spark-instrumented-optimizer/python/pyspark/mllib/recommendation.py
Maxim Gekk 027ed2d11b [SPARK-23643][CORE][SQL][ML] Shrinking the buffer in hashSeed up to size of the seed parameter
## What changes were proposed in this pull request?

The hashSeed method allocates 64 bytes instead of 8. Other bytes are always zeros (thanks to default behavior of ByteBuffer). And they could be excluded from hash calculation because they don't differentiate inputs.

## How was this patch tested?

By running the existing tests - XORShiftRandomSuite

Closes #20793 from MaxGekk/hash-buff-size.

Lead-authored-by: Maxim Gekk <maxim.gekk@databricks.com>
Co-authored-by: Maxim Gekk <max.gekk@gmail.com>
Signed-off-by: Sean Owen <sean.owen@databricks.com>
2019-03-23 11:26:09 -05:00

335 lines
12 KiB
Python

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import array
import sys
from collections import namedtuple
from pyspark import SparkContext, since
from pyspark.rdd import RDD
from pyspark.mllib.common import JavaModelWrapper, callMLlibFunc, inherit_doc
from pyspark.mllib.util import JavaLoader, JavaSaveable
from pyspark.sql import DataFrame
__all__ = ['MatrixFactorizationModel', 'ALS', 'Rating']
class Rating(namedtuple("Rating", ["user", "product", "rating"])):
"""
Represents a (user, product, rating) tuple.
>>> r = Rating(1, 2, 5.0)
>>> (r.user, r.product, r.rating)
(1, 2, 5.0)
>>> (r[0], r[1], r[2])
(1, 2, 5.0)
.. versionadded:: 1.2.0
"""
def __reduce__(self):
return Rating, (int(self.user), int(self.product), float(self.rating))
@inherit_doc
class MatrixFactorizationModel(JavaModelWrapper, JavaSaveable, JavaLoader):
"""A matrix factorisation model trained by regularized alternating
least-squares.
>>> r1 = (1, 1, 1.0)
>>> r2 = (1, 2, 2.0)
>>> r3 = (2, 1, 2.0)
>>> ratings = sc.parallelize([r1, r2, r3])
>>> model = ALS.trainImplicit(ratings, 1, seed=10)
>>> model.predict(2, 2)
0.4...
>>> testset = sc.parallelize([(1, 2), (1, 1)])
>>> model = ALS.train(ratings, 2, seed=0)
>>> model.predictAll(testset).collect()
[Rating(user=1, product=1, rating=1.0...), Rating(user=1, product=2, rating=1.9...)]
>>> model = ALS.train(ratings, 4, seed=10)
>>> model.userFeatures().collect()
[(1, array('d', [...])), (2, array('d', [...]))]
>>> model.recommendUsers(1, 2)
[Rating(user=2, product=1, rating=1.9...), Rating(user=1, product=1, rating=1.0...)]
>>> model.recommendProducts(1, 2)
[Rating(user=1, product=2, rating=1.9...), Rating(user=1, product=1, rating=1.0...)]
>>> model.rank
4
>>> first_user = model.userFeatures().take(1)[0]
>>> latents = first_user[1]
>>> len(latents)
4
>>> model.productFeatures().collect()
[(1, array('d', [...])), (2, array('d', [...]))]
>>> first_product = model.productFeatures().take(1)[0]
>>> latents = first_product[1]
>>> len(latents)
4
>>> products_for_users = model.recommendProductsForUsers(1).collect()
>>> len(products_for_users)
2
>>> products_for_users[0]
(1, (Rating(user=1, product=2, rating=...),))
>>> users_for_products = model.recommendUsersForProducts(1).collect()
>>> len(users_for_products)
2
>>> users_for_products[0]
(1, (Rating(user=2, product=1, rating=...),))
>>> model = ALS.train(ratings, 1, nonnegative=True, seed=123456789)
>>> model.predict(2, 2)
3.73...
>>> df = sqlContext.createDataFrame([Rating(1, 1, 1.0), Rating(1, 2, 2.0), Rating(2, 1, 2.0)])
>>> model = ALS.train(df, 1, nonnegative=True, seed=123456789)
>>> model.predict(2, 2)
3.73...
>>> model = ALS.trainImplicit(ratings, 1, nonnegative=True, seed=123456789)
>>> model.predict(2, 2)
0.4...
>>> import os, tempfile
>>> path = tempfile.mkdtemp()
>>> model.save(sc, path)
>>> sameModel = MatrixFactorizationModel.load(sc, path)
>>> sameModel.predict(2, 2)
0.4...
>>> sameModel.predictAll(testset).collect()
[Rating(...
>>> from shutil import rmtree
>>> try:
... rmtree(path)
... except OSError:
... pass
.. versionadded:: 0.9.0
"""
@since("0.9.0")
def predict(self, user, product):
"""
Predicts rating for the given user and product.
"""
return self._java_model.predict(int(user), int(product))
@since("0.9.0")
def predictAll(self, user_product):
"""
Returns a list of predicted ratings for input user and product
pairs.
"""
assert isinstance(user_product, RDD), "user_product should be RDD of (user, product)"
first = user_product.first()
assert len(first) == 2, "user_product should be RDD of (user, product)"
user_product = user_product.map(lambda u_p: (int(u_p[0]), int(u_p[1])))
return self.call("predict", user_product)
@since("1.2.0")
def userFeatures(self):
"""
Returns a paired RDD, where the first element is the user and the
second is an array of features corresponding to that user.
"""
return self.call("getUserFeatures").mapValues(lambda v: array.array('d', v))
@since("1.2.0")
def productFeatures(self):
"""
Returns a paired RDD, where the first element is the product and the
second is an array of features corresponding to that product.
"""
return self.call("getProductFeatures").mapValues(lambda v: array.array('d', v))
@since("1.4.0")
def recommendUsers(self, product, num):
"""
Recommends the top "num" number of users for a given product and
returns a list of Rating objects sorted by the predicted rating in
descending order.
"""
return list(self.call("recommendUsers", product, num))
@since("1.4.0")
def recommendProducts(self, user, num):
"""
Recommends the top "num" number of products for a given user and
returns a list of Rating objects sorted by the predicted rating in
descending order.
"""
return list(self.call("recommendProducts", user, num))
def recommendProductsForUsers(self, num):
"""
Recommends the top "num" number of products for all users. The
number of recommendations returned per user may be less than "num".
"""
return self.call("wrappedRecommendProductsForUsers", num)
def recommendUsersForProducts(self, num):
"""
Recommends the top "num" number of users for all products. The
number of recommendations returned per product may be less than
"num".
"""
return self.call("wrappedRecommendUsersForProducts", num)
@property
@since("1.4.0")
def rank(self):
"""Rank for the features in this model"""
return self.call("rank")
@classmethod
@since("1.3.1")
def load(cls, sc, path):
"""Load a model from the given path"""
model = cls._load_java(sc, path)
wrapper = sc._jvm.org.apache.spark.mllib.api.python.MatrixFactorizationModelWrapper(model)
return MatrixFactorizationModel(wrapper)
class ALS(object):
"""Alternating Least Squares matrix factorization
.. versionadded:: 0.9.0
"""
@classmethod
def _prepare(cls, ratings):
if isinstance(ratings, RDD):
pass
elif isinstance(ratings, DataFrame):
ratings = ratings.rdd
else:
raise TypeError("Ratings should be represented by either an RDD or a DataFrame, "
"but got %s." % type(ratings))
first = ratings.first()
if isinstance(first, Rating):
pass
elif isinstance(first, (tuple, list)):
ratings = ratings.map(lambda x: Rating(*x))
else:
raise TypeError("Expect a Rating or a tuple/list, but got %s." % type(first))
return ratings
@classmethod
@since("0.9.0")
def train(cls, ratings, rank, iterations=5, lambda_=0.01, blocks=-1, nonnegative=False,
seed=None):
"""
Train a matrix factorization model given an RDD of ratings by users
for a subset of products. The ratings matrix is approximated as the
product of two lower-rank matrices of a given rank (number of
features). To solve for these features, ALS is run iteratively with
a configurable level of parallelism.
:param ratings:
RDD of `Rating` or (userID, productID, rating) tuple.
:param rank:
Number of features to use (also referred to as the number of latent factors).
:param iterations:
Number of iterations of ALS.
(default: 5)
:param lambda_:
Regularization parameter.
(default: 0.01)
:param blocks:
Number of blocks used to parallelize the computation. A value
of -1 will use an auto-configured number of blocks.
(default: -1)
:param nonnegative:
A value of True will solve least-squares with nonnegativity
constraints.
(default: False)
:param seed:
Random seed for initial matrix factorization model. A value
of None will use system time as the seed.
(default: None)
"""
model = callMLlibFunc("trainALSModel", cls._prepare(ratings), rank, iterations,
lambda_, blocks, nonnegative, seed)
return MatrixFactorizationModel(model)
@classmethod
@since("0.9.0")
def trainImplicit(cls, ratings, rank, iterations=5, lambda_=0.01, blocks=-1, alpha=0.01,
nonnegative=False, seed=None):
"""
Train a matrix factorization model given an RDD of 'implicit
preferences' of users for a subset of products. The ratings matrix
is approximated as the product of two lower-rank matrices of a
given rank (number of features). To solve for these features, ALS
is run iteratively with a configurable level of parallelism.
:param ratings:
RDD of `Rating` or (userID, productID, rating) tuple.
:param rank:
Number of features to use (also referred to as the number of latent factors).
:param iterations:
Number of iterations of ALS.
(default: 5)
:param lambda_:
Regularization parameter.
(default: 0.01)
:param blocks:
Number of blocks used to parallelize the computation. A value
of -1 will use an auto-configured number of blocks.
(default: -1)
:param alpha:
A constant used in computing confidence.
(default: 0.01)
:param nonnegative:
A value of True will solve least-squares with nonnegativity
constraints.
(default: False)
:param seed:
Random seed for initial matrix factorization model. A value
of None will use system time as the seed.
(default: None)
"""
model = callMLlibFunc("trainImplicitALSModel", cls._prepare(ratings), rank,
iterations, lambda_, blocks, alpha, nonnegative, seed)
return MatrixFactorizationModel(model)
def _test():
import doctest
import pyspark.mllib.recommendation
from pyspark.sql import SQLContext
globs = pyspark.mllib.recommendation.__dict__.copy()
sc = SparkContext('local[4]', 'PythonTest')
globs['sc'] = sc
globs['sqlContext'] = SQLContext(sc)
(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
globs['sc'].stop()
if failure_count:
sys.exit(-1)
if __name__ == "__main__":
_test()