spark-instrumented-optimizer/python/pyspark/mllib/random.py
Davies Liu 872fc669b4 [SPARK-4124] [MLlib] [PySpark] simplify serialization in MLlib Python API
Create several helper functions to call MLlib Java API, convert the arguments to Java type and convert return value to Python object automatically, this simplify serialization in MLlib Python API very much.

After this, the MLlib Python API does not need to deal with serialization details anymore, it's easier to add new API.

cc mengxr

Author: Davies Liu <davies@databricks.com>

Closes #2995 from davies/cleanup and squashes the following commits:

8fa6ec6 [Davies Liu] address comments
16b85a0 [Davies Liu] Merge branch 'master' of github.com:apache/spark into cleanup
43743e5 [Davies Liu] bugfix
731331f [Davies Liu] simplify serialization in MLlib Python API
2014-10-30 22:25:18 -07:00

183 lines
5.8 KiB
Python

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Python package for random data generation.
"""
from functools import wraps
from pyspark.mllib.common import callMLlibFunc
__all__ = ['RandomRDDs', ]
def toArray(f):
@wraps(f)
def func(sc, *a, **kw):
rdd = f(sc, *a, **kw)
return rdd.map(lambda vec: vec.toArray())
return func
class RandomRDDs(object):
"""
Generator methods for creating RDDs comprised of i.i.d samples from
some distribution.
"""
@staticmethod
def uniformRDD(sc, size, numPartitions=None, seed=None):
"""
Generates an RDD comprised of i.i.d. samples from the
uniform distribution U(0.0, 1.0).
To transform the distribution in the generated RDD from U(0.0, 1.0)
to U(a, b), use
C{RandomRDDs.uniformRDD(sc, n, p, seed)\
.map(lambda v: a + (b - a) * v)}
>>> x = RandomRDDs.uniformRDD(sc, 100).collect()
>>> len(x)
100
>>> max(x) <= 1.0 and min(x) >= 0.0
True
>>> RandomRDDs.uniformRDD(sc, 100, 4).getNumPartitions()
4
>>> parts = RandomRDDs.uniformRDD(sc, 100, seed=4).getNumPartitions()
>>> parts == sc.defaultParallelism
True
"""
return callMLlibFunc("uniformRDD", sc._jsc, size, numPartitions, seed)
@staticmethod
def normalRDD(sc, size, numPartitions=None, seed=None):
"""
Generates an RDD comprised of i.i.d. samples from the standard normal
distribution.
To transform the distribution in the generated RDD from standard normal
to some other normal N(mean, sigma^2), use
C{RandomRDDs.normal(sc, n, p, seed)\
.map(lambda v: mean + sigma * v)}
>>> x = RandomRDDs.normalRDD(sc, 1000, seed=1L)
>>> stats = x.stats()
>>> stats.count()
1000L
>>> abs(stats.mean() - 0.0) < 0.1
True
>>> abs(stats.stdev() - 1.0) < 0.1
True
"""
return callMLlibFunc("normalRDD", sc._jsc, size, numPartitions, seed)
@staticmethod
def poissonRDD(sc, mean, size, numPartitions=None, seed=None):
"""
Generates an RDD comprised of i.i.d. samples from the Poisson
distribution with the input mean.
>>> mean = 100.0
>>> x = RandomRDDs.poissonRDD(sc, mean, 1000, seed=2L)
>>> stats = x.stats()
>>> stats.count()
1000L
>>> abs(stats.mean() - mean) < 0.5
True
>>> from math import sqrt
>>> abs(stats.stdev() - sqrt(mean)) < 0.5
True
"""
return callMLlibFunc("poissonRDD", sc._jsc, mean, size, numPartitions, seed)
@staticmethod
@toArray
def uniformVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None):
"""
Generates an RDD comprised of vectors containing i.i.d. samples drawn
from the uniform distribution U(0.0, 1.0).
>>> import numpy as np
>>> mat = np.matrix(RandomRDDs.uniformVectorRDD(sc, 10, 10).collect())
>>> mat.shape
(10, 10)
>>> mat.max() <= 1.0 and mat.min() >= 0.0
True
>>> RandomRDDs.uniformVectorRDD(sc, 10, 10, 4).getNumPartitions()
4
"""
return callMLlibFunc("uniformVectorRDD", sc._jsc, numRows, numCols, numPartitions, seed)
@staticmethod
@toArray
def normalVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None):
"""
Generates an RDD comprised of vectors containing i.i.d. samples drawn
from the standard normal distribution.
>>> import numpy as np
>>> mat = np.matrix(RandomRDDs.normalVectorRDD(sc, 100, 100, seed=1L).collect())
>>> mat.shape
(100, 100)
>>> abs(mat.mean() - 0.0) < 0.1
True
>>> abs(mat.std() - 1.0) < 0.1
True
"""
return callMLlibFunc("normalVectorRDD", sc._jsc, numRows, numCols, numPartitions, seed)
@staticmethod
@toArray
def poissonVectorRDD(sc, mean, numRows, numCols, numPartitions=None, seed=None):
"""
Generates an RDD comprised of vectors containing i.i.d. samples drawn
from the Poisson distribution with the input mean.
>>> import numpy as np
>>> mean = 100.0
>>> rdd = RandomRDDs.poissonVectorRDD(sc, mean, 100, 100, seed=1L)
>>> mat = np.mat(rdd.collect())
>>> mat.shape
(100, 100)
>>> abs(mat.mean() - mean) < 0.5
True
>>> from math import sqrt
>>> abs(mat.std() - sqrt(mean)) < 0.5
True
"""
return callMLlibFunc("poissonVectorRDD", sc._jsc, mean, numRows, numCols,
numPartitions, seed)
def _test():
import doctest
from pyspark.context import SparkContext
globs = globals().copy()
# The small batch size here ensures that we see multiple batches,
# even in these small test examples:
globs['sc'] = SparkContext('local[2]', 'PythonTest', batchSize=2)
(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
globs['sc'].stop()
if failure_count:
exit(-1)
if __name__ == "__main__":
_test()