spark-instrumented-optimizer/sql
Michael Armbrust 5a5f65905a [SPARK-11347] [SQL] Support for joinWith in Datasets
This PR adds a new operation `joinWith` to a `Dataset`, which returns a `Tuple` for each pair where a given `condition` evaluates to true.

```scala
case class ClassData(a: String, b: Int)

val ds1 = Seq(ClassData("a", 1), ClassData("b", 2)).toDS()
val ds2 = Seq(("a", 1), ("b", 2)).toDS()

> ds1.joinWith(ds2, $"_1" === $"a").collect()
res0: Array((ClassData("a", 1), ("a", 1)), (ClassData("b", 2), ("b", 2)))
```

This operation is similar to the relation `join` function with one important difference in the result schema. Since `joinWith` preserves objects present on either side of the join, the result schema is similarly nested into a tuple under the column names `_1` and `_2`.

This type of join can be useful both for preserving type-safety with the original object types as well as working with relational data where either side of the join has column names in common.

## Required Changes to Encoders
In the process of working on this patch, several deficiencies to the way that we were handling encoders were discovered.  Specifically, it turned out to be very difficult to `rebind` the non-expression based encoders to extract the nested objects from the results of joins (and also typed selects that return tuples).

As a result the following changes were made.
 - `ClassEncoder` has been renamed to `ExpressionEncoder` and has been improved to also handle primitive types.  Additionally, it is now possible to take arbitrary expression encoders and rewrite them into a single encoder that returns a tuple.
 - All internal operations on `Dataset`s now require an `ExpressionEncoder`.  If the users tries to pass a non-`ExpressionEncoder` in, an error will be thrown.  We can relax this requirement in the future by constructing a wrapper class that uses expressions to project the row to the expected schema, shielding the users code from the required remapping.  This will give us a nice balance where we don't force user encoders to understand attribute references and binding, but still allow our native encoder to leverage runtime code generation to construct specific encoders for a given schema that avoid an extra remapping step.
 - Additionally, the semantics for different types of objects are now better defined.  As stated in the `ExpressionEncoder` scaladoc:
  - Classes will have their sub fields extracted by name using `UnresolvedAttribute` expressions
  and `UnresolvedExtractValue` expressions.
  - Tuples will have their subfields extracted by position using `BoundReference` expressions.
  - Primitives will have their values extracted from the first ordinal with a schema that defaults
  to the name `value`.
 - Finally, the binding lifecycle for `Encoders` has now been unified across the codebase.  Encoders are now `resolved` to the appropriate schema in the constructor of `Dataset`.  This process replaces an unresolved expressions with concrete `AttributeReference` expressions.  Binding then happens on demand, when an encoder is going to be used to construct an object.  This closely mirrors the lifecycle for standard expressions when executing normal SQL or `DataFrame` queries.

Author: Michael Armbrust <michael@databricks.com>

Closes #9300 from marmbrus/datasets-tuples.
2015-10-27 13:28:52 -07:00
..
catalyst [SPARK-11347] [SQL] Support for joinWith in Datasets 2015-10-27 13:28:52 -07:00
core [SPARK-11347] [SQL] Support for joinWith in Datasets 2015-10-27 13:28:52 -07:00
hive [SPARK-10562] [SQL] support mixed case partitionBy column names for tables stored in metastore 2015-10-26 21:14:26 -07:00
hive-thriftserver [SPARK-10810] [SPARK-10902] [SQL] Improve session management in SQL 2015-10-08 17:34:24 -07:00
README.md [SPARK-8746] [SQL] update download link for Hive 0.13.1 2015-07-02 13:45:19 +01:00

Spark SQL

This module provides support for executing relational queries expressed in either SQL or a LINQ-like Scala DSL.

Spark SQL is broken up into four subprojects:

  • Catalyst (sql/catalyst) - An implementation-agnostic framework for manipulating trees of relational operators and expressions.
  • Execution (sql/core) - A query planner / execution engine for translating Catalysts logical query plans into Spark RDDs. This component also includes a new public interface, SQLContext, that allows users to execute SQL or LINQ statements against existing RDDs and Parquet files.
  • Hive Support (sql/hive) - Includes an extension of SQLContext called HiveContext that allows users to write queries using a subset of HiveQL and access data from a Hive Metastore using Hive SerDes. There are also wrappers that allows users to run queries that include Hive UDFs, UDAFs, and UDTFs.
  • HiveServer and CLI support (sql/hive-thriftserver) - Includes support for the SQL CLI (bin/spark-sql) and a HiveServer2 (for JDBC/ODBC) compatible server.

Other dependencies for developers

In order to create new hive test cases (i.e. a test suite based on HiveComparisonTest), you will need to setup your development environment based on the following instructions.

If you are working with Hive 0.12.0, you will need to set several environmental variables as follows.

export HIVE_HOME="<path to>/hive/build/dist"
export HIVE_DEV_HOME="<path to>/hive/"
export HADOOP_HOME="<path to>/hadoop-1.0.4"

If you are working with Hive 0.13.1, the following steps are needed:

  1. Download Hive's 0.13.1 and set HIVE_HOME with export HIVE_HOME="<path to hive>". Please do not set HIVE_DEV_HOME (See SPARK-4119).
  2. Set HADOOP_HOME with export HADOOP_HOME="<path to hadoop>"
  3. Download all Hive 0.13.1a jars (Hive jars actually used by Spark) from here and replace corresponding original 0.13.1 jars in $HIVE_HOME/lib.
  4. Download Kryo 2.21 jar (Note: 2.22 jar does not work) and Javolution 5.5.1 jar to $HIVE_HOME/lib.
  5. This step is optional. But, when generating golden answer files, if a Hive query fails and you find that Hive tries to talk to HDFS or you find weird runtime NPEs, set the following in your test suite...
val testTempDir = Utils.createTempDir()
// We have to use kryo to let Hive correctly serialize some plans.
sql("set hive.plan.serialization.format=kryo")
// Explicitly set fs to local fs.
sql(s"set fs.default.name=file://$testTempDir/")
// Ask Hive to run jobs in-process as a single map and reduce task.
sql("set mapred.job.tracker=local")

Using the console

An interactive scala console can be invoked by running build/sbt hive/console. From here you can execute queries with HiveQl and manipulate DataFrame by using DSL.

catalyst$ build/sbt hive/console

[info] Starting scala interpreter...
import org.apache.spark.sql.catalyst.analysis._
import org.apache.spark.sql.catalyst.dsl._
import org.apache.spark.sql.catalyst.errors._
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.catalyst.rules._
import org.apache.spark.sql.catalyst.util._
import org.apache.spark.sql.execution
import org.apache.spark.sql.functions._
import org.apache.spark.sql.hive._
import org.apache.spark.sql.hive.test.TestHive._
import org.apache.spark.sql.types._
Type in expressions to have them evaluated.
Type :help for more information.

scala> val query = sql("SELECT * FROM (SELECT * FROM src) a")
query: org.apache.spark.sql.DataFrame = org.apache.spark.sql.DataFrame@74448eed

Query results are DataFrames and can be operated as such.

scala> query.collect()
res2: Array[org.apache.spark.sql.Row] = Array([238,val_238], [86,val_86], [311,val_311], [27,val_27]...

You can also build further queries on top of these DataFrames using the query DSL.

scala> query.where(query("key") > 30).select(avg(query("key"))).collect()
res3: Array[org.apache.spark.sql.Row] = Array([274.79025423728814])