/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package spark import java.nio.ByteBuffer import java.util.{Date, HashMap => JHashMap} import java.text.SimpleDateFormat import scala.collection.Map import scala.collection.mutable.ArrayBuffer import scala.collection.mutable.HashMap import scala.collection.JavaConversions._ import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.Path import org.apache.hadoop.io.compress.CompressionCodec import org.apache.hadoop.io.SequenceFile.CompressionType import org.apache.hadoop.mapred.FileOutputCommitter import org.apache.hadoop.mapred.FileOutputFormat import org.apache.hadoop.mapred.HadoopWriter import org.apache.hadoop.mapred.JobConf import org.apache.hadoop.mapred.OutputFormat import org.apache.hadoop.mapreduce.lib.output.{FileOutputFormat => NewFileOutputFormat} import org.apache.hadoop.mapreduce.{OutputFormat => NewOutputFormat, RecordWriter => NewRecordWriter, Job => NewAPIHadoopJob, HadoopMapReduceUtil} import org.apache.hadoop.security.UserGroupInformation import spark.partial.BoundedDouble import spark.partial.PartialResult import spark.rdd._ import spark.SparkContext._ import spark.Partitioner._ /** * Extra functions available on RDDs of (key, value) pairs through an implicit conversion. * Import `spark.SparkContext._` at the top of your program to use these functions. */ class PairRDDFunctions[K: ClassManifest, V: ClassManifest]( self: RDD[(K, V)]) extends Logging with HadoopMapReduceUtil with Serializable { /** * Generic function to combine the elements for each key using a custom set of aggregation * functions. Turns an RDD[(K, V)] into a result of type RDD[(K, C)], for a "combined type" C * Note that V and C can be different -- for example, one might group an RDD of type * (Int, Int) into an RDD of type (Int, Seq[Int]). Users provide three functions: * * - `createCombiner`, which turns a V into a C (e.g., creates a one-element list) * - `mergeValue`, to merge a V into a C (e.g., adds it to the end of a list) * - `mergeCombiners`, to combine two C's into a single one. * * In addition, users can control the partitioning of the output RDD, and whether to perform * map-side aggregation (if a mapper can produce multiple items with the same key). */ def combineByKey[C](createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C, partitioner: Partitioner, mapSideCombine: Boolean = true, serializerClass: String = null): RDD[(K, C)] = { if (getKeyClass().isArray) { if (mapSideCombine) { throw new SparkException("Cannot use map-side combining with array keys.") } if (partitioner.isInstanceOf[HashPartitioner]) { throw new SparkException("Default partitioner cannot partition array keys.") } } val aggregator = new Aggregator[K, V, C](createCombiner, mergeValue, mergeCombiners) if (self.partitioner == Some(partitioner)) { self.mapPartitions(aggregator.combineValuesByKey(_), true) } else if (mapSideCombine) { val mapSideCombined = self.mapPartitions(aggregator.combineValuesByKey(_), true) val partitioned = new ShuffledRDD[K, C](mapSideCombined, partitioner, serializerClass) partitioned.mapPartitions(aggregator.combineCombinersByKey(_), true) } else { // Don't apply map-side combiner. // A sanity check to make sure mergeCombiners is not defined. assert(mergeCombiners == null) val values = new ShuffledRDD[K, V](self, partitioner, serializerClass) values.mapPartitions(aggregator.combineValuesByKey(_), true) } } /** * Simplified version of combineByKey that hash-partitions the output RDD. */ def combineByKey[C](createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C, numPartitions: Int): RDD[(K, C)] = { combineByKey(createCombiner, mergeValue, mergeCombiners, new HashPartitioner(numPartitions)) } /** * Merge the values for each key using an associative function and a neutral "zero value" which may * be added to the result an arbitrary number of times, and must not change the result (e.g., Nil for * list concatenation, 0 for addition, or 1 for multiplication.). */ def foldByKey(zeroValue: V, partitioner: Partitioner)(func: (V, V) => V): RDD[(K, V)] = { // Serialize the zero value to a byte array so that we can get a new clone of it on each key val zeroBuffer = SparkEnv.get.closureSerializer.newInstance().serialize(zeroValue) val zeroArray = new Array[Byte](zeroBuffer.limit) zeroBuffer.get(zeroArray) // When deserializing, use a lazy val to create just one instance of the serializer per task lazy val cachedSerializer = SparkEnv.get.closureSerializer.newInstance() def createZero() = cachedSerializer.deserialize[V](ByteBuffer.wrap(zeroArray)) combineByKey[V]((v: V) => func(createZero(), v), func, func, partitioner) } /** * Merge the values for each key using an associative function and a neutral "zero value" which may * be added to the result an arbitrary number of times, and must not change the result (e.g., Nil for * list concatenation, 0 for addition, or 1 for multiplication.). */ def foldByKey(zeroValue: V, numPartitions: Int)(func: (V, V) => V): RDD[(K, V)] = { foldByKey(zeroValue, new HashPartitioner(numPartitions))(func) } /** * Merge the values for each key using an associative function and a neutral "zero value" which may * be added to the result an arbitrary number of times, and must not change the result (e.g., Nil for * list concatenation, 0 for addition, or 1 for multiplication.). */ def foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)] = { foldByKey(zeroValue, defaultPartitioner(self))(func) } /** * Merge the values for each key using an associative reduce function. This will also perform * the merging locally on each mapper before sending results to a reducer, similarly to a * "combiner" in MapReduce. */ def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = { combineByKey[V]((v: V) => v, func, func, partitioner) } /** * Merge the values for each key using an associative reduce function, but return the results * immediately to the master as a Map. This will also perform the merging locally on each mapper * before sending results to a reducer, similarly to a "combiner" in MapReduce. */ def reduceByKeyLocally(func: (V, V) => V): Map[K, V] = { if (getKeyClass().isArray) { throw new SparkException("reduceByKeyLocally() does not support array keys") } def reducePartition(iter: Iterator[(K, V)]): Iterator[JHashMap[K, V]] = { val map = new JHashMap[K, V] for ((k, v) <- iter) { val old = map.get(k) map.put(k, if (old == null) v else func(old, v)) } Iterator(map) } def mergeMaps(m1: JHashMap[K, V], m2: JHashMap[K, V]): JHashMap[K, V] = { for ((k, v) <- m2) { val old = m1.get(k) m1.put(k, if (old == null) v else func(old, v)) } return m1 } self.mapPartitions(reducePartition).reduce(mergeMaps) } /** Alias for reduceByKeyLocally */ def reduceByKeyToDriver(func: (V, V) => V): Map[K, V] = reduceByKeyLocally(func) /** Count the number of elements for each key, and return the result to the master as a Map. */ def countByKey(): Map[K, Long] = self.map(_._1).countByValue() /** * (Experimental) Approximate version of countByKey that can return a partial result if it does * not finish within a timeout. */ def countByKeyApprox(timeout: Long, confidence: Double = 0.95) : PartialResult[Map[K, BoundedDouble]] = { self.map(_._1).countByValueApprox(timeout, confidence) } /** * Merge the values for each key using an associative reduce function. This will also perform * the merging locally on each mapper before sending results to a reducer, similarly to a * "combiner" in MapReduce. Output will be hash-partitioned with numPartitions partitions. */ def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)] = { reduceByKey(new HashPartitioner(numPartitions), func) } /** * Group the values for each key in the RDD into a single sequence. Allows controlling the * partitioning of the resulting key-value pair RDD by passing a Partitioner. */ def groupByKey(partitioner: Partitioner): RDD[(K, Seq[V])] = { // groupByKey shouldn't use map side combine because map side combine does not // reduce the amount of data shuffled and requires all map side data be inserted // into a hash table, leading to more objects in the old gen. def createCombiner(v: V) = ArrayBuffer(v) def mergeValue(buf: ArrayBuffer[V], v: V) = buf += v val bufs = combineByKey[ArrayBuffer[V]]( createCombiner _, mergeValue _, null, partitioner, mapSideCombine=false) bufs.asInstanceOf[RDD[(K, Seq[V])]] } /** * Group the values for each key in the RDD into a single sequence. Hash-partitions the * resulting RDD with into `numPartitions` partitions. */ def groupByKey(numPartitions: Int): RDD[(K, Seq[V])] = { groupByKey(new HashPartitioner(numPartitions)) } /** * Return a copy of the RDD partitioned using the specified partitioner. If `mapSideCombine` * is true, Spark will group values of the same key together on the map side before the * repartitioning, to only send each key over the network once. If a large number of * duplicated keys are expected, and the size of the keys are large, `mapSideCombine` should * be set to true. */ def partitionBy(partitioner: Partitioner, mapSideCombine: Boolean = false): RDD[(K, V)] = { if (getKeyClass().isArray) { if (mapSideCombine) { throw new SparkException("Cannot use map-side combining with array keys.") } if (partitioner.isInstanceOf[HashPartitioner]) { throw new SparkException("Default partitioner cannot partition array keys.") } } if (mapSideCombine) { def createCombiner(v: V) = ArrayBuffer(v) def mergeValue(buf: ArrayBuffer[V], v: V) = buf += v def mergeCombiners(b1: ArrayBuffer[V], b2: ArrayBuffer[V]) = b1 ++= b2 val bufs = combineByKey[ArrayBuffer[V]]( createCombiner _, mergeValue _, mergeCombiners _, partitioner) bufs.flatMapValues(buf => buf) } else { new ShuffledRDD[K, V](self, partitioner) } } /** * Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each * pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and * (k, v2) is in `other`. Uses the given Partitioner to partition the output RDD. */ def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))] = { this.cogroup(other, partitioner).flatMapValues { case (vs, ws) => for (v <- vs.iterator; w <- ws.iterator) yield (v, w) } } /** * Perform a left outer join of `this` and `other`. For each element (k, v) in `this`, the * resulting RDD will either contain all pairs (k, (v, Some(w))) for w in `other`, or the * pair (k, (v, None)) if no elements in `other` have key k. Uses the given Partitioner to * partition the output RDD. */ def leftOuterJoin[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, Option[W]))] = { this.cogroup(other, partitioner).flatMapValues { case (vs, ws) => if (ws.isEmpty) { vs.iterator.map(v => (v, None)) } else { for (v <- vs.iterator; w <- ws.iterator) yield (v, Some(w)) } } } /** * Perform a right outer join of `this` and `other`. For each element (k, w) in `other`, the * resulting RDD will either contain all pairs (k, (Some(v), w)) for v in `this`, or the * pair (k, (None, w)) if no elements in `this` have key k. Uses the given Partitioner to * partition the output RDD. */ def rightOuterJoin[W](other: RDD[(K, W)], partitioner: Partitioner) : RDD[(K, (Option[V], W))] = { this.cogroup(other, partitioner).flatMapValues { case (vs, ws) => if (vs.isEmpty) { ws.iterator.map(w => (None, w)) } else { for (v <- vs.iterator; w <- ws.iterator) yield (Some(v), w) } } } /** * Simplified version of combineByKey that hash-partitions the resulting RDD using the * existing partitioner/parallelism level. */ def combineByKey[C](createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C) : RDD[(K, C)] = { combineByKey(createCombiner, mergeValue, mergeCombiners, defaultPartitioner(self)) } /** * Merge the values for each key using an associative reduce function. This will also perform * the merging locally on each mapper before sending results to a reducer, similarly to a * "combiner" in MapReduce. Output will be hash-partitioned with the existing partitioner/ * parallelism level. */ def reduceByKey(func: (V, V) => V): RDD[(K, V)] = { reduceByKey(defaultPartitioner(self), func) } /** * Group the values for each key in the RDD into a single sequence. Hash-partitions the * resulting RDD with the existing partitioner/parallelism level. */ def groupByKey(): RDD[(K, Seq[V])] = { groupByKey(defaultPartitioner(self)) } /** * Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each * pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and * (k, v2) is in `other`. Performs a hash join across the cluster. */ def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))] = { join(other, defaultPartitioner(self, other)) } /** * Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each * pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and * (k, v2) is in `other`. Performs a hash join across the cluster. */ def join[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (V, W))] = { join(other, new HashPartitioner(numPartitions)) } /** * Perform a left outer join of `this` and `other`. For each element (k, v) in `this`, the * resulting RDD will either contain all pairs (k, (v, Some(w))) for w in `other`, or the * pair (k, (v, None)) if no elements in `other` have key k. Hash-partitions the output * using the existing partitioner/parallelism level. */ def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))] = { leftOuterJoin(other, defaultPartitioner(self, other)) } /** * Perform a left outer join of `this` and `other`. For each element (k, v) in `this`, the * resulting RDD will either contain all pairs (k, (v, Some(w))) for w in `other`, or the * pair (k, (v, None)) if no elements in `other` have key k. Hash-partitions the output * into `numPartitions` partitions. */ def leftOuterJoin[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (V, Option[W]))] = { leftOuterJoin(other, new HashPartitioner(numPartitions)) } /** * Perform a right outer join of `this` and `other`. For each element (k, w) in `other`, the * resulting RDD will either contain all pairs (k, (Some(v), w)) for v in `this`, or the * pair (k, (None, w)) if no elements in `this` have key k. Hash-partitions the resulting * RDD using the existing partitioner/parallelism level. */ def rightOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (Option[V], W))] = { rightOuterJoin(other, defaultPartitioner(self, other)) } /** * Perform a right outer join of `this` and `other`. For each element (k, w) in `other`, the * resulting RDD will either contain all pairs (k, (Some(v), w)) for v in `this`, or the * pair (k, (None, w)) if no elements in `this` have key k. Hash-partitions the resulting * RDD into the given number of partitions. */ def rightOuterJoin[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (Option[V], W))] = { rightOuterJoin(other, new HashPartitioner(numPartitions)) } /** * Return the key-value pairs in this RDD to the master as a Map. */ def collectAsMap(): Map[K, V] = HashMap(self.collect(): _*) /** * Pass each value in the key-value pair RDD through a map function without changing the keys; * this also retains the original RDD's partitioning. */ def mapValues[U](f: V => U): RDD[(K, U)] = { val cleanF = self.context.clean(f) new MappedValuesRDD(self, cleanF) } /** * Pass each value in the key-value pair RDD through a flatMap function without changing the * keys; this also retains the original RDD's partitioning. */ def flatMapValues[U](f: V => TraversableOnce[U]): RDD[(K, U)] = { val cleanF = self.context.clean(f) new FlatMappedValuesRDD(self, cleanF) } /** * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the * list of values for that key in `this` as well as `other`. */ def cogroup[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (Seq[V], Seq[W]))] = { if (partitioner.isInstanceOf[HashPartitioner] && getKeyClass().isArray) { throw new SparkException("Default partitioner cannot partition array keys.") } val cg = new CoGroupedRDD[K]( Seq(self.asInstanceOf[RDD[(K, _)]], other.asInstanceOf[RDD[(K, _)]]), partitioner) val prfs = new PairRDDFunctions[K, Seq[Seq[_]]](cg)(classManifest[K], Manifests.seqSeqManifest) prfs.mapValues { case Seq(vs, ws) => (vs.asInstanceOf[Seq[V]], ws.asInstanceOf[Seq[W]]) } } /** * For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a * tuple with the list of values for that key in `this`, `other1` and `other2`. */ def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], partitioner: Partitioner) : RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = { if (partitioner.isInstanceOf[HashPartitioner] && getKeyClass().isArray) { throw new SparkException("Default partitioner cannot partition array keys.") } val cg = new CoGroupedRDD[K]( Seq(self.asInstanceOf[RDD[(K, _)]], other1.asInstanceOf[RDD[(K, _)]], other2.asInstanceOf[RDD[(K, _)]]), partitioner) val prfs = new PairRDDFunctions[K, Seq[Seq[_]]](cg)(classManifest[K], Manifests.seqSeqManifest) prfs.mapValues { case Seq(vs, w1s, w2s) => (vs.asInstanceOf[Seq[V]], w1s.asInstanceOf[Seq[W1]], w2s.asInstanceOf[Seq[W2]]) } } /** * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the * list of values for that key in `this` as well as `other`. */ def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Seq[V], Seq[W]))] = { cogroup(other, defaultPartitioner(self, other)) } /** * For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a * tuple with the list of values for that key in `this`, `other1` and `other2`. */ def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)]) : RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = { cogroup(other1, other2, defaultPartitioner(self, other1, other2)) } /** * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the * list of values for that key in `this` as well as `other`. */ def cogroup[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (Seq[V], Seq[W]))] = { cogroup(other, new HashPartitioner(numPartitions)) } /** * For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a * tuple with the list of values for that key in `this`, `other1` and `other2`. */ def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], numPartitions: Int) : RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = { cogroup(other1, other2, new HashPartitioner(numPartitions)) } /** Alias for cogroup. */ def groupWith[W](other: RDD[(K, W)]): RDD[(K, (Seq[V], Seq[W]))] = { cogroup(other, defaultPartitioner(self, other)) } /** Alias for cogroup. */ def groupWith[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)]) : RDD[(K, (Seq[V], Seq[W1], Seq[W2]))] = { cogroup(other1, other2, defaultPartitioner(self, other1, other2)) } /** * Return an RDD with the pairs from `this` whose keys are not in `other`. * * Uses `this` partitioner/partition size, because even if `other` is huge, the resulting * RDD will be <= us. */ def subtractByKey[W: ClassManifest](other: RDD[(K, W)]): RDD[(K, V)] = subtractByKey(other, self.partitioner.getOrElse(new HashPartitioner(self.partitions.size))) /** Return an RDD with the pairs from `this` whose keys are not in `other`. */ def subtractByKey[W: ClassManifest](other: RDD[(K, W)], numPartitions: Int): RDD[(K, V)] = subtractByKey(other, new HashPartitioner(numPartitions)) /** Return an RDD with the pairs from `this` whose keys are not in `other`. */ def subtractByKey[W: ClassManifest](other: RDD[(K, W)], p: Partitioner): RDD[(K, V)] = new SubtractedRDD[K, V, W](self, other, p) /** * Return the list of values in the RDD for key `key`. This operation is done efficiently if the * RDD has a known partitioner by only searching the partition that the key maps to. */ def lookup(key: K): Seq[V] = { self.partitioner match { case Some(p) => val index = p.getPartition(key) def process(it: Iterator[(K, V)]): Seq[V] = { val buf = new ArrayBuffer[V] for ((k, v) <- it if k == key) { buf += v } buf } val res = self.context.runJob(self, process _, Array(index), false) res(0) case None => self.filter(_._1 == key).map(_._2).collect() } } /** * Output the RDD to any Hadoop-supported file system, using a Hadoop `OutputFormat` class * supporting the key and value types K and V in this RDD. */ def saveAsHadoopFile[F <: OutputFormat[K, V]](path: String)(implicit fm: ClassManifest[F]) { saveAsHadoopFile(path, getKeyClass, getValueClass, fm.erasure.asInstanceOf[Class[F]]) } /** * Output the RDD to any Hadoop-supported file system, using a Hadoop `OutputFormat` class * supporting the key and value types K and V in this RDD. Compress the result with the * supplied codec. */ def saveAsHadoopFile[F <: OutputFormat[K, V]]( path: String, codec: Class[_ <: CompressionCodec]) (implicit fm: ClassManifest[F]) { saveAsHadoopFile(path, getKeyClass, getValueClass, fm.erasure.asInstanceOf[Class[F]], codec) } /** * Output the RDD to any Hadoop-supported file system, using a new Hadoop API `OutputFormat` * (mapreduce.OutputFormat) object supporting the key and value types K and V in this RDD. */ def saveAsNewAPIHadoopFile[F <: NewOutputFormat[K, V]](path: String)(implicit fm: ClassManifest[F]) { saveAsNewAPIHadoopFile(path, getKeyClass, getValueClass, fm.erasure.asInstanceOf[Class[F]]) } /** * Output the RDD to any Hadoop-supported file system, using a new Hadoop API `OutputFormat` * (mapreduce.OutputFormat) object supporting the key and value types K and V in this RDD. */ def saveAsNewAPIHadoopFile( path: String, keyClass: Class[_], valueClass: Class[_], outputFormatClass: Class[_ <: NewOutputFormat[_, _]], conf: Configuration = self.context.hadoopConfiguration) { val job = new NewAPIHadoopJob(conf) job.setOutputKeyClass(keyClass) job.setOutputValueClass(valueClass) val wrappedConf = new SerializableWritable(job.getConfiguration) NewFileOutputFormat.setOutputPath(job, new Path(path)) val formatter = new SimpleDateFormat("yyyyMMddHHmm") val jobtrackerID = formatter.format(new Date()) val stageId = self.id def writeShard(context: spark.TaskContext, iter: Iterator[(K,V)]): Int = { // Hadoop wants a 32-bit task attempt ID, so if ours is bigger than Int.MaxValue, roll it // around by taking a mod. We expect that no task will be attempted 2 billion times. val attemptNumber = (context.attemptId % Int.MaxValue).toInt /* "reduce task" */ val attemptId = newTaskAttemptID(jobtrackerID, stageId, false, context.splitId, attemptNumber) val hadoopContext = newTaskAttemptContext(wrappedConf.value, attemptId) val format = outputFormatClass.newInstance val committer = format.getOutputCommitter(hadoopContext) committer.setupTask(hadoopContext) val writer = format.getRecordWriter(hadoopContext).asInstanceOf[NewRecordWriter[K,V]] while (iter.hasNext) { val (k, v) = iter.next writer.write(k, v) } writer.close(hadoopContext) committer.commitTask(hadoopContext) return 1 } val jobFormat = outputFormatClass.newInstance /* apparently we need a TaskAttemptID to construct an OutputCommitter; * however we're only going to use this local OutputCommitter for * setupJob/commitJob, so we just use a dummy "map" task. */ val jobAttemptId = newTaskAttemptID(jobtrackerID, stageId, true, 0, 0) val jobTaskContext = newTaskAttemptContext(wrappedConf.value, jobAttemptId) val jobCommitter = jobFormat.getOutputCommitter(jobTaskContext) jobCommitter.setupJob(jobTaskContext) val count = self.context.runJob(self, writeShard _).sum jobCommitter.commitJob(jobTaskContext) jobCommitter.cleanupJob(jobTaskContext) } /** * Output the RDD to any Hadoop-supported file system, using a Hadoop `OutputFormat` class * supporting the key and value types K and V in this RDD. Compress with the supplied codec. */ def saveAsHadoopFile( path: String, keyClass: Class[_], valueClass: Class[_], outputFormatClass: Class[_ <: OutputFormat[_, _]], codec: Class[_ <: CompressionCodec]) { saveAsHadoopFile(path, keyClass, valueClass, outputFormatClass, new JobConf(self.context.hadoopConfiguration), Some(codec)) } /** * Output the RDD to any Hadoop-supported file system, using a Hadoop `OutputFormat` class * supporting the key and value types K and V in this RDD. */ def saveAsHadoopFile( path: String, keyClass: Class[_], valueClass: Class[_], outputFormatClass: Class[_ <: OutputFormat[_, _]], conf: JobConf = new JobConf(self.context.hadoopConfiguration), codec: Option[Class[_ <: CompressionCodec]] = None) { conf.setOutputKeyClass(keyClass) conf.setOutputValueClass(valueClass) // conf.setOutputFormat(outputFormatClass) // Doesn't work in Scala 2.9 due to what may be a generics bug conf.set("mapred.output.format.class", outputFormatClass.getName) for (c <- codec) { conf.setCompressMapOutput(true) conf.set("mapred.output.compress", "true") conf.setMapOutputCompressorClass(c) conf.set("mapred.output.compression.codec", c.getCanonicalName) conf.set("mapred.output.compression.type", CompressionType.BLOCK.toString) } conf.setOutputCommitter(classOf[FileOutputCommitter]) FileOutputFormat.setOutputPath(conf, HadoopWriter.createPathFromString(path, conf)) saveAsHadoopDataset(conf) } /** * Output the RDD to any Hadoop-supported storage system, using a Hadoop JobConf object for * that storage system. The JobConf should set an OutputFormat and any output paths required * (e.g. a table name to write to) in the same way as it would be configured for a Hadoop * MapReduce job. */ def saveAsHadoopDataset(conf: JobConf) { val outputFormatClass = conf.getOutputFormat val keyClass = conf.getOutputKeyClass val valueClass = conf.getOutputValueClass if (outputFormatClass == null) { throw new SparkException("Output format class not set") } if (keyClass == null) { throw new SparkException("Output key class not set") } if (valueClass == null) { throw new SparkException("Output value class not set") } logInfo("Saving as hadoop file of type (" + keyClass.getSimpleName+ ", " + valueClass.getSimpleName+ ")") val writer = new HadoopWriter(conf) writer.preSetup() def writeToFile(context: TaskContext, iter: Iterator[(K,V)]) { // Hadoop wants a 32-bit task attempt ID, so if ours is bigger than Int.MaxValue, roll it // around by taking a mod. We expect that no task will be attempted 2 billion times. val attemptNumber = (context.attemptId % Int.MaxValue).toInt writer.setup(context.stageId, context.splitId, attemptNumber) writer.open() var count = 0 while(iter.hasNext) { val record = iter.next() count += 1 writer.write(record._1.asInstanceOf[AnyRef], record._2.asInstanceOf[AnyRef]) } writer.close() writer.commit() } self.context.runJob(self, writeToFile _) writer.commitJob() writer.cleanup() } /** * Return an RDD with the keys of each tuple. */ def keys: RDD[K] = self.map(_._1) /** * Return an RDD with the values of each tuple. */ def values: RDD[V] = self.map(_._2) private[spark] def getKeyClass() = implicitly[ClassManifest[K]].erasure private[spark] def getValueClass() = implicitly[ClassManifest[V]].erasure } /** * Extra functions available on RDDs of (key, value) pairs where the key is sortable through * an implicit conversion. Import `spark.SparkContext._` at the top of your program to use these * functions. They will work with any key type that has a `scala.math.Ordered` implementation. */ class OrderedRDDFunctions[K <% Ordered[K]: ClassManifest, V: ClassManifest]( self: RDD[(K, V)]) extends Logging with Serializable { /** * Sort the RDD by key, so that each partition contains a sorted range of the elements. Calling * `collect` or `save` on the resulting RDD will return or output an ordered list of records * (in the `save` case, they will be written to multiple `part-X` files in the filesystem, in * order of the keys). */ def sortByKey(ascending: Boolean = true, numPartitions: Int = self.partitions.size): RDD[(K,V)] = { val shuffled = new ShuffledRDD[K, V](self, new RangePartitioner(numPartitions, self, ascending)) shuffled.mapPartitions(iter => { val buf = iter.toArray if (ascending) { buf.sortWith((x, y) => x._1 < y._1).iterator } else { buf.sortWith((x, y) => x._1 > y._1).iterator } }, true) } } private[spark] class MappedValuesRDD[K, V, U](prev: RDD[(K, V)], f: V => U) extends RDD[(K, U)](prev) { override def getPartitions = firstParent[(K, V)].partitions override val partitioner = firstParent[(K, V)].partitioner override def compute(split: Partition, context: TaskContext) = firstParent[(K, V)].iterator(split, context).map{ case (k, v) => (k, f(v)) } } private[spark] class FlatMappedValuesRDD[K, V, U](prev: RDD[(K, V)], f: V => TraversableOnce[U]) extends RDD[(K, U)](prev) { override def getPartitions = firstParent[(K, V)].partitions override val partitioner = firstParent[(K, V)].partitioner override def compute(split: Partition, context: TaskContext) = { firstParent[(K, V)].iterator(split, context).flatMap { case (k, v) => f(v).map(x => (k, x)) } } } private[spark] object Manifests { val seqSeqManifest = classManifest[Seq[Seq[_]]] }