.. Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at .. http://www.apache.org/licenses/LICENSE-2.0 .. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ================= Debugging PySpark ================= PySpark uses Spark as an engine. PySpark uses `Py4J `_ to leverage Spark to submit and computes the jobs. On the driver side, PySpark communicates with the driver on JVM by using `Py4J `_. When :class:`pyspark.sql.SparkSession` or :class:`pyspark.SparkContext` is created and initialized, PySpark launches a JVM to communicate. On the executor side, Python workers execute and handle Python native functions or data. They are not launched if a PySpark application does not require interaction between Python workers and JVMs. They are lazily launched only when Python native functions or data have to be handled, for example, when you execute pandas UDFs or PySpark RDD APIs. This page focuses on debugging Python side of PySpark on both driver and executor sides instead of focusing on debugging with JVM. Profiling and debugging JVM is described at `Useful Developer Tools `_. Note that, - If you are running locally, you can directly debug the driver side via using your IDE without the remote debug feature. - *There are many other ways of debugging PySpark applications*. For example, you can remotely debug by using the open source `Remote Debugger `_ instead of using PyCharm Professional documented here. Remote Debugging (PyCharm Professional) --------------------------------------- This section describes remote debugging on both driver and executor sides within a single machine to demonstrate easily. The ways of debugging PySpark on the executor side is different from doing in the driver. Therefore, they will be demonstrated respectively. In order to debug PySpark applications on other machines, please refer to the full instructions that are specific to PyCharm, documented `here `_. Firstly, choose **Edit Configuration...** from the *Run* menu. It opens the **Run/Debug Configurations dialog**. You have to click ``+`` configuration on the toolbar, and from the list of available configurations, select **Python Debug Server**. Enter the name of this new configuration, for example, ``MyRemoteDebugger`` and also specify the port number, for example ``12345``. .. image:: ../../../../docs/img/pyspark-remote-debug1.png :alt: PyCharm remote debugger setting | After that, you should install the corresponding version of the ``pydevd-pycahrm`` package in all the machines which will connect to your PyCharm debugger. In the previous dialog, it shows the command to install. .. code-block:: text pip install pydevd-pycharm~= Driver Side ~~~~~~~~~~~ To debug on the driver side, your application should be able to connect to the debugging server. Copy and paste the codes with ``pydevd_pycharm.settrace`` to the top of your PySpark script. Suppose the script name is ``app.py``: .. code-block:: bash echo "#======================Copy and paste from the previous dialog=========================== import pydevd_pycharm pydevd_pycharm.settrace('localhost', port=12345, stdoutToServer=True, stderrToServer=True) #======================================================================================== # Your PySpark application codes: from pyspark.sql import SparkSession spark = SparkSession.builder.getOrCreate() spark.range(10).show()" > app.py Start to debug with your ``MyRemoteDebugger``. .. image:: ../../../../docs/img/pyspark-remote-debug2.png :alt: PyCharm run remote debugger | After that, submit your application. This will connect to your PyCharm debugging server and enable you to debug on the driver side remotely. .. code-block:: bash spark-submit app.py Executor Side ~~~~~~~~~~~~~ To debug on the executor side, prepare a Python file as below in your current working directory. .. code-block:: bash echo "from pyspark import daemon, worker def remote_debug_wrapped(*args, **kwargs): #======================Copy and paste from the previous dialog=========================== import pydevd_pycharm pydevd_pycharm.settrace('localhost', port=12345, stdoutToServer=True, stderrToServer=True) #======================================================================================== worker.main(*args, **kwargs) daemon.worker_main = remote_debug_wrapped if __name__ == '__main__': daemon.manager()" > remote_debug.py You will use this file as the Python worker in your PySpark applications by using the ``spark.python.daemon.module`` configuration. Run the ``pyspark`` shell with the configuration below: .. code-block:: bash pyspark --conf spark.python.daemon.module=remote_debug Now you're ready to remotely debug. Start to debug with your ``MyRemoteDebugger``. .. image:: ../../../../docs/img/pyspark-remote-debug2.png :alt: PyCharm run remote debugger | After that, run a job that creates Python workers, for example, as below: .. code-block:: python spark.range(10).repartition(1).rdd.map(lambda x: x).collect() Checking Resource Usage (``top`` and ``ps``) -------------------------------------------- The Python processes on the driver and executor can be checked via typical ways such as ``top`` and ``ps`` commands. Driver Side ~~~~~~~~~~~ On the driver side, you can get the process id from your PySpark shell easily as below to know the process id and resources. .. code-block:: python >>> import os; os.getpid() 18482 .. code-block:: bash ps -fe 18482 .. code-block:: text UID PID PPID C STIME TTY TIME CMD 000 18482 12345 0 0:00PM ttys001 0:00.00 /.../python Executor Side ~~~~~~~~~~~~~ To check on the executor side, you can simply ``grep`` them to figure out the process ids and relevant resources because Python workers are forked from ``pyspark.daemon``. .. code-block:: bash ps -fe | grep pyspark.daemon .. code-block:: text 000 12345 1 0 0:00PM ttys000 0:00.00 /.../python -m pyspark.daemon 000 12345 1 0 0:00PM ttys000 0:00.00 /.../python -m pyspark.daemon 000 12345 1 0 0:00PM ttys000 0:00.00 /.../python -m pyspark.daemon 000 12345 1 0 0:00PM ttys000 0:00.00 /.../python -m pyspark.daemon ... Profiling Memory Usage (Memory Profiler) ---------------------------------------- `memory_profiler `_ is one of the profilers that allow you to check the memory usage line by line. This method documented here *only works for the driver side*. Unless you are running your driver program in another machine (e.g., YARN cluster mode), this useful tool can be used to debug the memory usage on driver side easily. Suppose your PySpark script name is ``profile_memory.py``. You can profile it as below. .. code-block:: bash echo "from pyspark.sql import SparkSession #===Your function should be decorated with @profile=== from memory_profiler import profile @profile #===================================================== def my_func(): session = SparkSession.builder.getOrCreate() df = session.range(10000) return df.collect() if __name__ == '__main__': my_func()" > profile_memory.py .. code-block:: bash python -m memory_profiler profile_memory.py .. code-block:: text Filename: profile_memory.py Line # Mem usage Increment Line Contents ================================================ ... 6 def my_func(): 7 51.5 MiB 0.6 MiB session = SparkSession.builder.getOrCreate() 8 51.5 MiB 0.0 MiB df = session.range(10000) 9 54.4 MiB 2.8 MiB return df.collect() Identifying Hot Loops (Python Profilers) ---------------------------------------- `Python Profilers `_ are useful built-in features in Python itself. These provide deterministic profiling of Python programs with a lot of useful statistics. This section describes how to use it on both driver and executor sides in order to identify expensive or hot code paths. Driver Side ~~~~~~~~~~~ To use this on driver side, you can use it as you would do for regular Python programs because PySpark on driver side is a regular Python process unless you are running your driver program in another machine (e.g., YARN cluster mode). .. code-block:: bash echo "from pyspark.sql import SparkSession spark = SparkSession.builder.getOrCreate() spark.range(10).show()" > app.py .. code-block:: bash python -m cProfile app.py .. code-block:: text ... 129215 function calls (125446 primitive calls) in 5.926 seconds Ordered by: standard name ncalls tottime percall cumtime percall filename:lineno(function) 1198/405 0.001 0.000 0.083 0.000 :1009(_handle_fromlist) 561 0.001 0.000 0.001 0.000 :103(release) 276 0.000 0.000 0.000 0.000 :143(__init__) 276 0.000 0.000 0.002 0.000 :147(__enter__) ... Executor Side ~~~~~~~~~~~~~ To use this on executor side, PySpark provides remote `Python Profilers `_ for executor side, which can be enabled by setting ``spark.python.profile`` configuration to ``true``. .. code-block:: bash pyspark --conf spark.python.profile=true .. code-block:: python >>> rdd = sc.parallelize(range(100)).map(str) >>> rdd.count() 100 >>> sc.show_profiles() ============================================================ Profile of RDD ============================================================ 728 function calls (692 primitive calls) in 0.004 seconds Ordered by: internal time, cumulative time ncalls tottime percall cumtime percall filename:lineno(function) 12 0.001 0.000 0.001 0.000 serializers.py:210(load_stream) 12 0.000 0.000 0.000 0.000 {built-in method _pickle.dumps} 12 0.000 0.000 0.001 0.000 serializers.py:252(dump_stream) 12 0.000 0.000 0.001 0.000 context.py:506(f) ... This feature is supported only with RDD APIs.