spark-instrumented-optimizer/sql
Cheng Hao af3746ce0d Implement the RLike & Like in catalyst
This PR includes:
1) Unify the unit test for expression evaluation
2) Add implementation of RLike & Like

Author: Cheng Hao <hao.cheng@intel.com>

Closes #224 from chenghao-intel/string_expression and squashes the following commits:

84f72e9 [Cheng Hao] fix bug in RLike/Like & Simplify the unit test
aeeb1d7 [Cheng Hao] Simplify the implementation/unit test of RLike/Like
319edb7 [Cheng Hao] change to spark code style
91cfd33 [Cheng Hao] add implementation for rlike/like
2c8929e [Cheng Hao] Update the unit test for expression evaluation
2014-03-29 15:12:43 -07:00
..
catalyst Implement the RLike & Like in catalyst 2014-03-29 15:12:43 -07:00
core SPARK-1345 adding missing dependency on avro for hadoop 0.23 to the new ... 2014-03-28 23:09:29 -07:00
hive Implement the RLike & Like in catalyst 2014-03-29 15:12:43 -07:00
README.md SPARK-1251 Support for optimizing and executing structured queries 2014-03-20 18:03:20 -07:00

Spark SQL

This module provides support for executing relational queries expressed in either SQL or a LINQ-like Scala DSL.

Spark SQL is broken up into three subprojects:

  • Catalyst (sql/catalyst) - An implementation-agnostic framework for manipulating trees of relational operators and expressions.
  • Execution (sql/core) - A query planner / execution engine for translating Catalysts logical query plans into Spark RDDs. This component also includes a new public interface, SQLContext, that allows users to execute SQL or LINQ statements against existing RDDs and Parquet files.
  • Hive Support (sql/hive) - Includes an extension of SQLContext called HiveContext that allows users to write queries using a subset of HiveQL and access data from a Hive Metastore using Hive SerDes. There are also wrappers that allows users to run queries that include Hive UDFs, UDAFs, and UDTFs.

Other dependencies for developers

In order to create new hive test cases , you will need to set several environmental variables.

export HIVE_HOME="<path to>/hive/build/dist"
export HIVE_DEV_HOME="<path to>/hive/"
export HADOOP_HOME="<path to>/hadoop-1.0.4"

Using the console

An interactive scala console can be invoked by running sbt/sbt hive/console. From here you can execute queries and inspect the various stages of query optimization.

catalyst$ sbt/sbt hive/console

[info] Starting scala interpreter...
import org.apache.spark.sql.catalyst.analysis._
import org.apache.spark.sql.catalyst.dsl._
import org.apache.spark.sql.catalyst.errors._
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.catalyst.rules._
import org.apache.spark.sql.catalyst.types._
import org.apache.spark.sql.catalyst.util._
import org.apache.spark.sql.execution
import org.apache.spark.sql.hive._
import org.apache.spark.sql.hive.TestHive._
Welcome to Scala version 2.10.3 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_45).
Type in expressions to have them evaluated.
Type :help for more information.

scala> val query = sql("SELECT * FROM (SELECT * FROM src) a")
query: org.apache.spark.sql.ExecutedQuery =
SELECT * FROM (SELECT * FROM src) a
=== Query Plan ===
Project [key#6:0.0,value#7:0.1]
 HiveTableScan [key#6,value#7], (MetastoreRelation default, src, None), None

Query results are RDDs and can be operated as such.

scala> query.collect()
res8: Array[org.apache.spark.sql.execution.Row] = Array([238,val_238], [86,val_86], [311,val_311]...

You can also build further queries on top of these RDDs using the query DSL.

scala> query.where('key === 100).toRdd.collect()
res11: Array[org.apache.spark.sql.execution.Row] = Array([100,val_100], [100,val_100])

From the console you can even write rules that transform query plans. For example, the above query has redundant project operators that aren't doing anything. This redundancy can be eliminated using the transform function that is available on all TreeNode objects.

scala> query.logicalPlan
res1: catalyst.plans.logical.LogicalPlan = 
Project {key#0,value#1}
 Project {key#0,value#1}
  MetastoreRelation default, src, None


scala> query.logicalPlan transform {
     |   case Project(projectList, child) if projectList == child.output => child
     | }
res2: catalyst.plans.logical.LogicalPlan = 
Project {key#0,value#1}
 MetastoreRelation default, src, None