spark-instrumented-optimizer/python/pyspark/mllib/random.py
HyukjinKwon fe75ff8bea [SPARK-28206][PYTHON] Remove the legacy Epydoc in PySpark API documentation
## What changes were proposed in this pull request?

Seems like we used to generate PySpark API documentation by Epydoc almost at the very first place (see 85b8f2c64f).

This fixes an actual issue:

Before:

![Screen Shot 2019-07-05 at 8 20 01 PM](https://user-images.githubusercontent.com/6477701/60720491-e9879180-9f65-11e9-9562-100830a456cd.png)

After:

![Screen Shot 2019-07-05 at 8 20 05 PM](https://user-images.githubusercontent.com/6477701/60720495-ec828200-9f65-11e9-8277-8f689e292cb0.png)

It seems apparently a bug within `epytext` plugin during the conversion between`param` and `:param` syntax. See also [Epydoc syntax](http://epydoc.sourceforge.net/manual-epytext.html).

Actually, Epydoc syntax violates [PEP-257](https://www.python.org/dev/peps/pep-0257/) IIRC and blocks us to enable some rules for doctest linter as well.

We should remove this legacy away and I guess Spark 3 is good timing to do it.

## How was this patch tested?

Manually built the doc and check each.

I had to manually find the Epydoc syntax by `git grep -r "{L"`, for instance.

Closes #25060 from HyukjinKwon/SPARK-28206.

Authored-by: HyukjinKwon <gurwls223@apache.org>
Signed-off-by: Xiangrui Meng <meng@databricks.com>
2019-07-05 10:08:22 -07:00

428 lines
16 KiB
Python

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Python package for random data generation.
"""
import sys
from functools import wraps
from pyspark import since
from pyspark.mllib.common import callMLlibFunc
__all__ = ['RandomRDDs', ]
def toArray(f):
@wraps(f)
def func(sc, *a, **kw):
rdd = f(sc, *a, **kw)
return rdd.map(lambda vec: vec.toArray())
return func
class RandomRDDs(object):
"""
Generator methods for creating RDDs comprised of i.i.d samples from
some distribution.
.. versionadded:: 1.1.0
"""
@staticmethod
@since("1.1.0")
def uniformRDD(sc, size, numPartitions=None, seed=None):
"""
Generates an RDD comprised of i.i.d. samples from the
uniform distribution U(0.0, 1.0).
To transform the distribution in the generated RDD from U(0.0, 1.0)
to U(a, b), use
``RandomRDDs.uniformRDD(sc, n, p, seed).map(lambda v: a + (b - a) * v)``
:param sc: SparkContext used to create the RDD.
:param size: Size of the RDD.
:param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`).
:param seed: Random seed (default: a random long integer).
:return: RDD of float comprised of i.i.d. samples ~ `U(0.0, 1.0)`.
>>> x = RandomRDDs.uniformRDD(sc, 100).collect()
>>> len(x)
100
>>> max(x) <= 1.0 and min(x) >= 0.0
True
>>> RandomRDDs.uniformRDD(sc, 100, 4).getNumPartitions()
4
>>> parts = RandomRDDs.uniformRDD(sc, 100, seed=4).getNumPartitions()
>>> parts == sc.defaultParallelism
True
"""
return callMLlibFunc("uniformRDD", sc._jsc, size, numPartitions, seed)
@staticmethod
@since("1.1.0")
def normalRDD(sc, size, numPartitions=None, seed=None):
"""
Generates an RDD comprised of i.i.d. samples from the standard normal
distribution.
To transform the distribution in the generated RDD from standard normal
to some other normal N(mean, sigma^2), use
``RandomRDDs.normal(sc, n, p, seed).map(lambda v: mean + sigma * v)``
:param sc: SparkContext used to create the RDD.
:param size: Size of the RDD.
:param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`).
:param seed: Random seed (default: a random long integer).
:return: RDD of float comprised of i.i.d. samples ~ N(0.0, 1.0).
>>> x = RandomRDDs.normalRDD(sc, 1000, seed=1)
>>> stats = x.stats()
>>> stats.count()
1000
>>> abs(stats.mean() - 0.0) < 0.1
True
>>> abs(stats.stdev() - 1.0) < 0.1
True
"""
return callMLlibFunc("normalRDD", sc._jsc, size, numPartitions, seed)
@staticmethod
@since("1.3.0")
def logNormalRDD(sc, mean, std, size, numPartitions=None, seed=None):
"""
Generates an RDD comprised of i.i.d. samples from the log normal
distribution with the input mean and standard distribution.
:param sc: SparkContext used to create the RDD.
:param mean: mean for the log Normal distribution
:param std: std for the log Normal distribution
:param size: Size of the RDD.
:param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`).
:param seed: Random seed (default: a random long integer).
:return: RDD of float comprised of i.i.d. samples ~ log N(mean, std).
>>> from math import sqrt, exp
>>> mean = 0.0
>>> std = 1.0
>>> expMean = exp(mean + 0.5 * std * std)
>>> expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std))
>>> x = RandomRDDs.logNormalRDD(sc, mean, std, 1000, seed=2)
>>> stats = x.stats()
>>> stats.count()
1000
>>> abs(stats.mean() - expMean) < 0.5
True
>>> from math import sqrt
>>> abs(stats.stdev() - expStd) < 0.5
True
"""
return callMLlibFunc("logNormalRDD", sc._jsc, float(mean), float(std),
size, numPartitions, seed)
@staticmethod
@since("1.1.0")
def poissonRDD(sc, mean, size, numPartitions=None, seed=None):
"""
Generates an RDD comprised of i.i.d. samples from the Poisson
distribution with the input mean.
:param sc: SparkContext used to create the RDD.
:param mean: Mean, or lambda, for the Poisson distribution.
:param size: Size of the RDD.
:param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`).
:param seed: Random seed (default: a random long integer).
:return: RDD of float comprised of i.i.d. samples ~ Pois(mean).
>>> mean = 100.0
>>> x = RandomRDDs.poissonRDD(sc, mean, 1000, seed=2)
>>> stats = x.stats()
>>> stats.count()
1000
>>> abs(stats.mean() - mean) < 0.5
True
>>> from math import sqrt
>>> abs(stats.stdev() - sqrt(mean)) < 0.5
True
"""
return callMLlibFunc("poissonRDD", sc._jsc, float(mean), size, numPartitions, seed)
@staticmethod
@since("1.3.0")
def exponentialRDD(sc, mean, size, numPartitions=None, seed=None):
"""
Generates an RDD comprised of i.i.d. samples from the Exponential
distribution with the input mean.
:param sc: SparkContext used to create the RDD.
:param mean: Mean, or 1 / lambda, for the Exponential distribution.
:param size: Size of the RDD.
:param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`).
:param seed: Random seed (default: a random long integer).
:return: RDD of float comprised of i.i.d. samples ~ Exp(mean).
>>> mean = 2.0
>>> x = RandomRDDs.exponentialRDD(sc, mean, 1000, seed=2)
>>> stats = x.stats()
>>> stats.count()
1000
>>> abs(stats.mean() - mean) < 0.5
True
>>> from math import sqrt
>>> abs(stats.stdev() - sqrt(mean)) < 0.5
True
"""
return callMLlibFunc("exponentialRDD", sc._jsc, float(mean), size, numPartitions, seed)
@staticmethod
@since("1.3.0")
def gammaRDD(sc, shape, scale, size, numPartitions=None, seed=None):
"""
Generates an RDD comprised of i.i.d. samples from the Gamma
distribution with the input shape and scale.
:param sc: SparkContext used to create the RDD.
:param shape: shape (> 0) parameter for the Gamma distribution
:param scale: scale (> 0) parameter for the Gamma distribution
:param size: Size of the RDD.
:param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`).
:param seed: Random seed (default: a random long integer).
:return: RDD of float comprised of i.i.d. samples ~ Gamma(shape, scale).
>>> from math import sqrt
>>> shape = 1.0
>>> scale = 2.0
>>> expMean = shape * scale
>>> expStd = sqrt(shape * scale * scale)
>>> x = RandomRDDs.gammaRDD(sc, shape, scale, 1000, seed=2)
>>> stats = x.stats()
>>> stats.count()
1000
>>> abs(stats.mean() - expMean) < 0.5
True
>>> abs(stats.stdev() - expStd) < 0.5
True
"""
return callMLlibFunc("gammaRDD", sc._jsc, float(shape),
float(scale), size, numPartitions, seed)
@staticmethod
@toArray
@since("1.1.0")
def uniformVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None):
"""
Generates an RDD comprised of vectors containing i.i.d. samples drawn
from the uniform distribution U(0.0, 1.0).
:param sc: SparkContext used to create the RDD.
:param numRows: Number of Vectors in the RDD.
:param numCols: Number of elements in each Vector.
:param numPartitions: Number of partitions in the RDD.
:param seed: Seed for the RNG that generates the seed for the generator in each partition.
:return: RDD of Vector with vectors containing i.i.d samples ~ `U(0.0, 1.0)`.
>>> import numpy as np
>>> mat = np.matrix(RandomRDDs.uniformVectorRDD(sc, 10, 10).collect())
>>> mat.shape
(10, 10)
>>> mat.max() <= 1.0 and mat.min() >= 0.0
True
>>> RandomRDDs.uniformVectorRDD(sc, 10, 10, 4).getNumPartitions()
4
"""
return callMLlibFunc("uniformVectorRDD", sc._jsc, numRows, numCols, numPartitions, seed)
@staticmethod
@toArray
@since("1.1.0")
def normalVectorRDD(sc, numRows, numCols, numPartitions=None, seed=None):
"""
Generates an RDD comprised of vectors containing i.i.d. samples drawn
from the standard normal distribution.
:param sc: SparkContext used to create the RDD.
:param numRows: Number of Vectors in the RDD.
:param numCols: Number of elements in each Vector.
:param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`).
:param seed: Random seed (default: a random long integer).
:return: RDD of Vector with vectors containing i.i.d. samples ~ `N(0.0, 1.0)`.
>>> import numpy as np
>>> mat = np.matrix(RandomRDDs.normalVectorRDD(sc, 100, 100, seed=1).collect())
>>> mat.shape
(100, 100)
>>> abs(mat.mean() - 0.0) < 0.1
True
>>> abs(mat.std() - 1.0) < 0.1
True
"""
return callMLlibFunc("normalVectorRDD", sc._jsc, numRows, numCols, numPartitions, seed)
@staticmethod
@toArray
@since("1.3.0")
def logNormalVectorRDD(sc, mean, std, numRows, numCols, numPartitions=None, seed=None):
"""
Generates an RDD comprised of vectors containing i.i.d. samples drawn
from the log normal distribution.
:param sc: SparkContext used to create the RDD.
:param mean: Mean of the log normal distribution
:param std: Standard Deviation of the log normal distribution
:param numRows: Number of Vectors in the RDD.
:param numCols: Number of elements in each Vector.
:param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`).
:param seed: Random seed (default: a random long integer).
:return: RDD of Vector with vectors containing i.i.d. samples ~ log `N(mean, std)`.
>>> import numpy as np
>>> from math import sqrt, exp
>>> mean = 0.0
>>> std = 1.0
>>> expMean = exp(mean + 0.5 * std * std)
>>> expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std))
>>> m = RandomRDDs.logNormalVectorRDD(sc, mean, std, 100, 100, seed=1).collect()
>>> mat = np.matrix(m)
>>> mat.shape
(100, 100)
>>> abs(mat.mean() - expMean) < 0.1
True
>>> abs(mat.std() - expStd) < 0.1
True
"""
return callMLlibFunc("logNormalVectorRDD", sc._jsc, float(mean), float(std),
numRows, numCols, numPartitions, seed)
@staticmethod
@toArray
@since("1.1.0")
def poissonVectorRDD(sc, mean, numRows, numCols, numPartitions=None, seed=None):
"""
Generates an RDD comprised of vectors containing i.i.d. samples drawn
from the Poisson distribution with the input mean.
:param sc: SparkContext used to create the RDD.
:param mean: Mean, or lambda, for the Poisson distribution.
:param numRows: Number of Vectors in the RDD.
:param numCols: Number of elements in each Vector.
:param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`)
:param seed: Random seed (default: a random long integer).
:return: RDD of Vector with vectors containing i.i.d. samples ~ Pois(mean).
>>> import numpy as np
>>> mean = 100.0
>>> rdd = RandomRDDs.poissonVectorRDD(sc, mean, 100, 100, seed=1)
>>> mat = np.mat(rdd.collect())
>>> mat.shape
(100, 100)
>>> abs(mat.mean() - mean) < 0.5
True
>>> from math import sqrt
>>> abs(mat.std() - sqrt(mean)) < 0.5
True
"""
return callMLlibFunc("poissonVectorRDD", sc._jsc, float(mean), numRows, numCols,
numPartitions, seed)
@staticmethod
@toArray
@since("1.3.0")
def exponentialVectorRDD(sc, mean, numRows, numCols, numPartitions=None, seed=None):
"""
Generates an RDD comprised of vectors containing i.i.d. samples drawn
from the Exponential distribution with the input mean.
:param sc: SparkContext used to create the RDD.
:param mean: Mean, or 1 / lambda, for the Exponential distribution.
:param numRows: Number of Vectors in the RDD.
:param numCols: Number of elements in each Vector.
:param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`)
:param seed: Random seed (default: a random long integer).
:return: RDD of Vector with vectors containing i.i.d. samples ~ Exp(mean).
>>> import numpy as np
>>> mean = 0.5
>>> rdd = RandomRDDs.exponentialVectorRDD(sc, mean, 100, 100, seed=1)
>>> mat = np.mat(rdd.collect())
>>> mat.shape
(100, 100)
>>> abs(mat.mean() - mean) < 0.5
True
>>> from math import sqrt
>>> abs(mat.std() - sqrt(mean)) < 0.5
True
"""
return callMLlibFunc("exponentialVectorRDD", sc._jsc, float(mean), numRows, numCols,
numPartitions, seed)
@staticmethod
@toArray
@since("1.3.0")
def gammaVectorRDD(sc, shape, scale, numRows, numCols, numPartitions=None, seed=None):
"""
Generates an RDD comprised of vectors containing i.i.d. samples drawn
from the Gamma distribution.
:param sc: SparkContext used to create the RDD.
:param shape: Shape (> 0) of the Gamma distribution
:param scale: Scale (> 0) of the Gamma distribution
:param numRows: Number of Vectors in the RDD.
:param numCols: Number of elements in each Vector.
:param numPartitions: Number of partitions in the RDD (default: `sc.defaultParallelism`).
:param seed: Random seed (default: a random long integer).
:return: RDD of Vector with vectors containing i.i.d. samples ~ Gamma(shape, scale).
>>> import numpy as np
>>> from math import sqrt
>>> shape = 1.0
>>> scale = 2.0
>>> expMean = shape * scale
>>> expStd = sqrt(shape * scale * scale)
>>> mat = np.matrix(RandomRDDs.gammaVectorRDD(sc, shape, scale, 100, 100, seed=1).collect())
>>> mat.shape
(100, 100)
>>> abs(mat.mean() - expMean) < 0.1
True
>>> abs(mat.std() - expStd) < 0.1
True
"""
return callMLlibFunc("gammaVectorRDD", sc._jsc, float(shape), float(scale),
numRows, numCols, numPartitions, seed)
def _test():
import doctest
from pyspark.sql import SparkSession
globs = globals().copy()
# The small batch size here ensures that we see multiple batches,
# even in these small test examples:
spark = SparkSession.builder\
.master("local[2]")\
.appName("mllib.random tests")\
.getOrCreate()
globs['sc'] = spark.sparkContext
(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
spark.stop()
if failure_count:
sys.exit(-1)
if __name__ == "__main__":
_test()