spark-instrumented-optimizer/sql
Davies Liu 73dedb589d [SPARK-8246] [SQL] Implement get_json_object
This is based on #7485 , thanks to NathanHowell

Tests were copied from Hive, but do not seem to be super comprehensive. I've generally replicated Hive's unusual behavior rather than following a JSONPath reference, except for one case (as noted in the comments). I don't know if there is a way of fully replicating Hive's behavior without a slower TreeNode implementation, so I've erred on the side of performance instead.

Author: Davies Liu <davies@databricks.com>
Author: Yin Huai <yhuai@databricks.com>
Author: Nathan Howell <nhowell@godaddy.com>

Closes #7901 from davies/get_json_object and squashes the following commits:

3ace9b9 [Davies Liu] Merge branch 'get_json_object' of github.com:davies/spark into get_json_object
98766fc [Davies Liu] Merge branch 'master' of github.com:apache/spark into get_json_object
a7dc6d0 [Davies Liu] Update JsonExpressionsSuite.scala
c818519 [Yin Huai] new results.
18ce26b [Davies Liu] fix tests
6ac29fb [Yin Huai] Golden files.
25eebef [Davies Liu] use HiveQuerySuite
e0ac6ec [Yin Huai] Golden answer files.
940c060 [Davies Liu] tweat code style
44084c5 [Davies Liu] Merge branch 'master' of github.com:apache/spark into get_json_object
9192d09 [Nathan Howell] Match Hive’s behavior for unwrapping arrays of one element
8dab647 [Nathan Howell] [SPARK-8246] [SQL] Implement get_json_object
2015-08-04 09:07:09 -07:00
..
catalyst [SPARK-8246] [SQL] Implement get_json_object 2015-08-04 09:07:09 -07:00
core [SPARK-8246] [SQL] Implement get_json_object 2015-08-04 09:07:09 -07:00
hive [SPARK-8246] [SQL] Implement get_json_object 2015-08-04 09:07:09 -07:00
hive-thriftserver [SPARK-8064] [SQL] Build against Hive 1.2.1 2015-08-03 15:24:42 -07:00
README.md [SPARK-8746] [SQL] update download link for Hive 0.13.1 2015-07-02 13:45:19 +01:00

Spark SQL

This module provides support for executing relational queries expressed in either SQL or a LINQ-like Scala DSL.

Spark SQL is broken up into four subprojects:

  • Catalyst (sql/catalyst) - An implementation-agnostic framework for manipulating trees of relational operators and expressions.
  • Execution (sql/core) - A query planner / execution engine for translating Catalysts logical query plans into Spark RDDs. This component also includes a new public interface, SQLContext, that allows users to execute SQL or LINQ statements against existing RDDs and Parquet files.
  • Hive Support (sql/hive) - Includes an extension of SQLContext called HiveContext that allows users to write queries using a subset of HiveQL and access data from a Hive Metastore using Hive SerDes. There are also wrappers that allows users to run queries that include Hive UDFs, UDAFs, and UDTFs.
  • HiveServer and CLI support (sql/hive-thriftserver) - Includes support for the SQL CLI (bin/spark-sql) and a HiveServer2 (for JDBC/ODBC) compatible server.

Other dependencies for developers

In order to create new hive test cases (i.e. a test suite based on HiveComparisonTest), you will need to setup your development environment based on the following instructions.

If you are working with Hive 0.12.0, you will need to set several environmental variables as follows.

export HIVE_HOME="<path to>/hive/build/dist"
export HIVE_DEV_HOME="<path to>/hive/"
export HADOOP_HOME="<path to>/hadoop-1.0.4"

If you are working with Hive 0.13.1, the following steps are needed:

  1. Download Hive's 0.13.1 and set HIVE_HOME with export HIVE_HOME="<path to hive>". Please do not set HIVE_DEV_HOME (See SPARK-4119).
  2. Set HADOOP_HOME with export HADOOP_HOME="<path to hadoop>"
  3. Download all Hive 0.13.1a jars (Hive jars actually used by Spark) from here and replace corresponding original 0.13.1 jars in $HIVE_HOME/lib.
  4. Download Kryo 2.21 jar (Note: 2.22 jar does not work) and Javolution 5.5.1 jar to $HIVE_HOME/lib.
  5. This step is optional. But, when generating golden answer files, if a Hive query fails and you find that Hive tries to talk to HDFS or you find weird runtime NPEs, set the following in your test suite...
val testTempDir = Utils.createTempDir()
// We have to use kryo to let Hive correctly serialize some plans.
sql("set hive.plan.serialization.format=kryo")
// Explicitly set fs to local fs.
sql(s"set fs.default.name=file://$testTempDir/")
// Ask Hive to run jobs in-process as a single map and reduce task.
sql("set mapred.job.tracker=local")

Using the console

An interactive scala console can be invoked by running build/sbt hive/console. From here you can execute queries with HiveQl and manipulate DataFrame by using DSL.

catalyst$ build/sbt hive/console

[info] Starting scala interpreter...
import org.apache.spark.sql.catalyst.analysis._
import org.apache.spark.sql.catalyst.dsl._
import org.apache.spark.sql.catalyst.errors._
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.catalyst.rules._
import org.apache.spark.sql.catalyst.util._
import org.apache.spark.sql.execution
import org.apache.spark.sql.functions._
import org.apache.spark.sql.hive._
import org.apache.spark.sql.hive.test.TestHive._
import org.apache.spark.sql.types._
Type in expressions to have them evaluated.
Type :help for more information.

scala> val query = sql("SELECT * FROM (SELECT * FROM src) a")
query: org.apache.spark.sql.DataFrame = org.apache.spark.sql.DataFrame@74448eed

Query results are DataFrames and can be operated as such.

scala> query.collect()
res2: Array[org.apache.spark.sql.Row] = Array([238,val_238], [86,val_86], [311,val_311], [27,val_27]...

You can also build further queries on top of these DataFrames using the query DSL.

scala> query.where(query("key") > 30).select(avg(query("key"))).collect()
res3: Array[org.apache.spark.sql.Row] = Array([274.79025423728814])