spark-instrumented-optimizer/sql
Damian Guy 071bbad5db [SPARK-9340] [SQL] Fixes converting unannotated Parquet lists
This PR is inspired by #8063 authored by dguy. Especially, testing Parquet files added here are all taken from that PR.

**Committer who merges this PR should attribute it to "Damian Guy <damian.guygmail.com>".**

----

SPARK-6776 and SPARK-6777 followed `parquet-avro` to implement backwards-compatibility rules defined in `parquet-format` spec. However, both Spark SQL and `parquet-avro` neglected the following statement in `parquet-format`:

> This does not affect repeated fields that are not annotated: A repeated field that is neither contained by a `LIST`- or `MAP`-annotated group nor annotated by `LIST` or `MAP` should be interpreted as a required list of required elements where the element type is the type of the field.

One of the consequences is that, Parquet files generated by `parquet-protobuf` containing unannotated repeated fields are not correctly converted to Catalyst arrays.

This PR fixes this issue by

1. Handling unannotated repeated fields in `CatalystSchemaConverter`.
2. Converting this kind of special repeated fields to Catalyst arrays in `CatalystRowConverter`.

   Two special converters, `RepeatedPrimitiveConverter` and `RepeatedGroupConverter`, are added. They delegate actual conversion work to a child `elementConverter` and accumulates elements in an `ArrayBuffer`.

   Two extra methods, `start()` and `end()`, are added to `ParentContainerUpdater`. So that they can be used to initialize new `ArrayBuffer`s for unannotated repeated fields, and propagate converted array values to upstream.

Author: Cheng Lian <lian@databricks.com>

Closes #8070 from liancheng/spark-9340/unannotated-parquet-list and squashes the following commits:

ace6df7 [Cheng Lian] Moves ParquetProtobufCompatibilitySuite
f1c7bfd [Cheng Lian] Updates .rat-excludes
420ad2b [Cheng Lian] Fixes converting unannotated Parquet lists
2015-08-11 12:46:33 +08:00
..
catalyst [SPARK-9759] [SQL] improve decimal.times() and cast(int, decimalType) 2015-08-10 13:55:11 -07:00
core [SPARK-9340] [SQL] Fixes converting unannotated Parquet lists 2015-08-11 12:46:33 +08:00
hive [SPARK-9763][SQL] Minimize exposure of internal SQL classes. 2015-08-10 13:49:23 -07:00
hive-thriftserver [SPARK-9606] [SQL] Ignore flaky thrift server tests 2015-08-04 12:19:52 -07:00
README.md [SPARK-8746] [SQL] update download link for Hive 0.13.1 2015-07-02 13:45:19 +01:00

Spark SQL

This module provides support for executing relational queries expressed in either SQL or a LINQ-like Scala DSL.

Spark SQL is broken up into four subprojects:

  • Catalyst (sql/catalyst) - An implementation-agnostic framework for manipulating trees of relational operators and expressions.
  • Execution (sql/core) - A query planner / execution engine for translating Catalysts logical query plans into Spark RDDs. This component also includes a new public interface, SQLContext, that allows users to execute SQL or LINQ statements against existing RDDs and Parquet files.
  • Hive Support (sql/hive) - Includes an extension of SQLContext called HiveContext that allows users to write queries using a subset of HiveQL and access data from a Hive Metastore using Hive SerDes. There are also wrappers that allows users to run queries that include Hive UDFs, UDAFs, and UDTFs.
  • HiveServer and CLI support (sql/hive-thriftserver) - Includes support for the SQL CLI (bin/spark-sql) and a HiveServer2 (for JDBC/ODBC) compatible server.

Other dependencies for developers

In order to create new hive test cases (i.e. a test suite based on HiveComparisonTest), you will need to setup your development environment based on the following instructions.

If you are working with Hive 0.12.0, you will need to set several environmental variables as follows.

export HIVE_HOME="<path to>/hive/build/dist"
export HIVE_DEV_HOME="<path to>/hive/"
export HADOOP_HOME="<path to>/hadoop-1.0.4"

If you are working with Hive 0.13.1, the following steps are needed:

  1. Download Hive's 0.13.1 and set HIVE_HOME with export HIVE_HOME="<path to hive>". Please do not set HIVE_DEV_HOME (See SPARK-4119).
  2. Set HADOOP_HOME with export HADOOP_HOME="<path to hadoop>"
  3. Download all Hive 0.13.1a jars (Hive jars actually used by Spark) from here and replace corresponding original 0.13.1 jars in $HIVE_HOME/lib.
  4. Download Kryo 2.21 jar (Note: 2.22 jar does not work) and Javolution 5.5.1 jar to $HIVE_HOME/lib.
  5. This step is optional. But, when generating golden answer files, if a Hive query fails and you find that Hive tries to talk to HDFS or you find weird runtime NPEs, set the following in your test suite...
val testTempDir = Utils.createTempDir()
// We have to use kryo to let Hive correctly serialize some plans.
sql("set hive.plan.serialization.format=kryo")
// Explicitly set fs to local fs.
sql(s"set fs.default.name=file://$testTempDir/")
// Ask Hive to run jobs in-process as a single map and reduce task.
sql("set mapred.job.tracker=local")

Using the console

An interactive scala console can be invoked by running build/sbt hive/console. From here you can execute queries with HiveQl and manipulate DataFrame by using DSL.

catalyst$ build/sbt hive/console

[info] Starting scala interpreter...
import org.apache.spark.sql.catalyst.analysis._
import org.apache.spark.sql.catalyst.dsl._
import org.apache.spark.sql.catalyst.errors._
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.catalyst.rules._
import org.apache.spark.sql.catalyst.util._
import org.apache.spark.sql.execution
import org.apache.spark.sql.functions._
import org.apache.spark.sql.hive._
import org.apache.spark.sql.hive.test.TestHive._
import org.apache.spark.sql.types._
Type in expressions to have them evaluated.
Type :help for more information.

scala> val query = sql("SELECT * FROM (SELECT * FROM src) a")
query: org.apache.spark.sql.DataFrame = org.apache.spark.sql.DataFrame@74448eed

Query results are DataFrames and can be operated as such.

scala> query.collect()
res2: Array[org.apache.spark.sql.Row] = Array([238,val_238], [86,val_86], [311,val_311], [27,val_27]...

You can also build further queries on top of these DataFrames using the query DSL.

scala> query.where(query("key") > 30).select(avg(query("key"))).collect()
res3: Array[org.apache.spark.sql.Row] = Array([274.79025423728814])