T] => Iterator[U]): RDD[U] = new MapPartitionsRDD(this, sc.clean(f)) // Actions (launch a job to return a value to the user program) def foreach(f: T => Unit) { val cleanF = sc.clean(f) sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF)) } def collect(): Array[T] = { val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray) Array.concat(results: _*) } def reduce(f: (T, T) => T): T = { val cleanF = sc.clean(f) val reducePartition: Iterator[T] => Option[T] = iter => { if (iter.hasNext) { Some(iter.reduceLeft(cleanF)) }else { None } } val options = sc.runJob(this, reducePartition) val results = new ArrayBuffer[T] for (opt <- options; elem <- opt) { results += elem } if (results.size == 0) { throw new UnsupportedOperationException("empty collection") } else { return results.reduceLeft(cleanF) } } /** * Aggregate the elements of each partition, and then the results for all the partitions, using a * given associative function and a neutral "zero value". The function op(t1, t2) is allowed to * modify t1 and return it as its result value to avoid object allocation; however, it should not * modify t2. */ def fold(zeroValue: T)(op: (T, T) => T): T = { val cleanOp = sc.clean(op) val results = sc.runJob(this, (iter: Iterator[T]) => iter.fold(zeroValue)(cleanOp)) return results.fold(zeroValue)(cleanOp) } /** * Aggregate the elements of each partition, and then the results for all the partitions, using * given combine functions and a neutral "zero value". This function can return a different result * type, U, than the type of this RDD, T. Thus, we need one operation for merging a T into an U * and one operation for merging two U's, as in scala.TraversableOnce. Both of these functions are * allowed to modify and return their first argument instead of creating a new U to avoid memory * allocation. */ def aggregate[U: ClassManifest](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U = { val cleanSeqOp = sc.clean(seqOp) val cleanCombOp = sc.clean(combOp) val results = sc.runJob(this, (iter: Iterator[T]) => iter.aggregate(zeroValue)(cleanSeqOp, cleanCombOp)) return results.fold(zeroValue)(cleanCombOp) } def count(): Long = { sc.runJob(this, (iter: Iterator[T]) => { var result = 0L while (iter.hasNext) { result += 1L iter.next } result }).sum } def toArray(): Array[T] = collect() /** * Take the first num elements of the RDD. This currently scans the partitions *one by one*, so * it will be slow if a lot of partitions are required. In that case, use collect() to get the * whole RDD instead. */ def take(num: Int): Array[T] = { if (num == 0) { return new Array[T](0) } val buf = new ArrayBuffer[T] var p = 0 while (buf.size < num && p < splits.size) { val left = num - buf.size val res = sc.runJob(this, (it: Iterator[T]) => it.take(left).toArray, Array(p), true) buf ++= res(0) if (buf.size == num) return buf.toArray p += 1 } return buf.toArray } def first(): T = take(1) match { case Array(t) => t case _ => throw new UnsupportedOperationException("empty collection") } def saveAsTextFile(path: String) { this.map(x => (NullWritable.get(), new Text(x.toString))) .saveAsHadoopFile[TextOutputFormat[NullWritable, Text]](path) } def saveAsObjectFile(path: String) { this.glom .map(x => (NullWritable.get(), new BytesWritable(Utils.serialize(x)))) .saveAsSequenceFile(path) } } class MappedRDD[U: ClassManifest, T: ClassManifest]( prev: RDD[T], f: T => U ) extends RDD[U](prev.context) { override def splits = prev.splits override val dependencies = List(new OneToOneDependency(prev)) override def compute(split: Split) = prev.iterator(split).map(f) } class FlatMappedRDD[U: ClassManifest, T: ClassManifest]( prev: RDD[T], f: T => Traversable[U] ) extends RDD[U](prev.context) { override def splits = prev.splits override val dependencies = List(new OneToOneDependency(prev)) override def compute(split: Split) = prev.iterator(split).flatMap(f) } class FilteredRDD[T: ClassManifest]( prev: RDD[T], f: T => Boolean ) extends RDD[T](prev.context) { override def splits = prev.splits override val dependencies = List(new OneToOneDependency(prev)) override def compute(split: Split) = prev.iterator(split).filter(f) } class GlommedRDD[T: ClassManifest]( prev: RDD[T] ) extends RDD[Array[T]](prev.context) { override def splits = prev.splits override val dependencies = List(new OneToOneDependency(prev)) override def compute(split: Split) = Array(prev.iterator(split).toArray).iterator } class MapPartitionsRDD[U: ClassManifest, T: ClassManifest]( prev: RDD[T], f: Iterator[T] => Iterator[U] ) extends RDD[U](prev.context) { override def splits = prev.splits override val dependencies = List(new OneToOneDependency(prev)) override def compute(split: Split) = f(prev.iterator(split)) }