spark-instrumented-optimizer/sql
Davies Liu 56419cf11f [SPARK-10342] [SPARK-10309] [SPARK-10474] [SPARK-10929] [SQL] Cooperative memory management
This PR introduce a mechanism to call spill() on those SQL operators that support spilling (for example, BytesToBytesMap, UnsafeExternalSorter and ShuffleExternalSorter) if there is not enough memory for execution. The preserved first page is needed anymore, so removed.

Other Spillable objects in Spark core (ExternalSorter and AppendOnlyMap) are not included in this PR, but those could benefit from this (trigger others' spilling).

The PrepareRDD may be not needed anymore, could be removed in follow up PR.

The following script will fail with OOM before this PR, finished in 150 seconds with 2G heap (also works in 1.5 branch, with similar duration).

```python
sqlContext.setConf("spark.sql.shuffle.partitions", "1")
df = sqlContext.range(1<<25).selectExpr("id", "repeat(id, 2) as s")
df2 = df.select(df.id.alias('id2'), df.s.alias('s2'))
j = df.join(df2, df.id==df2.id2).groupBy(df.id).max("id", "id2")
j.explain()
print j.count()
```

For thread-safety, here what I'm got:

1) Without calling spill(), the operators should only be used by single thread, no safety problems.

2) spill() could be triggered in two cases, triggered by itself, or by other operators. we can check trigger == this in spill(), so it's still in the same thread, so safety problems.

3) if it's triggered by other operators (right now cache will not trigger spill()), we only spill the data into disk when it's in scanning stage (building is finished), so the in-memory sorter or memory pages are read-only, we only need to synchronize the iterator and change it.

4) During scanning, the iterator will only use one record in one page, we can't free this page, because the downstream is currently using it (used by UnsafeRow or other objects). In BytesToBytesMap, we just skip the current page, and dump all others into disk. In UnsafeExternalSorter, we keep the page that is used by current record (having the same baseObject), free it when loading the next record. In ShuffleExternalSorter, the spill() will not trigger during scanning.

5) In order to avoid deadlock, we didn't call acquireMemory during spill (so we reused the pointer array in InMemorySorter).

Author: Davies Liu <davies@databricks.com>

Closes #9241 from davies/force_spill.
2015-10-29 23:38:06 -07:00
..
catalyst [SPARK-10342] [SPARK-10309] [SPARK-10474] [SPARK-10929] [SQL] Cooperative memory management 2015-10-29 23:38:06 -07:00
core [SPARK-10342] [SPARK-10309] [SPARK-10474] [SPARK-10929] [SQL] Cooperative memory management 2015-10-29 23:38:06 -07:00
hive [SPARK-10641][SQL] Add Skewness and Kurtosis Support 2015-10-29 11:58:39 -07:00
hive-thriftserver [SPARK-11188][SQL] Elide stacktraces in bin/spark-sql for AnalysisExceptions 2015-10-29 18:29:50 +01:00
README.md [SPARK-8746] [SQL] update download link for Hive 0.13.1 2015-07-02 13:45:19 +01:00

Spark SQL

This module provides support for executing relational queries expressed in either SQL or a LINQ-like Scala DSL.

Spark SQL is broken up into four subprojects:

  • Catalyst (sql/catalyst) - An implementation-agnostic framework for manipulating trees of relational operators and expressions.
  • Execution (sql/core) - A query planner / execution engine for translating Catalysts logical query plans into Spark RDDs. This component also includes a new public interface, SQLContext, that allows users to execute SQL or LINQ statements against existing RDDs and Parquet files.
  • Hive Support (sql/hive) - Includes an extension of SQLContext called HiveContext that allows users to write queries using a subset of HiveQL and access data from a Hive Metastore using Hive SerDes. There are also wrappers that allows users to run queries that include Hive UDFs, UDAFs, and UDTFs.
  • HiveServer and CLI support (sql/hive-thriftserver) - Includes support for the SQL CLI (bin/spark-sql) and a HiveServer2 (for JDBC/ODBC) compatible server.

Other dependencies for developers

In order to create new hive test cases (i.e. a test suite based on HiveComparisonTest), you will need to setup your development environment based on the following instructions.

If you are working with Hive 0.12.0, you will need to set several environmental variables as follows.

export HIVE_HOME="<path to>/hive/build/dist"
export HIVE_DEV_HOME="<path to>/hive/"
export HADOOP_HOME="<path to>/hadoop-1.0.4"

If you are working with Hive 0.13.1, the following steps are needed:

  1. Download Hive's 0.13.1 and set HIVE_HOME with export HIVE_HOME="<path to hive>". Please do not set HIVE_DEV_HOME (See SPARK-4119).
  2. Set HADOOP_HOME with export HADOOP_HOME="<path to hadoop>"
  3. Download all Hive 0.13.1a jars (Hive jars actually used by Spark) from here and replace corresponding original 0.13.1 jars in $HIVE_HOME/lib.
  4. Download Kryo 2.21 jar (Note: 2.22 jar does not work) and Javolution 5.5.1 jar to $HIVE_HOME/lib.
  5. This step is optional. But, when generating golden answer files, if a Hive query fails and you find that Hive tries to talk to HDFS or you find weird runtime NPEs, set the following in your test suite...
val testTempDir = Utils.createTempDir()
// We have to use kryo to let Hive correctly serialize some plans.
sql("set hive.plan.serialization.format=kryo")
// Explicitly set fs to local fs.
sql(s"set fs.default.name=file://$testTempDir/")
// Ask Hive to run jobs in-process as a single map and reduce task.
sql("set mapred.job.tracker=local")

Using the console

An interactive scala console can be invoked by running build/sbt hive/console. From here you can execute queries with HiveQl and manipulate DataFrame by using DSL.

catalyst$ build/sbt hive/console

[info] Starting scala interpreter...
import org.apache.spark.sql.catalyst.analysis._
import org.apache.spark.sql.catalyst.dsl._
import org.apache.spark.sql.catalyst.errors._
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.catalyst.rules._
import org.apache.spark.sql.catalyst.util._
import org.apache.spark.sql.execution
import org.apache.spark.sql.functions._
import org.apache.spark.sql.hive._
import org.apache.spark.sql.hive.test.TestHive._
import org.apache.spark.sql.types._
Type in expressions to have them evaluated.
Type :help for more information.

scala> val query = sql("SELECT * FROM (SELECT * FROM src) a")
query: org.apache.spark.sql.DataFrame = org.apache.spark.sql.DataFrame@74448eed

Query results are DataFrames and can be operated as such.

scala> query.collect()
res2: Array[org.apache.spark.sql.Row] = Array([238,val_238], [86,val_86], [311,val_311], [27,val_27]...

You can also build further queries on top of these DataFrames using the query DSL.

scala> query.where(query("key") > 30).select(avg(query("key"))).collect()
res3: Array[org.apache.spark.sql.Row] = Array([274.79025423728814])