spark-instrumented-optimizer/python/pyspark/mllib/classification.py
Davies Liu 872fc669b4 [SPARK-4124] [MLlib] [PySpark] simplify serialization in MLlib Python API
Create several helper functions to call MLlib Java API, convert the arguments to Java type and convert return value to Python object automatically, this simplify serialization in MLlib Python API very much.

After this, the MLlib Python API does not need to deal with serialization details anymore, it's easier to add new API.

cc mengxr

Author: Davies Liu <davies@databricks.com>

Closes #2995 from davies/cleanup and squashes the following commits:

8fa6ec6 [Davies Liu] address comments
16b85a0 [Davies Liu] Merge branch 'master' of github.com:apache/spark into cleanup
43743e5 [Davies Liu] bugfix
731331f [Davies Liu] simplify serialization in MLlib Python API
2014-10-30 22:25:18 -07:00

257 lines
9.4 KiB
Python

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from math import exp
import numpy
from numpy import array
from pyspark.mllib.common import callMLlibFunc
from pyspark.mllib.linalg import SparseVector, _convert_to_vector
from pyspark.mllib.regression import LabeledPoint, LinearModel, _regression_train_wrapper
__all__ = ['LogisticRegressionModel', 'LogisticRegressionWithSGD', 'SVMModel',
'SVMWithSGD', 'NaiveBayesModel', 'NaiveBayes']
class LogisticRegressionModel(LinearModel):
"""A linear binary classification model derived from logistic regression.
>>> data = [
... LabeledPoint(0.0, [0.0]),
... LabeledPoint(1.0, [1.0]),
... LabeledPoint(1.0, [2.0]),
... LabeledPoint(1.0, [3.0])
... ]
>>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(data))
>>> lrm.predict(array([1.0])) > 0
True
>>> lrm.predict(array([0.0])) <= 0
True
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
... ]
>>> lrm = LogisticRegressionWithSGD.train(sc.parallelize(sparse_data))
>>> lrm.predict(array([0.0, 1.0])) > 0
True
>>> lrm.predict(array([0.0, 0.0])) <= 0
True
>>> lrm.predict(SparseVector(2, {1: 1.0})) > 0
True
>>> lrm.predict(SparseVector(2, {1: 0.0})) <= 0
True
"""
def predict(self, x):
margin = self.weights.dot(x) + self._intercept
if margin > 0:
prob = 1 / (1 + exp(-margin))
else:
exp_margin = exp(margin)
prob = exp_margin / (1 + exp_margin)
return 1 if prob > 0.5 else 0
class LogisticRegressionWithSGD(object):
@classmethod
def train(cls, data, iterations=100, step=1.0, miniBatchFraction=1.0,
initialWeights=None, regParam=1.0, regType="none", intercept=False):
"""
Train a logistic regression model on the given data.
:param data: The training data.
:param iterations: The number of iterations (default: 100).
:param step: The step parameter used in SGD
(default: 1.0).
:param miniBatchFraction: Fraction of data to be used for each SGD
iteration.
:param initialWeights: The initial weights (default: None).
:param regParam: The regularizer parameter (default: 1.0).
:param regType: The type of regularizer used for training
our model.
:Allowed values:
- "l1" for using L1Updater
- "l2" for using SquaredL2Updater
- "none" for no regularizer
(default: "none")
@param intercept: Boolean parameter which indicates the use
or not of the augmented representation for
training data (i.e. whether bias features
are activated or not).
"""
def train(rdd, i):
return callMLlibFunc("trainLogisticRegressionModelWithSGD", rdd, iterations, step,
miniBatchFraction, i, regParam, regType, intercept)
return _regression_train_wrapper(train, LogisticRegressionModel, data, initialWeights)
class SVMModel(LinearModel):
"""A support vector machine.
>>> data = [
... LabeledPoint(0.0, [0.0]),
... LabeledPoint(1.0, [1.0]),
... LabeledPoint(1.0, [2.0]),
... LabeledPoint(1.0, [3.0])
... ]
>>> svm = SVMWithSGD.train(sc.parallelize(data))
>>> svm.predict(array([1.0])) > 0
True
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {0: -1.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),
... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))
... ]
>>> svm = SVMWithSGD.train(sc.parallelize(sparse_data))
>>> svm.predict(SparseVector(2, {1: 1.0})) > 0
True
>>> svm.predict(SparseVector(2, {0: -1.0})) <= 0
True
"""
def predict(self, x):
margin = self.weights.dot(x) + self.intercept
return 1 if margin >= 0 else 0
class SVMWithSGD(object):
@classmethod
def train(cls, data, iterations=100, step=1.0, regParam=1.0,
miniBatchFraction=1.0, initialWeights=None, regType="none", intercept=False):
"""
Train a support vector machine on the given data.
:param data: The training data.
:param iterations: The number of iterations (default: 100).
:param step: The step parameter used in SGD
(default: 1.0).
:param regParam: The regularizer parameter (default: 1.0).
:param miniBatchFraction: Fraction of data to be used for each SGD
iteration.
:param initialWeights: The initial weights (default: None).
:param regType: The type of regularizer used for training
our model.
:Allowed values:
- "l1" for using L1Updater
- "l2" for using SquaredL2Updater,
- "none" for no regularizer.
(default: "none")
@param intercept: Boolean parameter which indicates the use
or not of the augmented representation for
training data (i.e. whether bias features
are activated or not).
"""
def train(rdd, i):
return callMLlibFunc("trainSVMModelWithSGD", rdd, iterations, step, regParam,
miniBatchFraction, i, regType, intercept)
return _regression_train_wrapper(train, SVMModel, data, initialWeights)
class NaiveBayesModel(object):
"""
Model for Naive Bayes classifiers.
Contains two parameters:
- pi: vector of logs of class priors (dimension C)
- theta: matrix of logs of class conditional probabilities (CxD)
>>> data = [
... LabeledPoint(0.0, [0.0, 0.0]),
... LabeledPoint(0.0, [0.0, 1.0]),
... LabeledPoint(1.0, [1.0, 0.0]),
... ]
>>> model = NaiveBayes.train(sc.parallelize(data))
>>> model.predict(array([0.0, 1.0]))
0.0
>>> model.predict(array([1.0, 0.0]))
1.0
>>> sparse_data = [
... LabeledPoint(0.0, SparseVector(2, {1: 0.0})),
... LabeledPoint(0.0, SparseVector(2, {1: 1.0})),
... LabeledPoint(1.0, SparseVector(2, {0: 1.0}))
... ]
>>> model = NaiveBayes.train(sc.parallelize(sparse_data))
>>> model.predict(SparseVector(2, {1: 1.0}))
0.0
>>> model.predict(SparseVector(2, {0: 1.0}))
1.0
"""
def __init__(self, labels, pi, theta):
self.labels = labels
self.pi = pi
self.theta = theta
def predict(self, x):
"""Return the most likely class for a data vector x"""
x = _convert_to_vector(x)
return self.labels[numpy.argmax(self.pi + x.dot(self.theta.transpose()))]
class NaiveBayes(object):
@classmethod
def train(cls, data, lambda_=1.0):
"""
Train a Naive Bayes model given an RDD of (label, features) vectors.
This is the Multinomial NB (U{http://tinyurl.com/lsdw6p}) which can
handle all kinds of discrete data. For example, by converting
documents into TF-IDF vectors, it can be used for document
classification. By making every vector a 0-1 vector, it can also be
used as Bernoulli NB (U{http://tinyurl.com/p7c96j6}).
:param data: RDD of NumPy vectors, one per element, where the first
coordinate is the label and the rest is the feature vector
(e.g. a count vector).
:param lambda_: The smoothing parameter
"""
labels, pi, theta = callMLlibFunc("trainNaiveBayes", data, lambda_)
return NaiveBayesModel(labels.toArray(), pi.toArray(), numpy.array(theta))
def _test():
import doctest
from pyspark import SparkContext
globs = globals().copy()
globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
globs['sc'].stop()
if failure_count:
exit(-1)
if __name__ == "__main__":
_test()