spark-instrumented-optimizer/python/pyspark/mllib/tests.py
MechCoder cd55e9a511 [SPARK-7202] [MLLIB] [PYSPARK] Add SparseMatrixPickler to SerDe
Utilities for pickling and unpickling SparseMatrices using SerDe

Author: MechCoder <manojkumarsivaraj334@gmail.com>

Closes #5775 from MechCoder/spark-7202 and squashes the following commits:

7e689dc [MechCoder] [SPARK-7202] Add SparseMatrixPickler to SerDe

(cherry picked from commit 5ab652cdb8)
Signed-off-by: Xiangrui Meng <meng@databricks.com>
2015-05-05 07:53:20 -07:00

802 lines
32 KiB
Python

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Fuller unit tests for Python MLlib.
"""
import os
import sys
import tempfile
import array as pyarray
from numpy import array, array_equal, zeros
from py4j.protocol import Py4JJavaError
if sys.version_info[:2] <= (2, 6):
try:
import unittest2 as unittest
except ImportError:
sys.stderr.write('Please install unittest2 to test with Python 2.6 or earlier')
sys.exit(1)
else:
import unittest
from pyspark import SparkContext
from pyspark.mllib.common import _to_java_object_rdd
from pyspark.mllib.linalg import Vector, SparseVector, DenseVector, VectorUDT, _convert_to_vector,\
DenseMatrix, SparseMatrix, Vectors, Matrices
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.random import RandomRDDs
from pyspark.mllib.stat import Statistics
from pyspark.mllib.feature import Word2Vec
from pyspark.mllib.feature import IDF
from pyspark.mllib.feature import StandardScaler
from pyspark.serializers import PickleSerializer
from pyspark.sql import SQLContext
_have_scipy = False
try:
import scipy.sparse
_have_scipy = True
except:
# No SciPy, but that's okay, we'll skip those tests
pass
ser = PickleSerializer()
sc = SparkContext('local[4]', "MLlib tests")
class MLlibTestCase(unittest.TestCase):
def setUp(self):
self.sc = sc
def _squared_distance(a, b):
if isinstance(a, Vector):
return a.squared_distance(b)
else:
return b.squared_distance(a)
class VectorTests(MLlibTestCase):
def _test_serialize(self, v):
self.assertEqual(v, ser.loads(ser.dumps(v)))
jvec = self.sc._jvm.SerDe.loads(bytearray(ser.dumps(v)))
nv = ser.loads(bytes(self.sc._jvm.SerDe.dumps(jvec)))
self.assertEqual(v, nv)
vs = [v] * 100
jvecs = self.sc._jvm.SerDe.loads(bytearray(ser.dumps(vs)))
nvs = ser.loads(bytes(self.sc._jvm.SerDe.dumps(jvecs)))
self.assertEqual(vs, nvs)
def test_serialize(self):
self._test_serialize(DenseVector(range(10)))
self._test_serialize(DenseVector(array([1., 2., 3., 4.])))
self._test_serialize(DenseVector(pyarray.array('d', range(10))))
self._test_serialize(SparseVector(4, {1: 1, 3: 2}))
self._test_serialize(SparseVector(3, {}))
self._test_serialize(DenseMatrix(2, 3, range(6)))
sm1 = SparseMatrix(
3, 4, [0, 2, 2, 4, 4], [1, 2, 1, 2], [1.0, 2.0, 4.0, 5.0])
self._test_serialize(sm1)
def test_dot(self):
sv = SparseVector(4, {1: 1, 3: 2})
dv = DenseVector(array([1., 2., 3., 4.]))
lst = DenseVector([1, 2, 3, 4])
mat = array([[1., 2., 3., 4.],
[1., 2., 3., 4.],
[1., 2., 3., 4.],
[1., 2., 3., 4.]])
self.assertEquals(10.0, sv.dot(dv))
self.assertTrue(array_equal(array([3., 6., 9., 12.]), sv.dot(mat)))
self.assertEquals(30.0, dv.dot(dv))
self.assertTrue(array_equal(array([10., 20., 30., 40.]), dv.dot(mat)))
self.assertEquals(30.0, lst.dot(dv))
self.assertTrue(array_equal(array([10., 20., 30., 40.]), lst.dot(mat)))
def test_squared_distance(self):
sv = SparseVector(4, {1: 1, 3: 2})
dv = DenseVector(array([1., 2., 3., 4.]))
lst = DenseVector([4, 3, 2, 1])
self.assertEquals(15.0, _squared_distance(sv, dv))
self.assertEquals(25.0, _squared_distance(sv, lst))
self.assertEquals(20.0, _squared_distance(dv, lst))
self.assertEquals(15.0, _squared_distance(dv, sv))
self.assertEquals(25.0, _squared_distance(lst, sv))
self.assertEquals(20.0, _squared_distance(lst, dv))
self.assertEquals(0.0, _squared_distance(sv, sv))
self.assertEquals(0.0, _squared_distance(dv, dv))
self.assertEquals(0.0, _squared_distance(lst, lst))
def test_conversion(self):
# numpy arrays should be automatically upcast to float64
# tests for fix of [SPARK-5089]
v = array([1, 2, 3, 4], dtype='float64')
dv = DenseVector(v)
self.assertTrue(dv.array.dtype == 'float64')
v = array([1, 2, 3, 4], dtype='float32')
dv = DenseVector(v)
self.assertTrue(dv.array.dtype == 'float64')
def test_sparse_vector_indexing(self):
sv = SparseVector(4, {1: 1, 3: 2})
self.assertEquals(sv[0], 0.)
self.assertEquals(sv[3], 2.)
self.assertEquals(sv[1], 1.)
self.assertEquals(sv[2], 0.)
self.assertEquals(sv[-1], 2)
self.assertEquals(sv[-2], 0)
self.assertEquals(sv[-4], 0)
for ind in [4, -5]:
self.assertRaises(ValueError, sv.__getitem__, ind)
for ind in [7.8, '1']:
self.assertRaises(TypeError, sv.__getitem__, ind)
def test_matrix_indexing(self):
mat = DenseMatrix(3, 2, [0, 1, 4, 6, 8, 10])
expected = [[0, 6], [1, 8], [4, 10]]
for i in range(3):
for j in range(2):
self.assertEquals(mat[i, j], expected[i][j])
def test_sparse_matrix(self):
# Test sparse matrix creation.
sm1 = SparseMatrix(
3, 4, [0, 2, 2, 4, 4], [1, 2, 1, 2], [1.0, 2.0, 4.0, 5.0])
self.assertEquals(sm1.numRows, 3)
self.assertEquals(sm1.numCols, 4)
self.assertEquals(sm1.colPtrs.tolist(), [0, 2, 2, 4, 4])
self.assertEquals(sm1.rowIndices.tolist(), [1, 2, 1, 2])
self.assertEquals(sm1.values.tolist(), [1.0, 2.0, 4.0, 5.0])
# Test indexing
expected = [
[0, 0, 0, 0],
[1, 0, 4, 0],
[2, 0, 5, 0]]
for i in range(3):
for j in range(4):
self.assertEquals(expected[i][j], sm1[i, j])
self.assertTrue(array_equal(sm1.toArray(), expected))
# Test conversion to dense and sparse.
smnew = sm1.toDense().toSparse()
self.assertEquals(sm1.numRows, smnew.numRows)
self.assertEquals(sm1.numCols, smnew.numCols)
self.assertTrue(array_equal(sm1.colPtrs, smnew.colPtrs))
self.assertTrue(array_equal(sm1.rowIndices, smnew.rowIndices))
self.assertTrue(array_equal(sm1.values, smnew.values))
sm1t = SparseMatrix(
3, 4, [0, 2, 3, 5], [0, 1, 2, 0, 2], [3.0, 2.0, 4.0, 9.0, 8.0],
isTransposed=True)
self.assertEquals(sm1t.numRows, 3)
self.assertEquals(sm1t.numCols, 4)
self.assertEquals(sm1t.colPtrs.tolist(), [0, 2, 3, 5])
self.assertEquals(sm1t.rowIndices.tolist(), [0, 1, 2, 0, 2])
self.assertEquals(sm1t.values.tolist(), [3.0, 2.0, 4.0, 9.0, 8.0])
expected = [
[3, 2, 0, 0],
[0, 0, 4, 0],
[9, 0, 8, 0]]
for i in range(3):
for j in range(4):
self.assertEquals(expected[i][j], sm1t[i, j])
self.assertTrue(array_equal(sm1t.toArray(), expected))
def test_dense_matrix_is_transposed(self):
mat1 = DenseMatrix(3, 2, [0, 4, 1, 6, 3, 9], isTransposed=True)
mat = DenseMatrix(3, 2, [0, 1, 3, 4, 6, 9])
self.assertEquals(mat1, mat)
expected = [[0, 4], [1, 6], [3, 9]]
for i in range(3):
for j in range(2):
self.assertEquals(mat1[i, j], expected[i][j])
self.assertTrue(array_equal(mat1.toArray(), expected))
sm = mat1.toSparse()
self.assertTrue(array_equal(sm.rowIndices, [1, 2, 0, 1, 2]))
self.assertTrue(array_equal(sm.colPtrs, [0, 2, 5]))
self.assertTrue(array_equal(sm.values, [1, 3, 4, 6, 9]))
class ListTests(MLlibTestCase):
"""
Test MLlib algorithms on plain lists, to make sure they're passed through
as NumPy arrays.
"""
def test_kmeans(self):
from pyspark.mllib.clustering import KMeans
data = [
[0, 1.1],
[0, 1.2],
[1.1, 0],
[1.2, 0],
]
clusters = KMeans.train(self.sc.parallelize(data), 2, initializationMode="k-means||")
self.assertEquals(clusters.predict(data[0]), clusters.predict(data[1]))
self.assertEquals(clusters.predict(data[2]), clusters.predict(data[3]))
def test_kmeans_deterministic(self):
from pyspark.mllib.clustering import KMeans
X = range(0, 100, 10)
Y = range(0, 100, 10)
data = [[x, y] for x, y in zip(X, Y)]
clusters1 = KMeans.train(self.sc.parallelize(data),
3, initializationMode="k-means||", seed=42)
clusters2 = KMeans.train(self.sc.parallelize(data),
3, initializationMode="k-means||", seed=42)
centers1 = clusters1.centers
centers2 = clusters2.centers
for c1, c2 in zip(centers1, centers2):
# TODO: Allow small numeric difference.
self.assertTrue(array_equal(c1, c2))
def test_gmm(self):
from pyspark.mllib.clustering import GaussianMixture
data = self.sc.parallelize([
[1, 2],
[8, 9],
[-4, -3],
[-6, -7],
])
clusters = GaussianMixture.train(data, 2, convergenceTol=0.001,
maxIterations=10, seed=56)
labels = clusters.predict(data).collect()
self.assertEquals(labels[0], labels[1])
self.assertEquals(labels[2], labels[3])
def test_gmm_deterministic(self):
from pyspark.mllib.clustering import GaussianMixture
x = range(0, 100, 10)
y = range(0, 100, 10)
data = self.sc.parallelize([[a, b] for a, b in zip(x, y)])
clusters1 = GaussianMixture.train(data, 5, convergenceTol=0.001,
maxIterations=10, seed=63)
clusters2 = GaussianMixture.train(data, 5, convergenceTol=0.001,
maxIterations=10, seed=63)
for c1, c2 in zip(clusters1.weights, clusters2.weights):
self.assertEquals(round(c1, 7), round(c2, 7))
def test_classification(self):
from pyspark.mllib.classification import LogisticRegressionWithSGD, SVMWithSGD, NaiveBayes
from pyspark.mllib.tree import DecisionTree, DecisionTreeModel, RandomForest,\
RandomForestModel, GradientBoostedTrees, GradientBoostedTreesModel
data = [
LabeledPoint(0.0, [1, 0, 0]),
LabeledPoint(1.0, [0, 1, 1]),
LabeledPoint(0.0, [2, 0, 0]),
LabeledPoint(1.0, [0, 2, 1])
]
rdd = self.sc.parallelize(data)
features = [p.features.tolist() for p in data]
temp_dir = tempfile.mkdtemp()
lr_model = LogisticRegressionWithSGD.train(rdd, iterations=10)
self.assertTrue(lr_model.predict(features[0]) <= 0)
self.assertTrue(lr_model.predict(features[1]) > 0)
self.assertTrue(lr_model.predict(features[2]) <= 0)
self.assertTrue(lr_model.predict(features[3]) > 0)
svm_model = SVMWithSGD.train(rdd, iterations=10)
self.assertTrue(svm_model.predict(features[0]) <= 0)
self.assertTrue(svm_model.predict(features[1]) > 0)
self.assertTrue(svm_model.predict(features[2]) <= 0)
self.assertTrue(svm_model.predict(features[3]) > 0)
nb_model = NaiveBayes.train(rdd)
self.assertTrue(nb_model.predict(features[0]) <= 0)
self.assertTrue(nb_model.predict(features[1]) > 0)
self.assertTrue(nb_model.predict(features[2]) <= 0)
self.assertTrue(nb_model.predict(features[3]) > 0)
categoricalFeaturesInfo = {0: 3} # feature 0 has 3 categories
dt_model = DecisionTree.trainClassifier(
rdd, numClasses=2, categoricalFeaturesInfo=categoricalFeaturesInfo, maxBins=4)
self.assertTrue(dt_model.predict(features[0]) <= 0)
self.assertTrue(dt_model.predict(features[1]) > 0)
self.assertTrue(dt_model.predict(features[2]) <= 0)
self.assertTrue(dt_model.predict(features[3]) > 0)
dt_model_dir = os.path.join(temp_dir, "dt")
dt_model.save(self.sc, dt_model_dir)
same_dt_model = DecisionTreeModel.load(self.sc, dt_model_dir)
self.assertEqual(same_dt_model.toDebugString(), dt_model.toDebugString())
rf_model = RandomForest.trainClassifier(
rdd, numClasses=2, categoricalFeaturesInfo=categoricalFeaturesInfo, numTrees=10,
maxBins=4, seed=1)
self.assertTrue(rf_model.predict(features[0]) <= 0)
self.assertTrue(rf_model.predict(features[1]) > 0)
self.assertTrue(rf_model.predict(features[2]) <= 0)
self.assertTrue(rf_model.predict(features[3]) > 0)
rf_model_dir = os.path.join(temp_dir, "rf")
rf_model.save(self.sc, rf_model_dir)
same_rf_model = RandomForestModel.load(self.sc, rf_model_dir)
self.assertEqual(same_rf_model.toDebugString(), rf_model.toDebugString())
gbt_model = GradientBoostedTrees.trainClassifier(
rdd, categoricalFeaturesInfo=categoricalFeaturesInfo, numIterations=4)
self.assertTrue(gbt_model.predict(features[0]) <= 0)
self.assertTrue(gbt_model.predict(features[1]) > 0)
self.assertTrue(gbt_model.predict(features[2]) <= 0)
self.assertTrue(gbt_model.predict(features[3]) > 0)
gbt_model_dir = os.path.join(temp_dir, "gbt")
gbt_model.save(self.sc, gbt_model_dir)
same_gbt_model = GradientBoostedTreesModel.load(self.sc, gbt_model_dir)
self.assertEqual(same_gbt_model.toDebugString(), gbt_model.toDebugString())
try:
os.removedirs(temp_dir)
except OSError:
pass
def test_regression(self):
from pyspark.mllib.regression import LinearRegressionWithSGD, LassoWithSGD, \
RidgeRegressionWithSGD
from pyspark.mllib.tree import DecisionTree, RandomForest, GradientBoostedTrees
data = [
LabeledPoint(-1.0, [0, -1]),
LabeledPoint(1.0, [0, 1]),
LabeledPoint(-1.0, [0, -2]),
LabeledPoint(1.0, [0, 2])
]
rdd = self.sc.parallelize(data)
features = [p.features.tolist() for p in data]
lr_model = LinearRegressionWithSGD.train(rdd, iterations=10)
self.assertTrue(lr_model.predict(features[0]) <= 0)
self.assertTrue(lr_model.predict(features[1]) > 0)
self.assertTrue(lr_model.predict(features[2]) <= 0)
self.assertTrue(lr_model.predict(features[3]) > 0)
lasso_model = LassoWithSGD.train(rdd, iterations=10)
self.assertTrue(lasso_model.predict(features[0]) <= 0)
self.assertTrue(lasso_model.predict(features[1]) > 0)
self.assertTrue(lasso_model.predict(features[2]) <= 0)
self.assertTrue(lasso_model.predict(features[3]) > 0)
rr_model = RidgeRegressionWithSGD.train(rdd, iterations=10)
self.assertTrue(rr_model.predict(features[0]) <= 0)
self.assertTrue(rr_model.predict(features[1]) > 0)
self.assertTrue(rr_model.predict(features[2]) <= 0)
self.assertTrue(rr_model.predict(features[3]) > 0)
categoricalFeaturesInfo = {0: 2} # feature 0 has 2 categories
dt_model = DecisionTree.trainRegressor(
rdd, categoricalFeaturesInfo=categoricalFeaturesInfo, maxBins=4)
self.assertTrue(dt_model.predict(features[0]) <= 0)
self.assertTrue(dt_model.predict(features[1]) > 0)
self.assertTrue(dt_model.predict(features[2]) <= 0)
self.assertTrue(dt_model.predict(features[3]) > 0)
rf_model = RandomForest.trainRegressor(
rdd, categoricalFeaturesInfo=categoricalFeaturesInfo, numTrees=10, maxBins=4, seed=1)
self.assertTrue(rf_model.predict(features[0]) <= 0)
self.assertTrue(rf_model.predict(features[1]) > 0)
self.assertTrue(rf_model.predict(features[2]) <= 0)
self.assertTrue(rf_model.predict(features[3]) > 0)
gbt_model = GradientBoostedTrees.trainRegressor(
rdd, categoricalFeaturesInfo=categoricalFeaturesInfo, numIterations=4)
self.assertTrue(gbt_model.predict(features[0]) <= 0)
self.assertTrue(gbt_model.predict(features[1]) > 0)
self.assertTrue(gbt_model.predict(features[2]) <= 0)
self.assertTrue(gbt_model.predict(features[3]) > 0)
try:
LinearRegressionWithSGD.train(rdd, initialWeights=array([1.0, 1.0]), iterations=10)
LassoWithSGD.train(rdd, initialWeights=array([1.0, 1.0]), iterations=10)
RidgeRegressionWithSGD.train(rdd, initialWeights=array([1.0, 1.0]), iterations=10)
except ValueError:
self.fail()
class StatTests(MLlibTestCase):
# SPARK-4023
def test_col_with_different_rdds(self):
# numpy
data = RandomRDDs.normalVectorRDD(self.sc, 1000, 10, 10)
summary = Statistics.colStats(data)
self.assertEqual(1000, summary.count())
# array
data = self.sc.parallelize([range(10)] * 10)
summary = Statistics.colStats(data)
self.assertEqual(10, summary.count())
# array
data = self.sc.parallelize([pyarray.array("d", range(10))] * 10)
summary = Statistics.colStats(data)
self.assertEqual(10, summary.count())
def test_col_norms(self):
data = RandomRDDs.normalVectorRDD(self.sc, 1000, 10, 10)
summary = Statistics.colStats(data)
self.assertEqual(10, len(summary.normL1()))
self.assertEqual(10, len(summary.normL2()))
data2 = self.sc.parallelize(range(10)).map(lambda x: Vectors.dense(x))
summary2 = Statistics.colStats(data2)
self.assertEqual(array([45.0]), summary2.normL1())
import math
expectedNormL2 = math.sqrt(sum(map(lambda x: x*x, range(10))))
self.assertTrue(math.fabs(summary2.normL2()[0] - expectedNormL2) < 1e-14)
class VectorUDTTests(MLlibTestCase):
dv0 = DenseVector([])
dv1 = DenseVector([1.0, 2.0])
sv0 = SparseVector(2, [], [])
sv1 = SparseVector(2, [1], [2.0])
udt = VectorUDT()
def test_json_schema(self):
self.assertEqual(VectorUDT.fromJson(self.udt.jsonValue()), self.udt)
def test_serialization(self):
for v in [self.dv0, self.dv1, self.sv0, self.sv1]:
self.assertEqual(v, self.udt.deserialize(self.udt.serialize(v)))
def test_infer_schema(self):
sqlCtx = SQLContext(self.sc)
rdd = self.sc.parallelize([LabeledPoint(1.0, self.dv1), LabeledPoint(0.0, self.sv1)])
df = rdd.toDF()
schema = df.schema
field = [f for f in schema.fields if f.name == "features"][0]
self.assertEqual(field.dataType, self.udt)
vectors = df.map(lambda p: p.features).collect()
self.assertEqual(len(vectors), 2)
for v in vectors:
if isinstance(v, SparseVector):
self.assertEqual(v, self.sv1)
elif isinstance(v, DenseVector):
self.assertEqual(v, self.dv1)
else:
raise TypeError("expecting a vector but got %r of type %r" % (v, type(v)))
@unittest.skipIf(not _have_scipy, "SciPy not installed")
class SciPyTests(MLlibTestCase):
"""
Test both vector operations and MLlib algorithms with SciPy sparse matrices,
if SciPy is available.
"""
def test_serialize(self):
from scipy.sparse import lil_matrix
lil = lil_matrix((4, 1))
lil[1, 0] = 1
lil[3, 0] = 2
sv = SparseVector(4, {1: 1, 3: 2})
self.assertEquals(sv, _convert_to_vector(lil))
self.assertEquals(sv, _convert_to_vector(lil.tocsc()))
self.assertEquals(sv, _convert_to_vector(lil.tocoo()))
self.assertEquals(sv, _convert_to_vector(lil.tocsr()))
self.assertEquals(sv, _convert_to_vector(lil.todok()))
def serialize(l):
return ser.loads(ser.dumps(_convert_to_vector(l)))
self.assertEquals(sv, serialize(lil))
self.assertEquals(sv, serialize(lil.tocsc()))
self.assertEquals(sv, serialize(lil.tocsr()))
self.assertEquals(sv, serialize(lil.todok()))
def test_dot(self):
from scipy.sparse import lil_matrix
lil = lil_matrix((4, 1))
lil[1, 0] = 1
lil[3, 0] = 2
dv = DenseVector(array([1., 2., 3., 4.]))
self.assertEquals(10.0, dv.dot(lil))
def test_squared_distance(self):
from scipy.sparse import lil_matrix
lil = lil_matrix((4, 1))
lil[1, 0] = 3
lil[3, 0] = 2
dv = DenseVector(array([1., 2., 3., 4.]))
sv = SparseVector(4, {0: 1, 1: 2, 2: 3, 3: 4})
self.assertEquals(15.0, dv.squared_distance(lil))
self.assertEquals(15.0, sv.squared_distance(lil))
def scipy_matrix(self, size, values):
"""Create a column SciPy matrix from a dictionary of values"""
from scipy.sparse import lil_matrix
lil = lil_matrix((size, 1))
for key, value in values.items():
lil[key, 0] = value
return lil
def test_clustering(self):
from pyspark.mllib.clustering import KMeans
data = [
self.scipy_matrix(3, {1: 1.0}),
self.scipy_matrix(3, {1: 1.1}),
self.scipy_matrix(3, {2: 1.0}),
self.scipy_matrix(3, {2: 1.1})
]
clusters = KMeans.train(self.sc.parallelize(data), 2, initializationMode="k-means||")
self.assertEquals(clusters.predict(data[0]), clusters.predict(data[1]))
self.assertEquals(clusters.predict(data[2]), clusters.predict(data[3]))
def test_classification(self):
from pyspark.mllib.classification import LogisticRegressionWithSGD, SVMWithSGD, NaiveBayes
from pyspark.mllib.tree import DecisionTree
data = [
LabeledPoint(0.0, self.scipy_matrix(2, {0: 1.0})),
LabeledPoint(1.0, self.scipy_matrix(2, {1: 1.0})),
LabeledPoint(0.0, self.scipy_matrix(2, {0: 2.0})),
LabeledPoint(1.0, self.scipy_matrix(2, {1: 2.0}))
]
rdd = self.sc.parallelize(data)
features = [p.features for p in data]
lr_model = LogisticRegressionWithSGD.train(rdd)
self.assertTrue(lr_model.predict(features[0]) <= 0)
self.assertTrue(lr_model.predict(features[1]) > 0)
self.assertTrue(lr_model.predict(features[2]) <= 0)
self.assertTrue(lr_model.predict(features[3]) > 0)
svm_model = SVMWithSGD.train(rdd)
self.assertTrue(svm_model.predict(features[0]) <= 0)
self.assertTrue(svm_model.predict(features[1]) > 0)
self.assertTrue(svm_model.predict(features[2]) <= 0)
self.assertTrue(svm_model.predict(features[3]) > 0)
nb_model = NaiveBayes.train(rdd)
self.assertTrue(nb_model.predict(features[0]) <= 0)
self.assertTrue(nb_model.predict(features[1]) > 0)
self.assertTrue(nb_model.predict(features[2]) <= 0)
self.assertTrue(nb_model.predict(features[3]) > 0)
categoricalFeaturesInfo = {0: 3} # feature 0 has 3 categories
dt_model = DecisionTree.trainClassifier(rdd, numClasses=2,
categoricalFeaturesInfo=categoricalFeaturesInfo)
self.assertTrue(dt_model.predict(features[0]) <= 0)
self.assertTrue(dt_model.predict(features[1]) > 0)
self.assertTrue(dt_model.predict(features[2]) <= 0)
self.assertTrue(dt_model.predict(features[3]) > 0)
def test_regression(self):
from pyspark.mllib.regression import LinearRegressionWithSGD, LassoWithSGD, \
RidgeRegressionWithSGD
from pyspark.mllib.tree import DecisionTree
data = [
LabeledPoint(-1.0, self.scipy_matrix(2, {1: -1.0})),
LabeledPoint(1.0, self.scipy_matrix(2, {1: 1.0})),
LabeledPoint(-1.0, self.scipy_matrix(2, {1: -2.0})),
LabeledPoint(1.0, self.scipy_matrix(2, {1: 2.0}))
]
rdd = self.sc.parallelize(data)
features = [p.features for p in data]
lr_model = LinearRegressionWithSGD.train(rdd)
self.assertTrue(lr_model.predict(features[0]) <= 0)
self.assertTrue(lr_model.predict(features[1]) > 0)
self.assertTrue(lr_model.predict(features[2]) <= 0)
self.assertTrue(lr_model.predict(features[3]) > 0)
lasso_model = LassoWithSGD.train(rdd)
self.assertTrue(lasso_model.predict(features[0]) <= 0)
self.assertTrue(lasso_model.predict(features[1]) > 0)
self.assertTrue(lasso_model.predict(features[2]) <= 0)
self.assertTrue(lasso_model.predict(features[3]) > 0)
rr_model = RidgeRegressionWithSGD.train(rdd)
self.assertTrue(rr_model.predict(features[0]) <= 0)
self.assertTrue(rr_model.predict(features[1]) > 0)
self.assertTrue(rr_model.predict(features[2]) <= 0)
self.assertTrue(rr_model.predict(features[3]) > 0)
categoricalFeaturesInfo = {0: 2} # feature 0 has 2 categories
dt_model = DecisionTree.trainRegressor(rdd, categoricalFeaturesInfo=categoricalFeaturesInfo)
self.assertTrue(dt_model.predict(features[0]) <= 0)
self.assertTrue(dt_model.predict(features[1]) > 0)
self.assertTrue(dt_model.predict(features[2]) <= 0)
self.assertTrue(dt_model.predict(features[3]) > 0)
class ChiSqTestTests(MLlibTestCase):
def test_goodness_of_fit(self):
from numpy import inf
observed = Vectors.dense([4, 6, 5])
pearson = Statistics.chiSqTest(observed)
# Validated against the R command `chisq.test(c(4, 6, 5), p=c(1/3, 1/3, 1/3))`
self.assertEqual(pearson.statistic, 0.4)
self.assertEqual(pearson.degreesOfFreedom, 2)
self.assertAlmostEqual(pearson.pValue, 0.8187, 4)
# Different expected and observed sum
observed1 = Vectors.dense([21, 38, 43, 80])
expected1 = Vectors.dense([3, 5, 7, 20])
pearson1 = Statistics.chiSqTest(observed1, expected1)
# Results validated against the R command
# `chisq.test(c(21, 38, 43, 80), p=c(3/35, 1/7, 1/5, 4/7))`
self.assertAlmostEqual(pearson1.statistic, 14.1429, 4)
self.assertEqual(pearson1.degreesOfFreedom, 3)
self.assertAlmostEqual(pearson1.pValue, 0.002717, 4)
# Vectors with different sizes
observed3 = Vectors.dense([1.0, 2.0, 3.0])
expected3 = Vectors.dense([1.0, 2.0, 3.0, 4.0])
self.assertRaises(ValueError, Statistics.chiSqTest, observed3, expected3)
# Negative counts in observed
neg_obs = Vectors.dense([1.0, 2.0, 3.0, -4.0])
self.assertRaises(Py4JJavaError, Statistics.chiSqTest, neg_obs, expected1)
# Count = 0.0 in expected but not observed
zero_expected = Vectors.dense([1.0, 0.0, 3.0])
pearson_inf = Statistics.chiSqTest(observed, zero_expected)
self.assertEqual(pearson_inf.statistic, inf)
self.assertEqual(pearson_inf.degreesOfFreedom, 2)
self.assertEqual(pearson_inf.pValue, 0.0)
# 0.0 in expected and observed simultaneously
zero_observed = Vectors.dense([2.0, 0.0, 1.0])
self.assertRaises(Py4JJavaError, Statistics.chiSqTest, zero_observed, zero_expected)
def test_matrix_independence(self):
data = [40.0, 24.0, 29.0, 56.0, 32.0, 42.0, 31.0, 10.0, 0.0, 30.0, 15.0, 12.0]
chi = Statistics.chiSqTest(Matrices.dense(3, 4, data))
# Results validated against R command
# `chisq.test(rbind(c(40, 56, 31, 30),c(24, 32, 10, 15), c(29, 42, 0, 12)))`
self.assertAlmostEqual(chi.statistic, 21.9958, 4)
self.assertEqual(chi.degreesOfFreedom, 6)
self.assertAlmostEqual(chi.pValue, 0.001213, 4)
# Negative counts
neg_counts = Matrices.dense(2, 2, [4.0, 5.0, 3.0, -3.0])
self.assertRaises(Py4JJavaError, Statistics.chiSqTest, neg_counts)
# Row sum = 0.0
row_zero = Matrices.dense(2, 2, [0.0, 1.0, 0.0, 2.0])
self.assertRaises(Py4JJavaError, Statistics.chiSqTest, row_zero)
# Column sum = 0.0
col_zero = Matrices.dense(2, 2, [0.0, 0.0, 2.0, 2.0])
self.assertRaises(Py4JJavaError, Statistics.chiSqTest, col_zero)
def test_chi_sq_pearson(self):
data = [
LabeledPoint(0.0, Vectors.dense([0.5, 10.0])),
LabeledPoint(0.0, Vectors.dense([1.5, 20.0])),
LabeledPoint(1.0, Vectors.dense([1.5, 30.0])),
LabeledPoint(0.0, Vectors.dense([3.5, 30.0])),
LabeledPoint(0.0, Vectors.dense([3.5, 40.0])),
LabeledPoint(1.0, Vectors.dense([3.5, 40.0]))
]
for numParts in [2, 4, 6, 8]:
chi = Statistics.chiSqTest(self.sc.parallelize(data, numParts))
feature1 = chi[0]
self.assertEqual(feature1.statistic, 0.75)
self.assertEqual(feature1.degreesOfFreedom, 2)
self.assertAlmostEqual(feature1.pValue, 0.6873, 4)
feature2 = chi[1]
self.assertEqual(feature2.statistic, 1.5)
self.assertEqual(feature2.degreesOfFreedom, 3)
self.assertAlmostEqual(feature2.pValue, 0.6823, 4)
def test_right_number_of_results(self):
num_cols = 1001
sparse_data = [
LabeledPoint(0.0, Vectors.sparse(num_cols, [(100, 2.0)])),
LabeledPoint(0.1, Vectors.sparse(num_cols, [(200, 1.0)]))
]
chi = Statistics.chiSqTest(self.sc.parallelize(sparse_data))
self.assertEqual(len(chi), num_cols)
self.assertIsNotNone(chi[1000])
class SerDeTest(MLlibTestCase):
def test_to_java_object_rdd(self): # SPARK-6660
data = RandomRDDs.uniformRDD(self.sc, 10, 5, seed=0)
self.assertEqual(_to_java_object_rdd(data).count(), 10)
class FeatureTest(MLlibTestCase):
def test_idf_model(self):
data = [
Vectors.dense([1, 2, 6, 0, 2, 3, 1, 1, 0, 0, 3]),
Vectors.dense([1, 3, 0, 1, 3, 0, 0, 2, 0, 0, 1]),
Vectors.dense([1, 4, 1, 0, 0, 4, 9, 0, 1, 2, 0]),
Vectors.dense([2, 1, 0, 3, 0, 0, 5, 0, 2, 3, 9])
]
model = IDF().fit(self.sc.parallelize(data, 2))
idf = model.idf()
self.assertEqual(len(idf), 11)
class Word2VecTests(MLlibTestCase):
def test_word2vec_setters(self):
model = Word2Vec() \
.setVectorSize(2) \
.setLearningRate(0.01) \
.setNumPartitions(2) \
.setNumIterations(10) \
.setSeed(1024) \
.setMinCount(3)
self.assertEquals(model.vectorSize, 2)
self.assertTrue(model.learningRate < 0.02)
self.assertEquals(model.numPartitions, 2)
self.assertEquals(model.numIterations, 10)
self.assertEquals(model.seed, 1024)
self.assertEquals(model.minCount, 3)
def test_word2vec_get_vectors(self):
data = [
["a", "b", "c", "d", "e", "f", "g"],
["a", "b", "c", "d", "e", "f"],
["a", "b", "c", "d", "e"],
["a", "b", "c", "d"],
["a", "b", "c"],
["a", "b"],
["a"]
]
model = Word2Vec().fit(self.sc.parallelize(data))
self.assertEquals(len(model.getVectors()), 3)
class StandardScalerTests(MLlibTestCase):
def test_model_setters(self):
data = [
[1.0, 2.0, 3.0],
[2.0, 3.0, 4.0],
[3.0, 4.0, 5.0]
]
model = StandardScaler().fit(self.sc.parallelize(data))
self.assertIsNotNone(model.setWithMean(True))
self.assertIsNotNone(model.setWithStd(True))
self.assertEqual(model.transform([1.0, 2.0, 3.0]), DenseVector([-1.0, -1.0, -1.0]))
def test_model_transform(self):
data = [
[1.0, 2.0, 3.0],
[2.0, 3.0, 4.0],
[3.0, 4.0, 5.0]
]
model = StandardScaler().fit(self.sc.parallelize(data))
self.assertEqual(model.transform([1.0, 2.0, 3.0]), DenseVector([1.0, 2.0, 3.0]))
if __name__ == "__main__":
if not _have_scipy:
print("NOTE: Skipping SciPy tests as it does not seem to be installed")
unittest.main()
if not _have_scipy:
print("NOTE: SciPy tests were skipped as it does not seem to be installed")
sc.stop()