spark-instrumented-optimizer/python/pyspark/mllib/classification.py
Reynold Xin 3134c3fe49 [SPARK-6953] [PySpark] speed up python tests
This PR try to speed up some python tests:

```
tests.py                       144s -> 103s      -41s
mllib/classification.py         24s -> 17s        -7s
mllib/regression.py             27s -> 15s       -12s
mllib/tree.py                   27s -> 13s       -14s
mllib/tests.py                  64s -> 31s       -33s
streaming/tests.py             185s -> 84s      -101s
```
Considering python3, the total saving will be 558s (almost 10 minutes) (core, and streaming run three times, mllib runs twice).

During testing, it will show used time for each test file:
```
Run core tests ...
Running test: pyspark/rdd.py ... ok (22s)
Running test: pyspark/context.py ... ok (16s)
Running test: pyspark/conf.py ... ok (4s)
Running test: pyspark/broadcast.py ... ok (4s)
Running test: pyspark/accumulators.py ... ok (4s)
Running test: pyspark/serializers.py ... ok (6s)
Running test: pyspark/profiler.py ... ok (5s)
Running test: pyspark/shuffle.py ... ok (1s)
Running test: pyspark/tests.py ... ok (103s)   144s
```

Author: Reynold Xin <rxin@databricks.com>
Author: Xiangrui Meng <meng@databricks.com>

Closes #5605 from rxin/python-tests-speed and squashes the following commits:

d08542d [Reynold Xin] Merge pull request #14 from mengxr/SPARK-6953
89321ee [Xiangrui Meng] fix seed in tests
3ad2387 [Reynold Xin] Merge pull request #5427 from davies/python_tests
2015-04-21 17:49:55 -07:00

557 lines
21 KiB
Python

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from math import exp
import numpy
from numpy import array
from pyspark import RDD
from pyspark.mllib.common import callMLlibFunc, _py2java, _java2py
from pyspark.mllib.linalg import DenseVector, SparseVector, _convert_to_vector
from pyspark.mllib.regression import LabeledPoint, LinearModel, _regression_train_wrapper
from pyspark.mllib.util import Saveable, Loader, inherit_doc
__all__ = ['LogisticRegressionModel', 'LogisticRegressionWithSGD', 'LogisticRegressionWithLBFGS',
'SVMModel', 'SVMWithSGD', 'NaiveBayesModel', 'NaiveBayes']
class LinearClassificationModel(LinearModel):
"""
A private abstract class representing a multiclass classification model.
The categories are represented by int values: 0, 1, 2, etc.
"""
def __init__(self, weights, intercept):
super(LinearClassificationModel, self).__init__(weights, intercept)
self._threshold = None
def setThreshold(self, value):
"""
.. note:: Experimental
Sets the threshold that separates positive predictions from negative
predictions. An example with prediction score greater than or equal
to this threshold is identified as an positive, and negative otherwise.
It is used for binary classification only.
"""
self._threshold = value
@property
def threshold(self):
"""
.. note:: Experimental
Returns the threshold (if any) used for converting raw prediction scores
into 0/1 predictions. It is used for binary classification only.
"""
return self._threshold
def clearThreshold(self):
"""
.. note:: Experimental
Clears the threshold so that `predict` will output raw prediction scores.
It is used for binary classification only.
"""
self._threshold = None
def predict(self, test):
"""
Predict values for a single data point or an RDD of points using
the model trained.
"""
raise NotImplementedError
class LogisticRegressionModel(LinearClassificationModel):
"""A linear binary classification model derived from logistic regression.
>>> data = [
... LabeledPoint(0.0, [0.0, 1.0]),
... LabeledPoint(1.0, [1.0, 0.0]),
... ]
>>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(data), iterations=10)
>>> lrm.predict([1.0, 0.0])
1
>>> lrm.predict([0.0, 1.0])
0
>>> lrm.predict(sc.parallelize([[1.0, 0.0], [0.0, 1.0]])).collect()
[1, 0]
>>> lrm.clearThreshold()
>>> lrm.predict([0.0, 1.0])
0.279...
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(0.0, SparseVector(2, {0: 1.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
... ]
>>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(sparse_data), iterations=10)
>>> lrm.predict(array([0.0, 1.0]))
1
>>> lrm.predict(array([1.0, 0.0]))
0
>>> lrm.predict(SparseVector(2, {1: 1.0}))
1
>>> lrm.predict(SparseVector(2, {0: 1.0}))
0
>>> import os, tempfile
>>> path = tempfile.mkdtemp()
>>> lrm.save(sc, path)
>>> sameModel = LogisticRegressionModel.load(sc, path)
>>> sameModel.predict(array([0.0, 1.0]))
1
>>> sameModel.predict(SparseVector(2, {0: 1.0}))
0
>>> try:
... os.removedirs(path)
... except:
... pass
>>> multi_class_data = [
... LabeledPoint(0.0, [0.0, 1.0, 0.0]),
... LabeledPoint(1.0, [1.0, 0.0, 0.0]),
... LabeledPoint(2.0, [0.0, 0.0, 1.0])
... ]
>>> data = sc.parallelize(multi_class_data)
>>> mcm = LogisticRegressionWithLBFGS.train(data, iterations=10, numClasses=3)
>>> mcm.predict([0.0, 0.5, 0.0])
0
>>> mcm.predict([0.8, 0.0, 0.0])
1
>>> mcm.predict([0.0, 0.0, 0.3])
2
"""
def __init__(self, weights, intercept, numFeatures, numClasses):
super(LogisticRegressionModel, self).__init__(weights, intercept)
self._numFeatures = int(numFeatures)
self._numClasses = int(numClasses)
self._threshold = 0.5
if self._numClasses == 2:
self._dataWithBiasSize = None
self._weightsMatrix = None
else:
self._dataWithBiasSize = self._coeff.size / (self._numClasses - 1)
self._weightsMatrix = self._coeff.toArray().reshape(self._numClasses - 1,
self._dataWithBiasSize)
@property
def numFeatures(self):
return self._numFeatures
@property
def numClasses(self):
return self._numClasses
def predict(self, x):
"""
Predict values for a single data point or an RDD of points using
the model trained.
"""
if isinstance(x, RDD):
return x.map(lambda v: self.predict(v))
x = _convert_to_vector(x)
if self.numClasses == 2:
margin = self.weights.dot(x) + self._intercept
if margin > 0:
prob = 1 / (1 + exp(-margin))
else:
exp_margin = exp(margin)
prob = exp_margin / (1 + exp_margin)
if self._threshold is None:
return prob
else:
return 1 if prob > self._threshold else 0
else:
best_class = 0
max_margin = 0.0
if x.size + 1 == self._dataWithBiasSize:
for i in range(0, self._numClasses - 1):
margin = x.dot(self._weightsMatrix[i][0:x.size]) + \
self._weightsMatrix[i][x.size]
if margin > max_margin:
max_margin = margin
best_class = i + 1
else:
for i in range(0, self._numClasses - 1):
margin = x.dot(self._weightsMatrix[i])
if margin > max_margin:
max_margin = margin
best_class = i + 1
return best_class
def save(self, sc, path):
java_model = sc._jvm.org.apache.spark.mllib.classification.LogisticRegressionModel(
_py2java(sc, self._coeff), self.intercept, self.numFeatures, self.numClasses)
java_model.save(sc._jsc.sc(), path)
@classmethod
def load(cls, sc, path):
java_model = sc._jvm.org.apache.spark.mllib.classification.LogisticRegressionModel.load(
sc._jsc.sc(), path)
weights = _java2py(sc, java_model.weights())
intercept = java_model.intercept()
numFeatures = java_model.numFeatures()
numClasses = java_model.numClasses()
threshold = java_model.getThreshold().get()
model = LogisticRegressionModel(weights, intercept, numFeatures, numClasses)
model.setThreshold(threshold)
return model
class LogisticRegressionWithSGD(object):
@classmethod
def train(cls, data, iterations=100, step=1.0, miniBatchFraction=1.0,
initialWeights=None, regParam=0.01, regType="l2", intercept=False,
validateData=True):
"""
Train a logistic regression model on the given data.
:param data: The training data, an RDD of LabeledPoint.
:param iterations: The number of iterations (default: 100).
:param step: The step parameter used in SGD
(default: 1.0).
:param miniBatchFraction: Fraction of data to be used for each SGD
iteration.
:param initialWeights: The initial weights (default: None).
:param regParam: The regularizer parameter (default: 0.01).
:param regType: The type of regularizer used for training
our model.
:Allowed values:
- "l1" for using L1 regularization
- "l2" for using L2 regularization
- None for no regularization
(default: "l2")
:param intercept: Boolean parameter which indicates the use
or not of the augmented representation for
training data (i.e. whether bias features
are activated or not).
:param validateData: Boolean parameter which indicates if the
algorithm should validate data before training.
(default: True)
"""
def train(rdd, i):
return callMLlibFunc("trainLogisticRegressionModelWithSGD", rdd, int(iterations),
float(step), float(miniBatchFraction), i, float(regParam), regType,
bool(intercept), bool(validateData))
return _regression_train_wrapper(train, LogisticRegressionModel, data, initialWeights)
class LogisticRegressionWithLBFGS(object):
@classmethod
def train(cls, data, iterations=100, initialWeights=None, regParam=0.01, regType="l2",
intercept=False, corrections=10, tolerance=1e-4, validateData=True, numClasses=2):
"""
Train a logistic regression model on the given data.
:param data: The training data, an RDD of LabeledPoint.
:param iterations: The number of iterations (default: 100).
:param initialWeights: The initial weights (default: None).
:param regParam: The regularizer parameter (default: 0.01).
:param regType: The type of regularizer used for training
our model.
:Allowed values:
- "l1" for using L1 regularization
- "l2" for using L2 regularization
- None for no regularization
(default: "l2")
:param intercept: Boolean parameter which indicates the use
or not of the augmented representation for
training data (i.e. whether bias features
are activated or not).
:param corrections: The number of corrections used in the LBFGS
update (default: 10).
:param tolerance: The convergence tolerance of iterations for
L-BFGS (default: 1e-4).
:param validateData: Boolean parameter which indicates if the
algorithm should validate data before training.
(default: True)
:param numClasses: The number of classes (i.e., outcomes) a label can take
in Multinomial Logistic Regression (default: 2).
>>> data = [
... LabeledPoint(0.0, [0.0, 1.0]),
... LabeledPoint(1.0, [1.0, 0.0]),
... ]
>>> lrm = LogisticRegressionWithLBFGS.train(sc.parallelize(data), iterations=10)
>>> lrm.predict([1.0, 0.0])
1
>>> lrm.predict([0.0, 1.0])
0
"""
def train(rdd, i):
return callMLlibFunc("trainLogisticRegressionModelWithLBFGS", rdd, int(iterations), i,
float(regParam), regType, bool(intercept), int(corrections),
float(tolerance), bool(validateData), int(numClasses))
if initialWeights is None:
if numClasses == 2:
initialWeights = [0.0] * len(data.first().features)
else:
if intercept:
initialWeights = [0.0] * (len(data.first().features) + 1) * (numClasses - 1)
else:
initialWeights = [0.0] * len(data.first().features) * (numClasses - 1)
return _regression_train_wrapper(train, LogisticRegressionModel, data, initialWeights)
class SVMModel(LinearClassificationModel):
"""A support vector machine.
>>> data = [
... LabeledPoint(0.0, [0.0]),
... LabeledPoint(1.0, [1.0]),
... LabeledPoint(1.0, [2.0]),
... LabeledPoint(1.0, [3.0])
... ]
>>> svm = SVMWithSGD.train(sc.parallelize(data), iterations=10)
>>> svm.predict([1.0])
1
>>> svm.predict(sc.parallelize([[1.0]])).collect()
[1]
>>> svm.clearThreshold()
>>> svm.predict(array([1.0]))
1.44...
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {0: -1.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
... ]
>>> svm = SVMWithSGD.train(sc.parallelize(sparse_data), iterations=10)
>>> svm.predict(SparseVector(2, {1: 1.0}))
1
>>> svm.predict(SparseVector(2, {0: -1.0}))
0
>>> import os, tempfile
>>> path = tempfile.mkdtemp()
>>> svm.save(sc, path)
>>> sameModel = SVMModel.load(sc, path)
>>> sameModel.predict(SparseVector(2, {1: 1.0}))
1
>>> sameModel.predict(SparseVector(2, {0: -1.0}))
0
>>> try:
... os.removedirs(path)
... except:
... pass
"""
def __init__(self, weights, intercept):
super(SVMModel, self).__init__(weights, intercept)
self._threshold = 0.0
def predict(self, x):
"""
Predict values for a single data point or an RDD of points using
the model trained.
"""
if isinstance(x, RDD):
return x.map(lambda v: self.predict(v))
x = _convert_to_vector(x)
margin = self.weights.dot(x) + self.intercept
if self._threshold is None:
return margin
else:
return 1 if margin > self._threshold else 0
def save(self, sc, path):
java_model = sc._jvm.org.apache.spark.mllib.classification.SVMModel(
_py2java(sc, self._coeff), self.intercept)
java_model.save(sc._jsc.sc(), path)
@classmethod
def load(cls, sc, path):
java_model = sc._jvm.org.apache.spark.mllib.classification.SVMModel.load(
sc._jsc.sc(), path)
weights = _java2py(sc, java_model.weights())
intercept = java_model.intercept()
threshold = java_model.getThreshold().get()
model = SVMModel(weights, intercept)
model.setThreshold(threshold)
return model
class SVMWithSGD(object):
@classmethod
def train(cls, data, iterations=100, step=1.0, regParam=0.01,
miniBatchFraction=1.0, initialWeights=None, regType="l2",
intercept=False, validateData=True):
"""
Train a support vector machine on the given data.
:param data: The training data, an RDD of LabeledPoint.
:param iterations: The number of iterations (default: 100).
:param step: The step parameter used in SGD
(default: 1.0).
:param regParam: The regularizer parameter (default: 0.01).
:param miniBatchFraction: Fraction of data to be used for each SGD
iteration.
:param initialWeights: The initial weights (default: None).
:param regType: The type of regularizer used for training
our model.
:Allowed values:
- "l1" for using L1 regularization
- "l2" for using L2 regularization
- None for no regularization
(default: "l2")
:param intercept: Boolean parameter which indicates the use
or not of the augmented representation for
training data (i.e. whether bias features
are activated or not).
:param validateData: Boolean parameter which indicates if the
algorithm should validate data before training.
(default: True)
"""
def train(rdd, i):
return callMLlibFunc("trainSVMModelWithSGD", rdd, int(iterations), float(step),
float(regParam), float(miniBatchFraction), i, regType,
bool(intercept), bool(validateData))
return _regression_train_wrapper(train, SVMModel, data, initialWeights)
@inherit_doc
class NaiveBayesModel(Saveable, Loader):
"""
Model for Naive Bayes classifiers.
Contains two parameters:
- pi: vector of logs of class priors (dimension C)
- theta: matrix of logs of class conditional probabilities (CxD)
>>> data = [
... LabeledPoint(0.0, [0.0, 0.0]),
... LabeledPoint(0.0, [0.0, 1.0]),
... LabeledPoint(1.0, [1.0, 0.0]),
... ]
>>> model = NaiveBayes.train(sc.parallelize(data))
>>> model.predict(array([0.0, 1.0]))
0.0
>>> model.predict(array([1.0, 0.0]))
1.0
>>> model.predict(sc.parallelize([[1.0, 0.0]])).collect()
[1.0]
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {1: 0.0})),
... LabeledPoint(0.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(1.0, SparseVector(2, {0: 1.0}))
... ]
>>> model = NaiveBayes.train(sc.parallelize(sparse_data))
>>> model.predict(SparseVector(2, {1: 1.0}))
0.0
>>> model.predict(SparseVector(2, {0: 1.0}))
1.0
>>> import os, tempfile
>>> path = tempfile.mkdtemp()
>>> model.save(sc, path)
>>> sameModel = NaiveBayesModel.load(sc, path)
>>> sameModel.predict(SparseVector(2, {0: 1.0})) == model.predict(SparseVector(2, {0: 1.0}))
True
>>> try:
... os.removedirs(path)
... except OSError:
... pass
"""
def __init__(self, labels, pi, theta):
self.labels = labels
self.pi = pi
self.theta = theta
def predict(self, x):
"""Return the most likely class for a data vector or an RDD of vectors"""
if isinstance(x, RDD):
return x.map(lambda v: self.predict(v))
x = _convert_to_vector(x)
return self.labels[numpy.argmax(self.pi + x.dot(self.theta.transpose()))]
def save(self, sc, path):
java_labels = _py2java(sc, self.labels.tolist())
java_pi = _py2java(sc, self.pi.tolist())
java_theta = _py2java(sc, self.theta.tolist())
java_model = sc._jvm.org.apache.spark.mllib.classification.NaiveBayesModel(
java_labels, java_pi, java_theta)
java_model.save(sc._jsc.sc(), path)
@classmethod
def load(cls, sc, path):
java_model = sc._jvm.org.apache.spark.mllib.classification.NaiveBayesModel.load(
sc._jsc.sc(), path)
# Can not unpickle array.array from Pyrolite in Python3 with "bytes"
py_labels = _java2py(sc, java_model.labels(), "latin1")
py_pi = _java2py(sc, java_model.pi(), "latin1")
py_theta = _java2py(sc, java_model.theta(), "latin1")
return NaiveBayesModel(py_labels, py_pi, numpy.array(py_theta))
class NaiveBayes(object):
@classmethod
def train(cls, data, lambda_=1.0):
"""
Train a Naive Bayes model given an RDD of (label, features) vectors.
This is the Multinomial NB (U{http://tinyurl.com/lsdw6p}) which can
handle all kinds of discrete data. For example, by converting
documents into TF-IDF vectors, it can be used for document
classification. By making every vector a 0-1 vector, it can also be
used as Bernoulli NB (U{http://tinyurl.com/p7c96j6}).
:param data: RDD of LabeledPoint.
:param lambda_: The smoothing parameter
"""
first = data.first()
if not isinstance(first, LabeledPoint):
raise ValueError("`data` should be an RDD of LabeledPoint")
labels, pi, theta = callMLlibFunc("trainNaiveBayes", data, lambda_)
return NaiveBayesModel(labels.toArray(), pi.toArray(), numpy.array(theta))
def _test():
import doctest
from pyspark import SparkContext
import pyspark.mllib.classification
globs = pyspark.mllib.classification.__dict__.copy()
globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
globs['sc'].stop()
if failure_count:
exit(-1)
if __name__ == "__main__":
_test()