spark-instrumented-optimizer/sql
Wenchen Fan 6037ed0a1d [SPARK-13976][SQL] do not remove sub-queries added by user when generate SQL
## What changes were proposed in this pull request?

We haven't figured out the corrected logical to add sub-queries yet, so we should not clear all sub-queries before generate SQL. This PR changed the logic to only remove sub-queries above table relation.

an example for this bug, original SQL: `SELECT a FROM (SELECT a FROM tbl) t WHERE a = 1`
before this PR, we will generate:
```
SELECT attr_1 AS a FROM
  SELECT attr_1 FROM (
    SELECT a AS attr_1 FROM tbl
  ) AS sub_q0
  WHERE attr_1 = 1
```
We missed a sub-query and this SQL string is illegal.

After this PR, we will generate:
```
SELECT attr_1 AS a FROM (
  SELECT attr_1 FROM (
    SELECT a AS attr_1 FROM tbl
  ) AS sub_q0
  WHERE attr_1 = 1
) AS t
```

TODO: for long term, we should find a way to add sub-queries correctly, so that arbitrary logical plans can be converted to SQL string.

## How was this patch tested?

`LogicalPlanToSQLSuite`

Author: Wenchen Fan <wenchen@databricks.com>

Closes #11786 from cloud-fan/bug-fix.
2016-03-18 10:16:48 +08:00
..
catalyst [SPARK-13838] [SQL] Clear variable code to prevent it to be re-evaluated in BoundAttribute 2016-03-17 10:08:42 -07:00
core [SPARK-13427][SQL] Support USING clause in JOIN. 2016-03-17 10:01:41 -07:00
hive [SPARK-13976][SQL] do not remove sub-queries added by user when generate SQL 2016-03-18 10:16:48 +08:00
hive-thriftserver [SPARK-13928] Move org.apache.spark.Logging into org.apache.spark.internal.Logging 2016-03-17 19:23:38 +08:00
README.md [SPARK-13264][DOC] Removed multi-byte characters in spark-env.sh.template 2016-02-11 09:30:36 +00:00

Spark SQL

This module provides support for executing relational queries expressed in either SQL or a LINQ-like Scala DSL.

Spark SQL is broken up into four subprojects:

  • Catalyst (sql/catalyst) - An implementation-agnostic framework for manipulating trees of relational operators and expressions.
  • Execution (sql/core) - A query planner / execution engine for translating Catalyst's logical query plans into Spark RDDs. This component also includes a new public interface, SQLContext, that allows users to execute SQL or LINQ statements against existing RDDs and Parquet files.
  • Hive Support (sql/hive) - Includes an extension of SQLContext called HiveContext that allows users to write queries using a subset of HiveQL and access data from a Hive Metastore using Hive SerDes. There are also wrappers that allows users to run queries that include Hive UDFs, UDAFs, and UDTFs.
  • HiveServer and CLI support (sql/hive-thriftserver) - Includes support for the SQL CLI (bin/spark-sql) and a HiveServer2 (for JDBC/ODBC) compatible server.

Other dependencies for developers

In order to create new hive test cases (i.e. a test suite based on HiveComparisonTest), you will need to setup your development environment based on the following instructions.

If you are working with Hive 0.12.0, you will need to set several environmental variables as follows.

export HIVE_HOME="<path to>/hive/build/dist"
export HIVE_DEV_HOME="<path to>/hive/"
export HADOOP_HOME="<path to>/hadoop"

If you are working with Hive 0.13.1, the following steps are needed:

  1. Download Hive's 0.13.1 and set HIVE_HOME with export HIVE_HOME="<path to hive>". Please do not set HIVE_DEV_HOME (See SPARK-4119).
  2. Set HADOOP_HOME with export HADOOP_HOME="<path to hadoop>"
  3. Download all Hive 0.13.1a jars (Hive jars actually used by Spark) from here and replace corresponding original 0.13.1 jars in $HIVE_HOME/lib.
  4. Download Kryo 2.21 jar (Note: 2.22 jar does not work) and Javolution 5.5.1 jar to $HIVE_HOME/lib.
  5. This step is optional. But, when generating golden answer files, if a Hive query fails and you find that Hive tries to talk to HDFS or you find weird runtime NPEs, set the following in your test suite...
val testTempDir = Utils.createTempDir()
// We have to use kryo to let Hive correctly serialize some plans.
sql("set hive.plan.serialization.format=kryo")
// Explicitly set fs to local fs.
sql(s"set fs.default.name=file://$testTempDir/")
// Ask Hive to run jobs in-process as a single map and reduce task.
sql("set mapred.job.tracker=local")

Using the console

An interactive scala console can be invoked by running build/sbt hive/console. From here you can execute queries with HiveQl and manipulate DataFrame by using DSL.

catalyst$ build/sbt hive/console

[info] Starting scala interpreter...
import org.apache.spark.sql.catalyst.analysis._
import org.apache.spark.sql.catalyst.dsl._
import org.apache.spark.sql.catalyst.errors._
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.catalyst.rules._
import org.apache.spark.sql.catalyst.util._
import org.apache.spark.sql.execution
import org.apache.spark.sql.functions._
import org.apache.spark.sql.hive._
import org.apache.spark.sql.hive.test.TestHive._
import org.apache.spark.sql.types._
Type in expressions to have them evaluated.
Type :help for more information.

scala> val query = sql("SELECT * FROM (SELECT * FROM src) a")
query: org.apache.spark.sql.DataFrame = org.apache.spark.sql.DataFrame@74448eed

Query results are DataFrames and can be operated as such.

scala> query.collect()
res2: Array[org.apache.spark.sql.Row] = Array([238,val_238], [86,val_86], [311,val_311], [27,val_27]...

You can also build further queries on top of these DataFrames using the query DSL.

scala> query.where(query("key") > 30).select(avg(query("key"))).collect()
res3: Array[org.apache.spark.sql.Row] = Array([274.79025423728814])