spark-instrumented-optimizer/python/pyspark/mllib/classification.py
Davies Liu 04e44b37cc [SPARK-4897] [PySpark] Python 3 support
This PR update PySpark to support Python 3 (tested with 3.4).

Known issue: unpickle array from Pyrolite is broken in Python 3, those tests are skipped.

TODO: ec2/spark-ec2.py is not fully tested with python3.

Author: Davies Liu <davies@databricks.com>
Author: twneale <twneale@gmail.com>
Author: Josh Rosen <joshrosen@databricks.com>

Closes #5173 from davies/python3 and squashes the following commits:

d7d6323 [Davies Liu] fix tests
6c52a98 [Davies Liu] fix mllib test
99e334f [Davies Liu] update timeout
b716610 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
cafd5ec [Davies Liu] adddress comments from @mengxr
bf225d7 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
179fc8d [Davies Liu] tuning flaky tests
8c8b957 [Davies Liu] fix ResourceWarning in Python 3
5c57c95 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
4006829 [Davies Liu] fix test
2fc0066 [Davies Liu] add python3 path
71535e9 [Davies Liu] fix xrange and divide
5a55ab4 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
125f12c [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
ed498c8 [Davies Liu] fix compatibility with python 3
820e649 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
e8ce8c9 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
ad7c374 [Davies Liu] fix mllib test and warning
ef1fc2f [Davies Liu] fix tests
4eee14a [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
20112ff [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
59bb492 [Davies Liu] fix tests
1da268c [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
ca0fdd3 [Davies Liu] fix code style
9563a15 [Davies Liu] add imap back for python 2
0b1ec04 [Davies Liu] make python examples work with Python 3
d2fd566 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
a716d34 [Davies Liu] test with python 3.4
f1700e8 [Davies Liu] fix test in python3
671b1db [Davies Liu] fix test in python3
692ff47 [Davies Liu] fix flaky test
7b9699f [Davies Liu] invalidate import cache for Python 3.3+
9c58497 [Davies Liu] fix kill worker
309bfbf [Davies Liu] keep compatibility
5707476 [Davies Liu] cleanup, fix hash of string in 3.3+
8662d5b [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
f53e1f0 [Davies Liu] fix tests
70b6b73 [Davies Liu] compile ec2/spark_ec2.py in python 3
a39167e [Davies Liu] support customize class in __main__
814c77b [Davies Liu] run unittests with python 3
7f4476e [Davies Liu] mllib tests passed
d737924 [Davies Liu] pass ml tests
375ea17 [Davies Liu] SQL tests pass
6cc42a9 [Davies Liu] rename
431a8de [Davies Liu] streaming tests pass
78901a7 [Davies Liu] fix hash of serializer in Python 3
24b2f2e [Davies Liu] pass all RDD tests
35f48fe [Davies Liu] run future again
1eebac2 [Davies Liu] fix conflict in ec2/spark_ec2.py
6e3c21d [Davies Liu] make cloudpickle work with Python3
2fb2db3 [Josh Rosen] Guard more changes behind sys.version; still doesn't run
1aa5e8f [twneale] Turned out `pickle.DictionaryType is dict` == True, so swapped it out
7354371 [twneale] buffer --> memoryview  I'm not super sure if this a valid change, but the 2.7 docs recommend using memoryview over buffer where possible, so hoping it'll work.
b69ccdf [twneale] Uses the pure python pickle._Pickler instead of c-extension _pickle.Pickler. It appears pyspark 2.7 uses the pure python pickler as well, so this shouldn't degrade pickling performance (?).
f40d925 [twneale] xrange --> range
e104215 [twneale] Replaces 2.7 types.InstsanceType with 3.4 `object`....could be horribly wrong depending on how types.InstanceType is used elsewhere in the package--see http://bugs.python.org/issue8206
79de9d0 [twneale] Replaces python2.7 `file` with 3.4 _io.TextIOWrapper
2adb42d [Josh Rosen] Fix up some import differences between Python 2 and 3
854be27 [Josh Rosen] Run `futurize` on Python code:
7c5b4ce [Josh Rosen] Remove Python 3 check in shell.py.
2015-04-16 16:20:57 -07:00

556 lines
21 KiB
Python

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from math import exp
import numpy
from numpy import array
from pyspark import RDD
from pyspark.mllib.common import callMLlibFunc, _py2java, _java2py
from pyspark.mllib.linalg import DenseVector, SparseVector, _convert_to_vector
from pyspark.mllib.regression import LabeledPoint, LinearModel, _regression_train_wrapper
from pyspark.mllib.util import Saveable, Loader, inherit_doc
__all__ = ['LogisticRegressionModel', 'LogisticRegressionWithSGD', 'LogisticRegressionWithLBFGS',
'SVMModel', 'SVMWithSGD', 'NaiveBayesModel', 'NaiveBayes']
class LinearClassificationModel(LinearModel):
"""
A private abstract class representing a multiclass classification model.
The categories are represented by int values: 0, 1, 2, etc.
"""
def __init__(self, weights, intercept):
super(LinearClassificationModel, self).__init__(weights, intercept)
self._threshold = None
def setThreshold(self, value):
"""
.. note:: Experimental
Sets the threshold that separates positive predictions from negative
predictions. An example with prediction score greater than or equal
to this threshold is identified as an positive, and negative otherwise.
It is used for binary classification only.
"""
self._threshold = value
@property
def threshold(self):
"""
.. note:: Experimental
Returns the threshold (if any) used for converting raw prediction scores
into 0/1 predictions. It is used for binary classification only.
"""
return self._threshold
def clearThreshold(self):
"""
.. note:: Experimental
Clears the threshold so that `predict` will output raw prediction scores.
It is used for binary classification only.
"""
self._threshold = None
def predict(self, test):
"""
Predict values for a single data point or an RDD of points using
the model trained.
"""
raise NotImplementedError
class LogisticRegressionModel(LinearClassificationModel):
"""A linear binary classification model derived from logistic regression.
>>> data = [
... LabeledPoint(0.0, [0.0, 1.0]),
... LabeledPoint(1.0, [1.0, 0.0]),
... ]
>>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(data))
>>> lrm.predict([1.0, 0.0])
1
>>> lrm.predict([0.0, 1.0])
0
>>> lrm.predict(sc.parallelize([[1.0, 0.0], [0.0, 1.0]])).collect()
[1, 0]
>>> lrm.clearThreshold()
>>> lrm.predict([0.0, 1.0])
0.123...
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(0.0, SparseVector(2, {0: 1.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
... ]
>>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(sparse_data))
>>> lrm.predict(array([0.0, 1.0]))
1
>>> lrm.predict(array([1.0, 0.0]))
0
>>> lrm.predict(SparseVector(2, {1: 1.0}))
1
>>> lrm.predict(SparseVector(2, {0: 1.0}))
0
>>> import os, tempfile
>>> path = tempfile.mkdtemp()
>>> lrm.save(sc, path)
>>> sameModel = LogisticRegressionModel.load(sc, path)
>>> sameModel.predict(array([0.0, 1.0]))
1
>>> sameModel.predict(SparseVector(2, {0: 1.0}))
0
>>> try:
... os.removedirs(path)
... except:
... pass
>>> multi_class_data = [
... LabeledPoint(0.0, [0.0, 1.0, 0.0]),
... LabeledPoint(1.0, [1.0, 0.0, 0.0]),
... LabeledPoint(2.0, [0.0, 0.0, 1.0])
... ]
>>> mcm = LogisticRegressionWithLBFGS.train(data=sc.parallelize(multi_class_data), numClasses=3)
>>> mcm.predict([0.0, 0.5, 0.0])
0
>>> mcm.predict([0.8, 0.0, 0.0])
1
>>> mcm.predict([0.0, 0.0, 0.3])
2
"""
def __init__(self, weights, intercept, numFeatures, numClasses):
super(LogisticRegressionModel, self).__init__(weights, intercept)
self._numFeatures = int(numFeatures)
self._numClasses = int(numClasses)
self._threshold = 0.5
if self._numClasses == 2:
self._dataWithBiasSize = None
self._weightsMatrix = None
else:
self._dataWithBiasSize = self._coeff.size / (self._numClasses - 1)
self._weightsMatrix = self._coeff.toArray().reshape(self._numClasses - 1,
self._dataWithBiasSize)
@property
def numFeatures(self):
return self._numFeatures
@property
def numClasses(self):
return self._numClasses
def predict(self, x):
"""
Predict values for a single data point or an RDD of points using
the model trained.
"""
if isinstance(x, RDD):
return x.map(lambda v: self.predict(v))
x = _convert_to_vector(x)
if self.numClasses == 2:
margin = self.weights.dot(x) + self._intercept
if margin > 0:
prob = 1 / (1 + exp(-margin))
else:
exp_margin = exp(margin)
prob = exp_margin / (1 + exp_margin)
if self._threshold is None:
return prob
else:
return 1 if prob > self._threshold else 0
else:
best_class = 0
max_margin = 0.0
if x.size + 1 == self._dataWithBiasSize:
for i in range(0, self._numClasses - 1):
margin = x.dot(self._weightsMatrix[i][0:x.size]) + \
self._weightsMatrix[i][x.size]
if margin > max_margin:
max_margin = margin
best_class = i + 1
else:
for i in range(0, self._numClasses - 1):
margin = x.dot(self._weightsMatrix[i])
if margin > max_margin:
max_margin = margin
best_class = i + 1
return best_class
def save(self, sc, path):
java_model = sc._jvm.org.apache.spark.mllib.classification.LogisticRegressionModel(
_py2java(sc, self._coeff), self.intercept, self.numFeatures, self.numClasses)
java_model.save(sc._jsc.sc(), path)
@classmethod
def load(cls, sc, path):
java_model = sc._jvm.org.apache.spark.mllib.classification.LogisticRegressionModel.load(
sc._jsc.sc(), path)
weights = _java2py(sc, java_model.weights())
intercept = java_model.intercept()
numFeatures = java_model.numFeatures()
numClasses = java_model.numClasses()
threshold = java_model.getThreshold().get()
model = LogisticRegressionModel(weights, intercept, numFeatures, numClasses)
model.setThreshold(threshold)
return model
class LogisticRegressionWithSGD(object):
@classmethod
def train(cls, data, iterations=100, step=1.0, miniBatchFraction=1.0,
initialWeights=None, regParam=0.01, regType="l2", intercept=False,
validateData=True):
"""
Train a logistic regression model on the given data.
:param data: The training data, an RDD of LabeledPoint.
:param iterations: The number of iterations (default: 100).
:param step: The step parameter used in SGD
(default: 1.0).
:param miniBatchFraction: Fraction of data to be used for each SGD
iteration.
:param initialWeights: The initial weights (default: None).
:param regParam: The regularizer parameter (default: 0.01).
:param regType: The type of regularizer used for training
our model.
:Allowed values:
- "l1" for using L1 regularization
- "l2" for using L2 regularization
- None for no regularization
(default: "l2")
:param intercept: Boolean parameter which indicates the use
or not of the augmented representation for
training data (i.e. whether bias features
are activated or not).
:param validateData: Boolean parameter which indicates if the
algorithm should validate data before training.
(default: True)
"""
def train(rdd, i):
return callMLlibFunc("trainLogisticRegressionModelWithSGD", rdd, int(iterations),
float(step), float(miniBatchFraction), i, float(regParam), regType,
bool(intercept), bool(validateData))
return _regression_train_wrapper(train, LogisticRegressionModel, data, initialWeights)
class LogisticRegressionWithLBFGS(object):
@classmethod
def train(cls, data, iterations=100, initialWeights=None, regParam=0.01, regType="l2",
intercept=False, corrections=10, tolerance=1e-4, validateData=True, numClasses=2):
"""
Train a logistic regression model on the given data.
:param data: The training data, an RDD of LabeledPoint.
:param iterations: The number of iterations (default: 100).
:param initialWeights: The initial weights (default: None).
:param regParam: The regularizer parameter (default: 0.01).
:param regType: The type of regularizer used for training
our model.
:Allowed values:
- "l1" for using L1 regularization
- "l2" for using L2 regularization
- None for no regularization
(default: "l2")
:param intercept: Boolean parameter which indicates the use
or not of the augmented representation for
training data (i.e. whether bias features
are activated or not).
:param corrections: The number of corrections used in the LBFGS
update (default: 10).
:param tolerance: The convergence tolerance of iterations for
L-BFGS (default: 1e-4).
:param validateData: Boolean parameter which indicates if the
algorithm should validate data before training.
(default: True)
:param numClasses: The number of classes (i.e., outcomes) a label can take
in Multinomial Logistic Regression (default: 2).
>>> data = [
... LabeledPoint(0.0, [0.0, 1.0]),
... LabeledPoint(1.0, [1.0, 0.0]),
... ]
>>> lrm = LogisticRegressionWithLBFGS.train(sc.parallelize(data))
>>> lrm.predict([1.0, 0.0])
1
>>> lrm.predict([0.0, 1.0])
0
"""
def train(rdd, i):
return callMLlibFunc("trainLogisticRegressionModelWithLBFGS", rdd, int(iterations), i,
float(regParam), regType, bool(intercept), int(corrections),
float(tolerance), bool(validateData), int(numClasses))
if initialWeights is None:
if numClasses == 2:
initialWeights = [0.0] * len(data.first().features)
else:
if intercept:
initialWeights = [0.0] * (len(data.first().features) + 1) * (numClasses - 1)
else:
initialWeights = [0.0] * len(data.first().features) * (numClasses - 1)
return _regression_train_wrapper(train, LogisticRegressionModel, data, initialWeights)
class SVMModel(LinearClassificationModel):
"""A support vector machine.
>>> data = [
... LabeledPoint(0.0, [0.0]),
... LabeledPoint(1.0, [1.0]),
... LabeledPoint(1.0, [2.0]),
... LabeledPoint(1.0, [3.0])
... ]
>>> svm = SVMWithSGD.train(sc.parallelize(data))
>>> svm.predict([1.0])
1
>>> svm.predict(sc.parallelize([[1.0]])).collect()
[1]
>>> svm.clearThreshold()
>>> svm.predict(array([1.0]))
1.25...
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {0: -1.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
... ]
>>> svm = SVMWithSGD.train(sc.parallelize(sparse_data))
>>> svm.predict(SparseVector(2, {1: 1.0}))
1
>>> svm.predict(SparseVector(2, {0: -1.0}))
0
>>> import os, tempfile
>>> path = tempfile.mkdtemp()
>>> svm.save(sc, path)
>>> sameModel = SVMModel.load(sc, path)
>>> sameModel.predict(SparseVector(2, {1: 1.0}))
1
>>> sameModel.predict(SparseVector(2, {0: -1.0}))
0
>>> try:
... os.removedirs(path)
... except:
... pass
"""
def __init__(self, weights, intercept):
super(SVMModel, self).__init__(weights, intercept)
self._threshold = 0.0
def predict(self, x):
"""
Predict values for a single data point or an RDD of points using
the model trained.
"""
if isinstance(x, RDD):
return x.map(lambda v: self.predict(v))
x = _convert_to_vector(x)
margin = self.weights.dot(x) + self.intercept
if self._threshold is None:
return margin
else:
return 1 if margin > self._threshold else 0
def save(self, sc, path):
java_model = sc._jvm.org.apache.spark.mllib.classification.SVMModel(
_py2java(sc, self._coeff), self.intercept)
java_model.save(sc._jsc.sc(), path)
@classmethod
def load(cls, sc, path):
java_model = sc._jvm.org.apache.spark.mllib.classification.SVMModel.load(
sc._jsc.sc(), path)
weights = _java2py(sc, java_model.weights())
intercept = java_model.intercept()
threshold = java_model.getThreshold().get()
model = SVMModel(weights, intercept)
model.setThreshold(threshold)
return model
class SVMWithSGD(object):
@classmethod
def train(cls, data, iterations=100, step=1.0, regParam=0.01,
miniBatchFraction=1.0, initialWeights=None, regType="l2",
intercept=False, validateData=True):
"""
Train a support vector machine on the given data.
:param data: The training data, an RDD of LabeledPoint.
:param iterations: The number of iterations (default: 100).
:param step: The step parameter used in SGD
(default: 1.0).
:param regParam: The regularizer parameter (default: 0.01).
:param miniBatchFraction: Fraction of data to be used for each SGD
iteration.
:param initialWeights: The initial weights (default: None).
:param regType: The type of regularizer used for training
our model.
:Allowed values:
- "l1" for using L1 regularization
- "l2" for using L2 regularization
- None for no regularization
(default: "l2")
:param intercept: Boolean parameter which indicates the use
or not of the augmented representation for
training data (i.e. whether bias features
are activated or not).
:param validateData: Boolean parameter which indicates if the
algorithm should validate data before training.
(default: True)
"""
def train(rdd, i):
return callMLlibFunc("trainSVMModelWithSGD", rdd, int(iterations), float(step),
float(regParam), float(miniBatchFraction), i, regType,
bool(intercept), bool(validateData))
return _regression_train_wrapper(train, SVMModel, data, initialWeights)
@inherit_doc
class NaiveBayesModel(Saveable, Loader):
"""
Model for Naive Bayes classifiers.
Contains two parameters:
- pi: vector of logs of class priors (dimension C)
- theta: matrix of logs of class conditional probabilities (CxD)
>>> data = [
... LabeledPoint(0.0, [0.0, 0.0]),
... LabeledPoint(0.0, [0.0, 1.0]),
... LabeledPoint(1.0, [1.0, 0.0]),
... ]
>>> model = NaiveBayes.train(sc.parallelize(data))
>>> model.predict(array([0.0, 1.0]))
0.0
>>> model.predict(array([1.0, 0.0]))
1.0
>>> model.predict(sc.parallelize([[1.0, 0.0]])).collect()
[1.0]
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {1: 0.0})),
... LabeledPoint(0.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(1.0, SparseVector(2, {0: 1.0}))
... ]
>>> model = NaiveBayes.train(sc.parallelize(sparse_data))
>>> model.predict(SparseVector(2, {1: 1.0}))
0.0
>>> model.predict(SparseVector(2, {0: 1.0}))
1.0
>>> import os, tempfile
>>> path = tempfile.mkdtemp()
>>> model.save(sc, path)
>>> sameModel = NaiveBayesModel.load(sc, path)
>>> sameModel.predict(SparseVector(2, {0: 1.0})) == model.predict(SparseVector(2, {0: 1.0}))
True
>>> try:
... os.removedirs(path)
... except OSError:
... pass
"""
def __init__(self, labels, pi, theta):
self.labels = labels
self.pi = pi
self.theta = theta
def predict(self, x):
"""Return the most likely class for a data vector or an RDD of vectors"""
if isinstance(x, RDD):
return x.map(lambda v: self.predict(v))
x = _convert_to_vector(x)
return self.labels[numpy.argmax(self.pi + x.dot(self.theta.transpose()))]
def save(self, sc, path):
java_labels = _py2java(sc, self.labels.tolist())
java_pi = _py2java(sc, self.pi.tolist())
java_theta = _py2java(sc, self.theta.tolist())
java_model = sc._jvm.org.apache.spark.mllib.classification.NaiveBayesModel(
java_labels, java_pi, java_theta)
java_model.save(sc._jsc.sc(), path)
@classmethod
def load(cls, sc, path):
java_model = sc._jvm.org.apache.spark.mllib.classification.NaiveBayesModel.load(
sc._jsc.sc(), path)
# Can not unpickle array.array from Pyrolite in Python3 with "bytes"
py_labels = _java2py(sc, java_model.labels(), "latin1")
py_pi = _java2py(sc, java_model.pi(), "latin1")
py_theta = _java2py(sc, java_model.theta(), "latin1")
return NaiveBayesModel(py_labels, py_pi, numpy.array(py_theta))
class NaiveBayes(object):
@classmethod
def train(cls, data, lambda_=1.0):
"""
Train a Naive Bayes model given an RDD of (label, features) vectors.
This is the Multinomial NB (U{http://tinyurl.com/lsdw6p}) which can
handle all kinds of discrete data. For example, by converting
documents into TF-IDF vectors, it can be used for document
classification. By making every vector a 0-1 vector, it can also be
used as Bernoulli NB (U{http://tinyurl.com/p7c96j6}).
:param data: RDD of LabeledPoint.
:param lambda_: The smoothing parameter
"""
first = data.first()
if not isinstance(first, LabeledPoint):
raise ValueError("`data` should be an RDD of LabeledPoint")
labels, pi, theta = callMLlibFunc("trainNaiveBayes", data, lambda_)
return NaiveBayesModel(labels.toArray(), pi.toArray(), numpy.array(theta))
def _test():
import doctest
from pyspark import SparkContext
import pyspark.mllib.classification
globs = pyspark.mllib.classification.__dict__.copy()
globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
globs['sc'].stop()
if failure_count:
exit(-1)
if __name__ == "__main__":
_test()