spark-instrumented-optimizer/python/pyspark/ml/classification.py
Yanbo Liang b656e6134f [SPARK-10026] [ML] [PySpark] Implement some common Params for regression in PySpark
LinearRegression and LogisticRegression lack of some Params for Python, and some Params are not shared classes which lead we need to write them for each class. These kinds of Params are list here:
```scala
HasElasticNetParam
HasFitIntercept
HasStandardization
HasThresholds
```
Here we implement them in shared params at Python side and make LinearRegression/LogisticRegression parameters peer with Scala one.

Author: Yanbo Liang <ybliang8@gmail.com>

Closes #8508 from yanboliang/spark-10026.
2015-09-11 08:50:35 -07:00

774 lines
33 KiB
Python

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from pyspark.ml.util import keyword_only
from pyspark.ml.wrapper import JavaEstimator, JavaModel
from pyspark.ml.param.shared import *
from pyspark.ml.regression import (
RandomForestParams, DecisionTreeModel, TreeEnsembleModels)
from pyspark.mllib.common import inherit_doc
__all__ = ['LogisticRegression', 'LogisticRegressionModel', 'DecisionTreeClassifier',
'DecisionTreeClassificationModel', 'GBTClassifier', 'GBTClassificationModel',
'RandomForestClassifier', 'RandomForestClassificationModel', 'NaiveBayes',
'NaiveBayesModel']
@inherit_doc
class LogisticRegression(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol, HasMaxIter,
HasRegParam, HasTol, HasProbabilityCol, HasRawPredictionCol,
HasElasticNetParam, HasFitIntercept, HasStandardization, HasThresholds):
"""
Logistic regression.
Currently, this class only supports binary classification.
>>> from pyspark.sql import Row
>>> from pyspark.mllib.linalg import Vectors
>>> df = sc.parallelize([
... Row(label=1.0, features=Vectors.dense(1.0)),
... Row(label=0.0, features=Vectors.sparse(1, [], []))]).toDF()
>>> lr = LogisticRegression(maxIter=5, regParam=0.01)
>>> model = lr.fit(df)
>>> model.weights
DenseVector([5.5...])
>>> model.intercept
-2.68...
>>> test0 = sc.parallelize([Row(features=Vectors.dense(-1.0))]).toDF()
>>> result = model.transform(test0).head()
>>> result.prediction
0.0
>>> result.probability
DenseVector([0.99..., 0.00...])
>>> result.rawPrediction
DenseVector([8.22..., -8.22...])
>>> test1 = sc.parallelize([Row(features=Vectors.sparse(1, [0], [1.0]))]).toDF()
>>> model.transform(test1).head().prediction
1.0
>>> lr.setParams("vector")
Traceback (most recent call last):
...
TypeError: Method setParams forces keyword arguments.
"""
# a placeholder to make it appear in the generated doc
threshold = Param(Params._dummy(), "threshold",
"Threshold in binary classification prediction, in range [0, 1]." +
" If threshold and thresholds are both set, they must match.")
@keyword_only
def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction",
maxIter=100, regParam=0.1, elasticNetParam=0.0, tol=1e-6, fitIntercept=True,
threshold=0.5, thresholds=None, probabilityCol="probability",
rawPredictionCol="rawPrediction", standardization=True):
"""
__init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
maxIter=100, regParam=0.1, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, \
threshold=0.5, thresholds=None, probabilityCol="probability", \
rawPredictionCol="rawPrediction", standardization=True)
If the threshold and thresholds Params are both set, they must be equivalent.
"""
super(LogisticRegression, self).__init__()
self._java_obj = self._new_java_obj(
"org.apache.spark.ml.classification.LogisticRegression", self.uid)
#: param for threshold in binary classification, in range [0, 1].
self.threshold = Param(self, "threshold",
"Threshold in binary classification prediction, in range [0, 1]." +
" If threshold and thresholds are both set, they must match.")
self._setDefault(maxIter=100, regParam=0.1, tol=1E-6, threshold=0.5)
kwargs = self.__init__._input_kwargs
self.setParams(**kwargs)
self._checkThresholdConsistency()
@keyword_only
def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
maxIter=100, regParam=0.1, elasticNetParam=0.0, tol=1e-6, fitIntercept=True,
threshold=0.5, thresholds=None, probabilityCol="probability",
rawPredictionCol="rawPrediction", standardization=True):
"""
setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
maxIter=100, regParam=0.1, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, \
threshold=0.5, thresholds=None, probabilityCol="probability", \
rawPredictionCol="rawPrediction", standardization=True)
Sets params for logistic regression.
If the threshold and thresholds Params are both set, they must be equivalent.
"""
kwargs = self.setParams._input_kwargs
self._set(**kwargs)
self._checkThresholdConsistency()
return self
def _create_model(self, java_model):
return LogisticRegressionModel(java_model)
def setThreshold(self, value):
"""
Sets the value of :py:attr:`threshold`.
Clears value of :py:attr:`thresholds` if it has been set.
"""
self._paramMap[self.threshold] = value
if self.isSet(self.thresholds):
del self._paramMap[self.thresholds]
return self
def getThreshold(self):
"""
Gets the value of threshold or its default value.
"""
self._checkThresholdConsistency()
if self.isSet(self.thresholds):
ts = self.getOrDefault(self.thresholds)
if len(ts) != 2:
raise ValueError("Logistic Regression getThreshold only applies to" +
" binary classification, but thresholds has length != 2." +
" thresholds: " + ",".join(ts))
return 1.0/(1.0 + ts[0]/ts[1])
else:
return self.getOrDefault(self.threshold)
def setThresholds(self, value):
"""
Sets the value of :py:attr:`thresholds`.
Clears value of :py:attr:`threshold` if it has been set.
"""
self._paramMap[self.thresholds] = value
if self.isSet(self.threshold):
del self._paramMap[self.threshold]
return self
def getThresholds(self):
"""
If :py:attr:`thresholds` is set, return its value.
Otherwise, if :py:attr:`threshold` is set, return the equivalent thresholds for binary
classification: (1-threshold, threshold).
If neither are set, throw an error.
"""
self._checkThresholdConsistency()
if not self.isSet(self.thresholds) and self.isSet(self.threshold):
t = self.getOrDefault(self.threshold)
return [1.0-t, t]
else:
return self.getOrDefault(self.thresholds)
def _checkThresholdConsistency(self):
if self.isSet(self.threshold) and self.isSet(self.thresholds):
ts = self.getParam(self.thresholds)
if len(ts) != 2:
raise ValueError("Logistic Regression getThreshold only applies to" +
" binary classification, but thresholds has length != 2." +
" thresholds: " + ",".join(ts))
t = 1.0/(1.0 + ts[0]/ts[1])
t2 = self.getParam(self.threshold)
if abs(t2 - t) >= 1E-5:
raise ValueError("Logistic Regression getThreshold found inconsistent values for" +
" threshold (%g) and thresholds (equivalent to %g)" % (t2, t))
class LogisticRegressionModel(JavaModel):
"""
Model fitted by LogisticRegression.
"""
@property
def weights(self):
"""
Model weights.
"""
return self._call_java("weights")
@property
def intercept(self):
"""
Model intercept.
"""
return self._call_java("intercept")
class TreeClassifierParams(object):
"""
Private class to track supported impurity measures.
"""
supportedImpurities = ["entropy", "gini"]
class GBTParams(object):
"""
Private class to track supported GBT params.
"""
supportedLossTypes = ["logistic"]
@inherit_doc
class DecisionTreeClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol,
HasProbabilityCol, HasRawPredictionCol, DecisionTreeParams,
HasCheckpointInterval):
"""
`http://en.wikipedia.org/wiki/Decision_tree_learning Decision tree`
learning algorithm for classification.
It supports both binary and multiclass labels, as well as both continuous and categorical
features.
>>> from pyspark.mllib.linalg import Vectors
>>> from pyspark.ml.feature import StringIndexer
>>> df = sqlContext.createDataFrame([
... (1.0, Vectors.dense(1.0)),
... (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
>>> si_model = stringIndexer.fit(df)
>>> td = si_model.transform(df)
>>> dt = DecisionTreeClassifier(maxDepth=2, labelCol="indexed")
>>> model = dt.fit(td)
>>> model.numNodes
3
>>> model.depth
1
>>> test0 = sqlContext.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
>>> result = model.transform(test0).head()
>>> result.prediction
0.0
>>> result.probability
DenseVector([1.0, 0.0])
>>> result.rawPrediction
DenseVector([1.0, 0.0])
>>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"])
>>> model.transform(test1).head().prediction
1.0
"""
# a placeholder to make it appear in the generated doc
impurity = Param(Params._dummy(), "impurity",
"Criterion used for information gain calculation (case-insensitive). " +
"Supported options: " + ", ".join(TreeClassifierParams.supportedImpurities))
@keyword_only
def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction",
probabilityCol="probability", rawPredictionCol="rawPrediction",
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini"):
"""
__init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
probabilityCol="probability", rawPredictionCol="rawPrediction", \
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini")
"""
super(DecisionTreeClassifier, self).__init__()
self._java_obj = self._new_java_obj(
"org.apache.spark.ml.classification.DecisionTreeClassifier", self.uid)
#: param for Criterion used for information gain calculation (case-insensitive).
self.impurity = \
Param(self, "impurity",
"Criterion used for information gain calculation (case-insensitive). " +
"Supported options: " + ", ".join(TreeClassifierParams.supportedImpurities))
self._setDefault(maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10,
impurity="gini")
kwargs = self.__init__._input_kwargs
self.setParams(**kwargs)
@keyword_only
def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
probabilityCol="probability", rawPredictionCol="rawPrediction",
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10,
impurity="gini"):
"""
setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
probabilityCol="probability", rawPredictionCol="rawPrediction", \
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini")
Sets params for the DecisionTreeClassifier.
"""
kwargs = self.setParams._input_kwargs
return self._set(**kwargs)
def _create_model(self, java_model):
return DecisionTreeClassificationModel(java_model)
def setImpurity(self, value):
"""
Sets the value of :py:attr:`impurity`.
"""
self._paramMap[self.impurity] = value
return self
def getImpurity(self):
"""
Gets the value of impurity or its default value.
"""
return self.getOrDefault(self.impurity)
@inherit_doc
class DecisionTreeClassificationModel(DecisionTreeModel):
"""
Model fitted by DecisionTreeClassifier.
"""
@inherit_doc
class RandomForestClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol, HasSeed,
HasRawPredictionCol, HasProbabilityCol,
DecisionTreeParams, HasCheckpointInterval):
"""
`http://en.wikipedia.org/wiki/Random_forest Random Forest`
learning algorithm for classification.
It supports both binary and multiclass labels, as well as both continuous and categorical
features.
>>> import numpy
>>> from numpy import allclose
>>> from pyspark.mllib.linalg import Vectors
>>> from pyspark.ml.feature import StringIndexer
>>> df = sqlContext.createDataFrame([
... (1.0, Vectors.dense(1.0)),
... (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
>>> si_model = stringIndexer.fit(df)
>>> td = si_model.transform(df)
>>> rf = RandomForestClassifier(numTrees=3, maxDepth=2, labelCol="indexed", seed=42)
>>> model = rf.fit(td)
>>> allclose(model.treeWeights, [1.0, 1.0, 1.0])
True
>>> test0 = sqlContext.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
>>> result = model.transform(test0).head()
>>> result.prediction
0.0
>>> numpy.argmax(result.probability)
0
>>> numpy.argmax(result.rawPrediction)
0
>>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"])
>>> model.transform(test1).head().prediction
1.0
"""
# a placeholder to make it appear in the generated doc
impurity = Param(Params._dummy(), "impurity",
"Criterion used for information gain calculation (case-insensitive). " +
"Supported options: " + ", ".join(TreeClassifierParams.supportedImpurities))
subsamplingRate = Param(Params._dummy(), "subsamplingRate",
"Fraction of the training data used for learning each decision tree, " +
"in range (0, 1].")
numTrees = Param(Params._dummy(), "numTrees", "Number of trees to train (>= 1)")
featureSubsetStrategy = \
Param(Params._dummy(), "featureSubsetStrategy",
"The number of features to consider for splits at each tree node. Supported " +
"options: " + ", ".join(RandomForestParams.supportedFeatureSubsetStrategies))
@keyword_only
def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction",
probabilityCol="probability", rawPredictionCol="rawPrediction",
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini",
numTrees=20, featureSubsetStrategy="auto", seed=None):
"""
__init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
probabilityCol="probability", rawPredictionCol="rawPrediction", \
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini", \
numTrees=20, featureSubsetStrategy="auto", seed=None)
"""
super(RandomForestClassifier, self).__init__()
self._java_obj = self._new_java_obj(
"org.apache.spark.ml.classification.RandomForestClassifier", self.uid)
#: param for Criterion used for information gain calculation (case-insensitive).
self.impurity = \
Param(self, "impurity",
"Criterion used for information gain calculation (case-insensitive). " +
"Supported options: " + ", ".join(TreeClassifierParams.supportedImpurities))
#: param for Fraction of the training data used for learning each decision tree,
# in range (0, 1]
self.subsamplingRate = Param(self, "subsamplingRate",
"Fraction of the training data used for learning each " +
"decision tree, in range (0, 1].")
#: param for Number of trees to train (>= 1)
self.numTrees = Param(self, "numTrees", "Number of trees to train (>= 1)")
#: param for The number of features to consider for splits at each tree node
self.featureSubsetStrategy = \
Param(self, "featureSubsetStrategy",
"The number of features to consider for splits at each tree node. Supported " +
"options: " + ", ".join(RandomForestParams.supportedFeatureSubsetStrategies))
self._setDefault(maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, seed=None,
impurity="gini", numTrees=20, featureSubsetStrategy="auto")
kwargs = self.__init__._input_kwargs
self.setParams(**kwargs)
@keyword_only
def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
probabilityCol="probability", rawPredictionCol="rawPrediction",
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, seed=None,
impurity="gini", numTrees=20, featureSubsetStrategy="auto"):
"""
setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
probabilityCol="probability", rawPredictionCol="rawPrediction", \
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, seed=None, \
impurity="gini", numTrees=20, featureSubsetStrategy="auto")
Sets params for linear classification.
"""
kwargs = self.setParams._input_kwargs
return self._set(**kwargs)
def _create_model(self, java_model):
return RandomForestClassificationModel(java_model)
def setImpurity(self, value):
"""
Sets the value of :py:attr:`impurity`.
"""
self._paramMap[self.impurity] = value
return self
def getImpurity(self):
"""
Gets the value of impurity or its default value.
"""
return self.getOrDefault(self.impurity)
def setSubsamplingRate(self, value):
"""
Sets the value of :py:attr:`subsamplingRate`.
"""
self._paramMap[self.subsamplingRate] = value
return self
def getSubsamplingRate(self):
"""
Gets the value of subsamplingRate or its default value.
"""
return self.getOrDefault(self.subsamplingRate)
def setNumTrees(self, value):
"""
Sets the value of :py:attr:`numTrees`.
"""
self._paramMap[self.numTrees] = value
return self
def getNumTrees(self):
"""
Gets the value of numTrees or its default value.
"""
return self.getOrDefault(self.numTrees)
def setFeatureSubsetStrategy(self, value):
"""
Sets the value of :py:attr:`featureSubsetStrategy`.
"""
self._paramMap[self.featureSubsetStrategy] = value
return self
def getFeatureSubsetStrategy(self):
"""
Gets the value of featureSubsetStrategy or its default value.
"""
return self.getOrDefault(self.featureSubsetStrategy)
class RandomForestClassificationModel(TreeEnsembleModels):
"""
Model fitted by RandomForestClassifier.
"""
@inherit_doc
class GBTClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol, HasMaxIter,
DecisionTreeParams, HasCheckpointInterval):
"""
`http://en.wikipedia.org/wiki/Gradient_boosting Gradient-Boosted Trees (GBTs)`
learning algorithm for classification.
It supports binary labels, as well as both continuous and categorical features.
Note: Multiclass labels are not currently supported.
>>> from numpy import allclose
>>> from pyspark.mllib.linalg import Vectors
>>> from pyspark.ml.feature import StringIndexer
>>> df = sqlContext.createDataFrame([
... (1.0, Vectors.dense(1.0)),
... (0.0, Vectors.sparse(1, [], []))], ["label", "features"])
>>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed")
>>> si_model = stringIndexer.fit(df)
>>> td = si_model.transform(df)
>>> gbt = GBTClassifier(maxIter=5, maxDepth=2, labelCol="indexed")
>>> model = gbt.fit(td)
>>> allclose(model.treeWeights, [1.0, 0.1, 0.1, 0.1, 0.1])
True
>>> test0 = sqlContext.createDataFrame([(Vectors.dense(-1.0),)], ["features"])
>>> model.transform(test0).head().prediction
0.0
>>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"])
>>> model.transform(test1).head().prediction
1.0
"""
# a placeholder to make it appear in the generated doc
lossType = Param(Params._dummy(), "lossType",
"Loss function which GBT tries to minimize (case-insensitive). " +
"Supported options: " + ", ".join(GBTParams.supportedLossTypes))
subsamplingRate = Param(Params._dummy(), "subsamplingRate",
"Fraction of the training data used for learning each decision tree, " +
"in range (0, 1].")
stepSize = Param(Params._dummy(), "stepSize",
"Step size (a.k.a. learning rate) in interval (0, 1] for shrinking the " +
"contribution of each estimator")
@keyword_only
def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction",
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, lossType="logistic",
maxIter=20, stepSize=0.1):
"""
__init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \
lossType="logistic", maxIter=20, stepSize=0.1)
"""
super(GBTClassifier, self).__init__()
self._java_obj = self._new_java_obj(
"org.apache.spark.ml.classification.GBTClassifier", self.uid)
#: param for Loss function which GBT tries to minimize (case-insensitive).
self.lossType = Param(self, "lossType",
"Loss function which GBT tries to minimize (case-insensitive). " +
"Supported options: " + ", ".join(GBTParams.supportedLossTypes))
#: Fraction of the training data used for learning each decision tree, in range (0, 1].
self.subsamplingRate = Param(self, "subsamplingRate",
"Fraction of the training data used for learning each " +
"decision tree, in range (0, 1].")
#: Step size (a.k.a. learning rate) in interval (0, 1] for shrinking the contribution of
# each estimator
self.stepSize = Param(self, "stepSize",
"Step size (a.k.a. learning rate) in interval (0, 1] for shrinking " +
"the contribution of each estimator")
self._setDefault(maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10,
lossType="logistic", maxIter=20, stepSize=0.1)
kwargs = self.__init__._input_kwargs
self.setParams(**kwargs)
@keyword_only
def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0,
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10,
lossType="logistic", maxIter=20, stepSize=0.1):
"""
setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \
maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \
lossType="logistic", maxIter=20, stepSize=0.1)
Sets params for Gradient Boosted Tree Classification.
"""
kwargs = self.setParams._input_kwargs
return self._set(**kwargs)
def _create_model(self, java_model):
return GBTClassificationModel(java_model)
def setLossType(self, value):
"""
Sets the value of :py:attr:`lossType`.
"""
self._paramMap[self.lossType] = value
return self
def getLossType(self):
"""
Gets the value of lossType or its default value.
"""
return self.getOrDefault(self.lossType)
def setSubsamplingRate(self, value):
"""
Sets the value of :py:attr:`subsamplingRate`.
"""
self._paramMap[self.subsamplingRate] = value
return self
def getSubsamplingRate(self):
"""
Gets the value of subsamplingRate or its default value.
"""
return self.getOrDefault(self.subsamplingRate)
def setStepSize(self, value):
"""
Sets the value of :py:attr:`stepSize`.
"""
self._paramMap[self.stepSize] = value
return self
def getStepSize(self):
"""
Gets the value of stepSize or its default value.
"""
return self.getOrDefault(self.stepSize)
class GBTClassificationModel(TreeEnsembleModels):
"""
Model fitted by GBTClassifier.
"""
@inherit_doc
class NaiveBayes(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol, HasProbabilityCol,
HasRawPredictionCol):
"""
Naive Bayes Classifiers.
It supports both Multinomial and Bernoulli NB. Multinomial NB
(`http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html`)
can handle finitely supported discrete data. For example, by converting documents into
TF-IDF vectors, it can be used for document classification. By making every vector a
binary (0/1) data, it can also be used as Bernoulli NB
(`http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html`).
The input feature values must be nonnegative.
>>> from pyspark.sql import Row
>>> from pyspark.mllib.linalg import Vectors
>>> df = sqlContext.createDataFrame([
... Row(label=0.0, features=Vectors.dense([0.0, 0.0])),
... Row(label=0.0, features=Vectors.dense([0.0, 1.0])),
... Row(label=1.0, features=Vectors.dense([1.0, 0.0]))])
>>> nb = NaiveBayes(smoothing=1.0, modelType="multinomial")
>>> model = nb.fit(df)
>>> model.pi
DenseVector([-0.51..., -0.91...])
>>> model.theta
DenseMatrix(2, 2, [-1.09..., -0.40..., -0.40..., -1.09...], 1)
>>> test0 = sc.parallelize([Row(features=Vectors.dense([1.0, 0.0]))]).toDF()
>>> result = model.transform(test0).head()
>>> result.prediction
1.0
>>> result.probability
DenseVector([0.42..., 0.57...])
>>> result.rawPrediction
DenseVector([-1.60..., -1.32...])
>>> test1 = sc.parallelize([Row(features=Vectors.sparse(2, [0], [1.0]))]).toDF()
>>> model.transform(test1).head().prediction
1.0
"""
# a placeholder to make it appear in the generated doc
smoothing = Param(Params._dummy(), "smoothing", "The smoothing parameter, should be >= 0, " +
"default is 1.0")
modelType = Param(Params._dummy(), "modelType", "The model type which is a string " +
"(case-sensitive). Supported options: multinomial (default) and bernoulli.")
@keyword_only
def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction",
probabilityCol="probability", rawPredictionCol="rawPrediction", smoothing=1.0,
modelType="multinomial"):
"""
__init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
probabilityCol="probability", rawPredictionCol="rawPrediction", smoothing=1.0, \
modelType="multinomial")
"""
super(NaiveBayes, self).__init__()
self._java_obj = self._new_java_obj(
"org.apache.spark.ml.classification.NaiveBayes", self.uid)
#: param for the smoothing parameter.
self.smoothing = Param(self, "smoothing", "The smoothing parameter, should be >= 0, " +
"default is 1.0")
#: param for the model type.
self.modelType = Param(self, "modelType", "The model type which is a string " +
"(case-sensitive). Supported options: multinomial (default) " +
"and bernoulli.")
self._setDefault(smoothing=1.0, modelType="multinomial")
kwargs = self.__init__._input_kwargs
self.setParams(**kwargs)
@keyword_only
def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction",
probabilityCol="probability", rawPredictionCol="rawPrediction", smoothing=1.0,
modelType="multinomial"):
"""
setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \
probabilityCol="probability", rawPredictionCol="rawPrediction", smoothing=1.0, \
modelType="multinomial")
Sets params for Naive Bayes.
"""
kwargs = self.setParams._input_kwargs
return self._set(**kwargs)
def _create_model(self, java_model):
return NaiveBayesModel(java_model)
def setSmoothing(self, value):
"""
Sets the value of :py:attr:`smoothing`.
"""
self._paramMap[self.smoothing] = value
return self
def getSmoothing(self):
"""
Gets the value of smoothing or its default value.
"""
return self.getOrDefault(self.smoothing)
def setModelType(self, value):
"""
Sets the value of :py:attr:`modelType`.
"""
self._paramMap[self.modelType] = value
return self
def getModelType(self):
"""
Gets the value of modelType or its default value.
"""
return self.getOrDefault(self.modelType)
class NaiveBayesModel(JavaModel):
"""
Model fitted by NaiveBayes.
"""
@property
def pi(self):
"""
log of class priors.
"""
return self._call_java("pi")
@property
def theta(self):
"""
log of class conditional probabilities.
"""
return self._call_java("theta")
if __name__ == "__main__":
import doctest
from pyspark.context import SparkContext
from pyspark.sql import SQLContext
globs = globals().copy()
# The small batch size here ensures that we see multiple batches,
# even in these small test examples:
sc = SparkContext("local[2]", "ml.classification tests")
sqlContext = SQLContext(sc)
globs['sc'] = sc
globs['sqlContext'] = sqlContext
(failure_count, test_count) = doctest.testmod(
globs=globs, optionflags=doctest.ELLIPSIS)
sc.stop()
if failure_count:
exit(-1)