spark-instrumented-optimizer/python/pyspark/rdd.py
Sandy Ryza ce92a9c18f SPARK-554. Add aggregateByKey.
Author: Sandy Ryza <sandy@cloudera.com>

Closes #705 from sryza/sandy-spark-554 and squashes the following commits:

2302b8f [Sandy Ryza] Add MIMA exclude
f52e0ad [Sandy Ryza] Fix Python tests for real
2f3afa3 [Sandy Ryza] Fix Python test
0b735e9 [Sandy Ryza] Fix line lengths
ae56746 [Sandy Ryza] Fix doc (replace T with V)
c2be415 [Sandy Ryza] Java and Python aggregateByKey
23bf400 [Sandy Ryza] SPARK-554.  Add aggregateByKey.
2014-06-12 08:14:25 -07:00

1507 lines
54 KiB
Python

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from base64 import standard_b64encode as b64enc
import copy
from collections import defaultdict
from collections import namedtuple
from itertools import chain, ifilter, imap
import operator
import os
import sys
import shlex
import traceback
from subprocess import Popen, PIPE
from tempfile import NamedTemporaryFile
from threading import Thread
import warnings
import heapq
from random import Random
from pyspark.serializers import NoOpSerializer, CartesianDeserializer, \
BatchedSerializer, CloudPickleSerializer, PairDeserializer, \
PickleSerializer, pack_long
from pyspark.join import python_join, python_left_outer_join, \
python_right_outer_join, python_cogroup
from pyspark.statcounter import StatCounter
from pyspark.rddsampler import RDDSampler
from pyspark.storagelevel import StorageLevel
from pyspark.resultiterable import ResultIterable
from py4j.java_collections import ListConverter, MapConverter
__all__ = ["RDD"]
def _extract_concise_traceback():
"""
This function returns the traceback info for a callsite, returns a dict
with function name, file name and line number
"""
tb = traceback.extract_stack()
callsite = namedtuple("Callsite", "function file linenum")
if len(tb) == 0:
return None
file, line, module, what = tb[len(tb) - 1]
sparkpath = os.path.dirname(file)
first_spark_frame = len(tb) - 1
for i in range(0, len(tb)):
file, line, fun, what = tb[i]
if file.startswith(sparkpath):
first_spark_frame = i
break
if first_spark_frame == 0:
file, line, fun, what = tb[0]
return callsite(function=fun, file=file, linenum=line)
sfile, sline, sfun, swhat = tb[first_spark_frame]
ufile, uline, ufun, uwhat = tb[first_spark_frame-1]
return callsite(function=sfun, file=ufile, linenum=uline)
_spark_stack_depth = 0
class _JavaStackTrace(object):
def __init__(self, sc):
tb = _extract_concise_traceback()
if tb is not None:
self._traceback = "%s at %s:%s" % (tb.function, tb.file, tb.linenum)
else:
self._traceback = "Error! Could not extract traceback info"
self._context = sc
def __enter__(self):
global _spark_stack_depth
if _spark_stack_depth == 0:
self._context._jsc.setCallSite(self._traceback)
_spark_stack_depth += 1
def __exit__(self, type, value, tb):
global _spark_stack_depth
_spark_stack_depth -= 1
if _spark_stack_depth == 0:
self._context._jsc.setCallSite(None)
class MaxHeapQ(object):
"""
An implementation of MaxHeap.
>>> import pyspark.rdd
>>> heap = pyspark.rdd.MaxHeapQ(5)
>>> [heap.insert(i) for i in range(10)]
[None, None, None, None, None, None, None, None, None, None]
>>> sorted(heap.getElements())
[0, 1, 2, 3, 4]
>>> heap = pyspark.rdd.MaxHeapQ(5)
>>> [heap.insert(i) for i in range(9, -1, -1)]
[None, None, None, None, None, None, None, None, None, None]
>>> sorted(heap.getElements())
[0, 1, 2, 3, 4]
>>> heap = pyspark.rdd.MaxHeapQ(1)
>>> [heap.insert(i) for i in range(9, -1, -1)]
[None, None, None, None, None, None, None, None, None, None]
>>> heap.getElements()
[0]
"""
def __init__(self, maxsize):
# we start from q[1], this makes calculating children as trivial as 2 * k
self.q = [0]
self.maxsize = maxsize
def _swim(self, k):
while (k > 1) and (self.q[k/2] < self.q[k]):
self._swap(k, k/2)
k = k/2
def _swap(self, i, j):
t = self.q[i]
self.q[i] = self.q[j]
self.q[j] = t
def _sink(self, k):
N = self.size()
while 2 * k <= N:
j = 2 * k
# Here we test if both children are greater than parent
# if not swap with larger one.
if j < N and self.q[j] < self.q[j + 1]:
j = j + 1
if(self.q[k] > self.q[j]):
break
self._swap(k, j)
k = j
def size(self):
return len(self.q) - 1
def insert(self, value):
if (self.size()) < self.maxsize:
self.q.append(value)
self._swim(self.size())
else:
self._replaceRoot(value)
def getElements(self):
return self.q[1:]
def _replaceRoot(self, value):
if(self.q[1] > value):
self.q[1] = value
self._sink(1)
class RDD(object):
"""
A Resilient Distributed Dataset (RDD), the basic abstraction in Spark.
Represents an immutable, partitioned collection of elements that can be
operated on in parallel.
"""
def __init__(self, jrdd, ctx, jrdd_deserializer):
self._jrdd = jrdd
self.is_cached = False
self.is_checkpointed = False
self.ctx = ctx
self._jrdd_deserializer = jrdd_deserializer
self._id = jrdd.id()
def id(self):
"""
A unique ID for this RDD (within its SparkContext).
"""
return self._id
def __repr__(self):
return self._jrdd.toString()
@property
def context(self):
"""
The L{SparkContext} that this RDD was created on.
"""
return self.ctx
def cache(self):
"""
Persist this RDD with the default storage level (C{MEMORY_ONLY}).
"""
self.is_cached = True
self._jrdd.cache()
return self
def persist(self, storageLevel):
"""
Set this RDD's storage level to persist its values across operations after the first time
it is computed. This can only be used to assign a new storage level if the RDD does not
have a storage level set yet.
"""
self.is_cached = True
javaStorageLevel = self.ctx._getJavaStorageLevel(storageLevel)
self._jrdd.persist(javaStorageLevel)
return self
def unpersist(self):
"""
Mark the RDD as non-persistent, and remove all blocks for it from memory and disk.
"""
self.is_cached = False
self._jrdd.unpersist()
return self
def checkpoint(self):
"""
Mark this RDD for checkpointing. It will be saved to a file inside the
checkpoint directory set with L{SparkContext.setCheckpointDir()} and
all references to its parent RDDs will be removed. This function must
be called before any job has been executed on this RDD. It is strongly
recommended that this RDD is persisted in memory, otherwise saving it
on a file will require recomputation.
"""
self.is_checkpointed = True
self._jrdd.rdd().checkpoint()
def isCheckpointed(self):
"""
Return whether this RDD has been checkpointed or not
"""
return self._jrdd.rdd().isCheckpointed()
def getCheckpointFile(self):
"""
Gets the name of the file to which this RDD was checkpointed
"""
checkpointFile = self._jrdd.rdd().getCheckpointFile()
if checkpointFile.isDefined():
return checkpointFile.get()
else:
return None
def map(self, f, preservesPartitioning=False):
"""
Return a new RDD by applying a function to each element of this RDD.
>>> rdd = sc.parallelize(["b", "a", "c"])
>>> sorted(rdd.map(lambda x: (x, 1)).collect())
[('a', 1), ('b', 1), ('c', 1)]
"""
def func(split, iterator): return imap(f, iterator)
return PipelinedRDD(self, func, preservesPartitioning)
def flatMap(self, f, preservesPartitioning=False):
"""
Return a new RDD by first applying a function to all elements of this
RDD, and then flattening the results.
>>> rdd = sc.parallelize([2, 3, 4])
>>> sorted(rdd.flatMap(lambda x: range(1, x)).collect())
[1, 1, 1, 2, 2, 3]
>>> sorted(rdd.flatMap(lambda x: [(x, x), (x, x)]).collect())
[(2, 2), (2, 2), (3, 3), (3, 3), (4, 4), (4, 4)]
"""
def func(s, iterator): return chain.from_iterable(imap(f, iterator))
return self.mapPartitionsWithIndex(func, preservesPartitioning)
def mapPartitions(self, f, preservesPartitioning=False):
"""
Return a new RDD by applying a function to each partition of this RDD.
>>> rdd = sc.parallelize([1, 2, 3, 4], 2)
>>> def f(iterator): yield sum(iterator)
>>> rdd.mapPartitions(f).collect()
[3, 7]
"""
def func(s, iterator): return f(iterator)
return self.mapPartitionsWithIndex(func)
def mapPartitionsWithIndex(self, f, preservesPartitioning=False):
"""
Return a new RDD by applying a function to each partition of this RDD,
while tracking the index of the original partition.
>>> rdd = sc.parallelize([1, 2, 3, 4], 4)
>>> def f(splitIndex, iterator): yield splitIndex
>>> rdd.mapPartitionsWithIndex(f).sum()
6
"""
return PipelinedRDD(self, f, preservesPartitioning)
def mapPartitionsWithSplit(self, f, preservesPartitioning=False):
"""
Deprecated: use mapPartitionsWithIndex instead.
Return a new RDD by applying a function to each partition of this RDD,
while tracking the index of the original partition.
>>> rdd = sc.parallelize([1, 2, 3, 4], 4)
>>> def f(splitIndex, iterator): yield splitIndex
>>> rdd.mapPartitionsWithSplit(f).sum()
6
"""
warnings.warn("mapPartitionsWithSplit is deprecated; "
"use mapPartitionsWithIndex instead", DeprecationWarning, stacklevel=2)
return self.mapPartitionsWithIndex(f, preservesPartitioning)
def getNumPartitions(self):
"""
Returns the number of partitions in RDD
>>> rdd = sc.parallelize([1, 2, 3, 4], 2)
>>> rdd.getNumPartitions()
2
"""
return self._jrdd.splits().size()
def filter(self, f):
"""
Return a new RDD containing only the elements that satisfy a predicate.
>>> rdd = sc.parallelize([1, 2, 3, 4, 5])
>>> rdd.filter(lambda x: x % 2 == 0).collect()
[2, 4]
"""
def func(iterator): return ifilter(f, iterator)
return self.mapPartitions(func)
def distinct(self):
"""
Return a new RDD containing the distinct elements in this RDD.
>>> sorted(sc.parallelize([1, 1, 2, 3]).distinct().collect())
[1, 2, 3]
"""
return self.map(lambda x: (x, None)) \
.reduceByKey(lambda x, _: x) \
.map(lambda (x, _): x)
def sample(self, withReplacement, fraction, seed=None):
"""
Return a sampled subset of this RDD (relies on numpy and falls back
on default random generator if numpy is unavailable).
>>> sc.parallelize(range(0, 100)).sample(False, 0.1, 2).collect() #doctest: +SKIP
[2, 3, 20, 21, 24, 41, 42, 66, 67, 89, 90, 98]
"""
assert fraction >= 0.0, "Invalid fraction value: %s" % fraction
return self.mapPartitionsWithIndex(RDDSampler(withReplacement, fraction, seed).func, True)
# this is ported from scala/spark/RDD.scala
def takeSample(self, withReplacement, num, seed=None):
"""
Return a fixed-size sampled subset of this RDD (currently requires numpy).
>>> sc.parallelize(range(0, 10)).takeSample(True, 10, 1) #doctest: +SKIP
[4, 2, 1, 8, 2, 7, 0, 4, 1, 4]
"""
fraction = 0.0
total = 0
multiplier = 3.0
initialCount = self.count()
maxSelected = 0
if (num < 0):
raise ValueError
if (initialCount == 0):
return list()
if initialCount > sys.maxint - 1:
maxSelected = sys.maxint - 1
else:
maxSelected = initialCount
if num > initialCount and not withReplacement:
total = maxSelected
fraction = multiplier * (maxSelected + 1) / initialCount
else:
fraction = multiplier * (num + 1) / initialCount
total = num
samples = self.sample(withReplacement, fraction, seed).collect()
# If the first sample didn't turn out large enough, keep trying to take samples;
# this shouldn't happen often because we use a big multiplier for their initial size.
# See: scala/spark/RDD.scala
rand = Random(seed)
while len(samples) < total:
samples = self.sample(withReplacement, fraction, rand.randint(0, sys.maxint)).collect()
sampler = RDDSampler(withReplacement, fraction, rand.randint(0, sys.maxint))
sampler.shuffle(samples)
return samples[0:total]
def union(self, other):
"""
Return the union of this RDD and another one.
>>> rdd = sc.parallelize([1, 1, 2, 3])
>>> rdd.union(rdd).collect()
[1, 1, 2, 3, 1, 1, 2, 3]
"""
if self._jrdd_deserializer == other._jrdd_deserializer:
rdd = RDD(self._jrdd.union(other._jrdd), self.ctx,
self._jrdd_deserializer)
return rdd
else:
# These RDDs contain data in different serialized formats, so we
# must normalize them to the default serializer.
self_copy = self._reserialize()
other_copy = other._reserialize()
return RDD(self_copy._jrdd.union(other_copy._jrdd), self.ctx,
self.ctx.serializer)
def intersection(self, other):
"""
Return the intersection of this RDD and another one. The output will not
contain any duplicate elements, even if the input RDDs did.
Note that this method performs a shuffle internally.
>>> rdd1 = sc.parallelize([1, 10, 2, 3, 4, 5])
>>> rdd2 = sc.parallelize([1, 6, 2, 3, 7, 8])
>>> rdd1.intersection(rdd2).collect()
[1, 2, 3]
"""
return self.map(lambda v: (v, None)) \
.cogroup(other.map(lambda v: (v, None))) \
.filter(lambda x: (len(x[1][0]) != 0) and (len(x[1][1]) != 0)) \
.keys()
def _reserialize(self, serializer=None):
serializer = serializer or self.ctx.serializer
if self._jrdd_deserializer == serializer:
return self
else:
converted = self.map(lambda x: x, preservesPartitioning=True)
converted._jrdd_deserializer = serializer
return converted
def __add__(self, other):
"""
Return the union of this RDD and another one.
>>> rdd = sc.parallelize([1, 1, 2, 3])
>>> (rdd + rdd).collect()
[1, 1, 2, 3, 1, 1, 2, 3]
"""
if not isinstance(other, RDD):
raise TypeError
return self.union(other)
def sortByKey(self, ascending=True, numPartitions=None, keyfunc = lambda x: x):
"""
Sorts this RDD, which is assumed to consist of (key, value) pairs.
>>> tmp = [('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)]
>>> sc.parallelize(tmp).sortByKey(True, 2).collect()
[('1', 3), ('2', 5), ('a', 1), ('b', 2), ('d', 4)]
>>> tmp2 = [('Mary', 1), ('had', 2), ('a', 3), ('little', 4), ('lamb', 5)]
>>> tmp2.extend([('whose', 6), ('fleece', 7), ('was', 8), ('white', 9)])
>>> sc.parallelize(tmp2).sortByKey(True, 3, keyfunc=lambda k: k.lower()).collect()
[('a', 3), ('fleece', 7), ('had', 2), ('lamb', 5), ('little', 4), ('Mary', 1), ('was', 8), ('white', 9), ('whose', 6)]
"""
if numPartitions is None:
numPartitions = self.ctx.defaultParallelism
bounds = list()
# first compute the boundary of each part via sampling: we want to partition
# the key-space into bins such that the bins have roughly the same
# number of (key, value) pairs falling into them
if numPartitions > 1:
rddSize = self.count()
maxSampleSize = numPartitions * 20.0 # constant from Spark's RangePartitioner
fraction = min(maxSampleSize / max(rddSize, 1), 1.0)
samples = self.sample(False, fraction, 1).map(lambda (k, v): k).collect()
samples = sorted(samples, reverse=(not ascending), key=keyfunc)
# we have numPartitions many parts but one of the them has
# an implicit boundary
for i in range(0, numPartitions - 1):
index = (len(samples) - 1) * (i + 1) / numPartitions
bounds.append(samples[index])
def rangePartitionFunc(k):
p = 0
while p < len(bounds) and keyfunc(k) > bounds[p]:
p += 1
if ascending:
return p
else:
return numPartitions-1-p
def mapFunc(iterator):
yield sorted(iterator, reverse=(not ascending), key=lambda (k, v): keyfunc(k))
return (self.partitionBy(numPartitions, partitionFunc=rangePartitionFunc)
.mapPartitions(mapFunc,preservesPartitioning=True)
.flatMap(lambda x: x, preservesPartitioning=True))
def glom(self):
"""
Return an RDD created by coalescing all elements within each partition
into a list.
>>> rdd = sc.parallelize([1, 2, 3, 4], 2)
>>> sorted(rdd.glom().collect())
[[1, 2], [3, 4]]
"""
def func(iterator): yield list(iterator)
return self.mapPartitions(func)
def cartesian(self, other):
"""
Return the Cartesian product of this RDD and another one, that is, the
RDD of all pairs of elements C{(a, b)} where C{a} is in C{self} and
C{b} is in C{other}.
>>> rdd = sc.parallelize([1, 2])
>>> sorted(rdd.cartesian(rdd).collect())
[(1, 1), (1, 2), (2, 1), (2, 2)]
"""
# Due to batching, we can't use the Java cartesian method.
deserializer = CartesianDeserializer(self._jrdd_deserializer,
other._jrdd_deserializer)
return RDD(self._jrdd.cartesian(other._jrdd), self.ctx, deserializer)
def groupBy(self, f, numPartitions=None):
"""
Return an RDD of grouped items.
>>> rdd = sc.parallelize([1, 1, 2, 3, 5, 8])
>>> result = rdd.groupBy(lambda x: x % 2).collect()
>>> sorted([(x, sorted(y)) for (x, y) in result])
[(0, [2, 8]), (1, [1, 1, 3, 5])]
"""
return self.map(lambda x: (f(x), x)).groupByKey(numPartitions)
def pipe(self, command, env={}):
"""
Return an RDD created by piping elements to a forked external process.
>>> sc.parallelize(['1', '2', '', '3']).pipe('cat').collect()
['1', '2', '', '3']
"""
def func(iterator):
pipe = Popen(shlex.split(command), env=env, stdin=PIPE, stdout=PIPE)
def pipe_objs(out):
for obj in iterator:
out.write(str(obj).rstrip('\n') + '\n')
out.close()
Thread(target=pipe_objs, args=[pipe.stdin]).start()
return (x.rstrip('\n') for x in iter(pipe.stdout.readline, ''))
return self.mapPartitions(func)
def foreach(self, f):
"""
Applies a function to all elements of this RDD.
>>> def f(x): print x
>>> sc.parallelize([1, 2, 3, 4, 5]).foreach(f)
"""
def processPartition(iterator):
for x in iterator:
f(x)
yield None
self.mapPartitions(processPartition).collect() # Force evaluation
def foreachPartition(self, f):
"""
Applies a function to each partition of this RDD.
>>> def f(iterator):
... for x in iterator:
... print x
... yield None
>>> sc.parallelize([1, 2, 3, 4, 5]).foreachPartition(f)
"""
self.mapPartitions(f).collect() # Force evaluation
def collect(self):
"""
Return a list that contains all of the elements in this RDD.
"""
with _JavaStackTrace(self.context) as st:
bytesInJava = self._jrdd.collect().iterator()
return list(self._collect_iterator_through_file(bytesInJava))
def _collect_iterator_through_file(self, iterator):
# Transferring lots of data through Py4J can be slow because
# socket.readline() is inefficient. Instead, we'll dump the data to a
# file and read it back.
tempFile = NamedTemporaryFile(delete=False, dir=self.ctx._temp_dir)
tempFile.close()
self.ctx._writeToFile(iterator, tempFile.name)
# Read the data into Python and deserialize it:
with open(tempFile.name, 'rb') as tempFile:
for item in self._jrdd_deserializer.load_stream(tempFile):
yield item
os.unlink(tempFile.name)
def reduce(self, f):
"""
Reduces the elements of this RDD using the specified commutative and
associative binary operator. Currently reduces partitions locally.
>>> from operator import add
>>> sc.parallelize([1, 2, 3, 4, 5]).reduce(add)
15
>>> sc.parallelize((2 for _ in range(10))).map(lambda x: 1).cache().reduce(add)
10
"""
def func(iterator):
acc = None
for obj in iterator:
if acc is None:
acc = obj
else:
acc = f(obj, acc)
if acc is not None:
yield acc
vals = self.mapPartitions(func).collect()
return reduce(f, vals)
def fold(self, zeroValue, op):
"""
Aggregate the elements of each partition, and then the results for all
the partitions, using a given associative function and a neutral "zero
value."
The function C{op(t1, t2)} is allowed to modify C{t1} and return it
as its result value to avoid object allocation; however, it should not
modify C{t2}.
>>> from operator import add
>>> sc.parallelize([1, 2, 3, 4, 5]).fold(0, add)
15
"""
def func(iterator):
acc = zeroValue
for obj in iterator:
acc = op(obj, acc)
yield acc
vals = self.mapPartitions(func).collect()
return reduce(op, vals, zeroValue)
def aggregate(self, zeroValue, seqOp, combOp):
"""
Aggregate the elements of each partition, and then the results for all
the partitions, using a given combine functions and a neutral "zero
value."
The functions C{op(t1, t2)} is allowed to modify C{t1} and return it
as its result value to avoid object allocation; however, it should not
modify C{t2}.
The first function (seqOp) can return a different result type, U, than
the type of this RDD. Thus, we need one operation for merging a T into an U
and one operation for merging two U
>>> seqOp = (lambda x, y: (x[0] + y, x[1] + 1))
>>> combOp = (lambda x, y: (x[0] + y[0], x[1] + y[1]))
>>> sc.parallelize([1, 2, 3, 4]).aggregate((0, 0), seqOp, combOp)
(10, 4)
>>> sc.parallelize([]).aggregate((0, 0), seqOp, combOp)
(0, 0)
"""
def func(iterator):
acc = zeroValue
for obj in iterator:
acc = seqOp(acc, obj)
yield acc
return self.mapPartitions(func).fold(zeroValue, combOp)
def max(self):
"""
Find the maximum item in this RDD.
>>> sc.parallelize([1.0, 5.0, 43.0, 10.0]).max()
43.0
"""
return self.reduce(max)
def min(self):
"""
Find the minimum item in this RDD.
>>> sc.parallelize([1.0, 5.0, 43.0, 10.0]).min()
1.0
"""
return self.reduce(min)
def sum(self):
"""
Add up the elements in this RDD.
>>> sc.parallelize([1.0, 2.0, 3.0]).sum()
6.0
"""
return self.mapPartitions(lambda x: [sum(x)]).reduce(operator.add)
def count(self):
"""
Return the number of elements in this RDD.
>>> sc.parallelize([2, 3, 4]).count()
3
"""
return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
def stats(self):
"""
Return a L{StatCounter} object that captures the mean, variance
and count of the RDD's elements in one operation.
"""
def redFunc(left_counter, right_counter):
return left_counter.mergeStats(right_counter)
return self.mapPartitions(lambda i: [StatCounter(i)]).reduce(redFunc)
def mean(self):
"""
Compute the mean of this RDD's elements.
>>> sc.parallelize([1, 2, 3]).mean()
2.0
"""
return self.stats().mean()
def variance(self):
"""
Compute the variance of this RDD's elements.
>>> sc.parallelize([1, 2, 3]).variance()
0.666...
"""
return self.stats().variance()
def stdev(self):
"""
Compute the standard deviation of this RDD's elements.
>>> sc.parallelize([1, 2, 3]).stdev()
0.816...
"""
return self.stats().stdev()
def sampleStdev(self):
"""
Compute the sample standard deviation of this RDD's elements (which corrects for bias in
estimating the standard deviation by dividing by N-1 instead of N).
>>> sc.parallelize([1, 2, 3]).sampleStdev()
1.0
"""
return self.stats().sampleStdev()
def sampleVariance(self):
"""
Compute the sample variance of this RDD's elements (which corrects for bias in
estimating the variance by dividing by N-1 instead of N).
>>> sc.parallelize([1, 2, 3]).sampleVariance()
1.0
"""
return self.stats().sampleVariance()
def countByValue(self):
"""
Return the count of each unique value in this RDD as a dictionary of
(value, count) pairs.
>>> sorted(sc.parallelize([1, 2, 1, 2, 2], 2).countByValue().items())
[(1, 2), (2, 3)]
"""
def countPartition(iterator):
counts = defaultdict(int)
for obj in iterator:
counts[obj] += 1
yield counts
def mergeMaps(m1, m2):
for (k, v) in m2.iteritems():
m1[k] += v
return m1
return self.mapPartitions(countPartition).reduce(mergeMaps)
def top(self, num):
"""
Get the top N elements from a RDD.
Note: It returns the list sorted in descending order.
>>> sc.parallelize([10, 4, 2, 12, 3]).top(1)
[12]
>>> sc.parallelize([2, 3, 4, 5, 6], 2).cache().top(2)
[6, 5]
"""
def topIterator(iterator):
q = []
for k in iterator:
if len(q) < num:
heapq.heappush(q, k)
else:
heapq.heappushpop(q, k)
yield q
def merge(a, b):
return next(topIterator(a + b))
return sorted(self.mapPartitions(topIterator).reduce(merge), reverse=True)
def takeOrdered(self, num, key=None):
"""
Get the N elements from a RDD ordered in ascending order or as specified
by the optional key function.
>>> sc.parallelize([10, 1, 2, 9, 3, 4, 5, 6, 7]).takeOrdered(6)
[1, 2, 3, 4, 5, 6]
>>> sc.parallelize([10, 1, 2, 9, 3, 4, 5, 6, 7], 2).takeOrdered(6, key=lambda x: -x)
[10, 9, 7, 6, 5, 4]
"""
def topNKeyedElems(iterator, key_=None):
q = MaxHeapQ(num)
for k in iterator:
if key_ != None:
k = (key_(k), k)
q.insert(k)
yield q.getElements()
def unKey(x, key_=None):
if key_ != None:
x = [i[1] for i in x]
return x
def merge(a, b):
return next(topNKeyedElems(a + b))
result = self.mapPartitions(lambda i: topNKeyedElems(i, key)).reduce(merge)
return sorted(unKey(result, key), key=key)
def take(self, num):
"""
Take the first num elements of the RDD.
It works by first scanning one partition, and use the results from
that partition to estimate the number of additional partitions needed
to satisfy the limit.
Translated from the Scala implementation in RDD#take().
>>> sc.parallelize([2, 3, 4, 5, 6]).cache().take(2)
[2, 3]
>>> sc.parallelize([2, 3, 4, 5, 6]).take(10)
[2, 3, 4, 5, 6]
>>> sc.parallelize(range(100), 100).filter(lambda x: x > 90).take(3)
[91, 92, 93]
"""
items = []
totalParts = self._jrdd.splits().size()
partsScanned = 0
while len(items) < num and partsScanned < totalParts:
# The number of partitions to try in this iteration.
# It is ok for this number to be greater than totalParts because
# we actually cap it at totalParts in runJob.
numPartsToTry = 1
if partsScanned > 0:
# If we didn't find any rows after the first iteration, just
# try all partitions next. Otherwise, interpolate the number
# of partitions we need to try, but overestimate it by 50%.
if len(items) == 0:
numPartsToTry = totalParts - 1
else:
numPartsToTry = int(1.5 * num * partsScanned / len(items))
left = num - len(items)
def takeUpToNumLeft(iterator):
taken = 0
while taken < left:
yield next(iterator)
taken += 1
p = range(partsScanned, min(partsScanned + numPartsToTry, totalParts))
res = self.context.runJob(self, takeUpToNumLeft, p, True)
items += res
partsScanned += numPartsToTry
return items[:num]
def first(self):
"""
Return the first element in this RDD.
>>> sc.parallelize([2, 3, 4]).first()
2
"""
return self.take(1)[0]
def saveAsPickleFile(self, path, batchSize=10):
"""
Save this RDD as a SequenceFile of serialized objects. The serializer used is
L{pyspark.serializers.PickleSerializer}, default batch size is 10.
>>> tmpFile = NamedTemporaryFile(delete=True)
>>> tmpFile.close()
>>> sc.parallelize([1, 2, 'spark', 'rdd']).saveAsPickleFile(tmpFile.name, 3)
>>> sorted(sc.pickleFile(tmpFile.name, 5).collect())
[1, 2, 'rdd', 'spark']
"""
self._reserialize(BatchedSerializer(PickleSerializer(),
batchSize))._jrdd.saveAsObjectFile(path)
def saveAsTextFile(self, path):
"""
Save this RDD as a text file, using string representations of elements.
>>> tempFile = NamedTemporaryFile(delete=True)
>>> tempFile.close()
>>> sc.parallelize(range(10)).saveAsTextFile(tempFile.name)
>>> from fileinput import input
>>> from glob import glob
>>> ''.join(sorted(input(glob(tempFile.name + "/part-0000*"))))
'0\\n1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n'
Empty lines are tolerated when saving to text files.
>>> tempFile2 = NamedTemporaryFile(delete=True)
>>> tempFile2.close()
>>> sc.parallelize(['', 'foo', '', 'bar', '']).saveAsTextFile(tempFile2.name)
>>> ''.join(sorted(input(glob(tempFile2.name + "/part-0000*"))))
'\\n\\n\\nbar\\nfoo\\n'
"""
def func(split, iterator):
for x in iterator:
if not isinstance(x, basestring):
x = unicode(x)
yield x.encode("utf-8")
keyed = PipelinedRDD(self, func)
keyed._bypass_serializer = True
keyed._jrdd.map(self.ctx._jvm.BytesToString()).saveAsTextFile(path)
# Pair functions
def collectAsMap(self):
"""
Return the key-value pairs in this RDD to the master as a dictionary.
>>> m = sc.parallelize([(1, 2), (3, 4)]).collectAsMap()
>>> m[1]
2
>>> m[3]
4
"""
return dict(self.collect())
def keys(self):
"""
Return an RDD with the keys of each tuple.
>>> m = sc.parallelize([(1, 2), (3, 4)]).keys()
>>> m.collect()
[1, 3]
"""
return self.map(lambda (k, v): k)
def values(self):
"""
Return an RDD with the values of each tuple.
>>> m = sc.parallelize([(1, 2), (3, 4)]).values()
>>> m.collect()
[2, 4]
"""
return self.map(lambda (k, v): v)
def reduceByKey(self, func, numPartitions=None):
"""
Merge the values for each key using an associative reduce function.
This will also perform the merging locally on each mapper before
sending results to a reducer, similarly to a "combiner" in MapReduce.
Output will be hash-partitioned with C{numPartitions} partitions, or
the default parallelism level if C{numPartitions} is not specified.
>>> from operator import add
>>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)])
>>> sorted(rdd.reduceByKey(add).collect())
[('a', 2), ('b', 1)]
"""
return self.combineByKey(lambda x: x, func, func, numPartitions)
def reduceByKeyLocally(self, func):
"""
Merge the values for each key using an associative reduce function, but
return the results immediately to the master as a dictionary.
This will also perform the merging locally on each mapper before
sending results to a reducer, similarly to a "combiner" in MapReduce.
>>> from operator import add
>>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)])
>>> sorted(rdd.reduceByKeyLocally(add).items())
[('a', 2), ('b', 1)]
"""
def reducePartition(iterator):
m = {}
for (k, v) in iterator:
m[k] = v if k not in m else func(m[k], v)
yield m
def mergeMaps(m1, m2):
for (k, v) in m2.iteritems():
m1[k] = v if k not in m1 else func(m1[k], v)
return m1
return self.mapPartitions(reducePartition).reduce(mergeMaps)
def countByKey(self):
"""
Count the number of elements for each key, and return the result to the
master as a dictionary.
>>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)])
>>> sorted(rdd.countByKey().items())
[('a', 2), ('b', 1)]
"""
return self.map(lambda x: x[0]).countByValue()
def join(self, other, numPartitions=None):
"""
Return an RDD containing all pairs of elements with matching keys in
C{self} and C{other}.
Each pair of elements will be returned as a (k, (v1, v2)) tuple, where
(k, v1) is in C{self} and (k, v2) is in C{other}.
Performs a hash join across the cluster.
>>> x = sc.parallelize([("a", 1), ("b", 4)])
>>> y = sc.parallelize([("a", 2), ("a", 3)])
>>> sorted(x.join(y).collect())
[('a', (1, 2)), ('a', (1, 3))]
"""
return python_join(self, other, numPartitions)
def leftOuterJoin(self, other, numPartitions=None):
"""
Perform a left outer join of C{self} and C{other}.
For each element (k, v) in C{self}, the resulting RDD will either
contain all pairs (k, (v, w)) for w in C{other}, or the pair
(k, (v, None)) if no elements in other have key k.
Hash-partitions the resulting RDD into the given number of partitions.
>>> x = sc.parallelize([("a", 1), ("b", 4)])
>>> y = sc.parallelize([("a", 2)])
>>> sorted(x.leftOuterJoin(y).collect())
[('a', (1, 2)), ('b', (4, None))]
"""
return python_left_outer_join(self, other, numPartitions)
def rightOuterJoin(self, other, numPartitions=None):
"""
Perform a right outer join of C{self} and C{other}.
For each element (k, w) in C{other}, the resulting RDD will either
contain all pairs (k, (v, w)) for v in this, or the pair (k, (None, w))
if no elements in C{self} have key k.
Hash-partitions the resulting RDD into the given number of partitions.
>>> x = sc.parallelize([("a", 1), ("b", 4)])
>>> y = sc.parallelize([("a", 2)])
>>> sorted(y.rightOuterJoin(x).collect())
[('a', (2, 1)), ('b', (None, 4))]
"""
return python_right_outer_join(self, other, numPartitions)
# TODO: add option to control map-side combining
def partitionBy(self, numPartitions, partitionFunc=None):
"""
Return a copy of the RDD partitioned using the specified partitioner.
>>> pairs = sc.parallelize([1, 2, 3, 4, 2, 4, 1]).map(lambda x: (x, x))
>>> sets = pairs.partitionBy(2).glom().collect()
>>> set(sets[0]).intersection(set(sets[1]))
set([])
"""
if numPartitions is None:
numPartitions = self.ctx.defaultParallelism
if partitionFunc is None:
partitionFunc = lambda x: 0 if x is None else hash(x)
# Transferring O(n) objects to Java is too expensive. Instead, we'll
# form the hash buckets in Python, transferring O(numPartitions) objects
# to Java. Each object is a (splitNumber, [objects]) pair.
outputSerializer = self.ctx._unbatched_serializer
def add_shuffle_key(split, iterator):
buckets = defaultdict(list)
for (k, v) in iterator:
buckets[partitionFunc(k) % numPartitions].append((k, v))
for (split, items) in buckets.iteritems():
yield pack_long(split)
yield outputSerializer.dumps(items)
keyed = PipelinedRDD(self, add_shuffle_key)
keyed._bypass_serializer = True
with _JavaStackTrace(self.context) as st:
pairRDD = self.ctx._jvm.PairwiseRDD(keyed._jrdd.rdd()).asJavaPairRDD()
partitioner = self.ctx._jvm.PythonPartitioner(numPartitions,
id(partitionFunc))
jrdd = pairRDD.partitionBy(partitioner).values()
rdd = RDD(jrdd, self.ctx, BatchedSerializer(outputSerializer))
# This is required so that id(partitionFunc) remains unique, even if
# partitionFunc is a lambda:
rdd._partitionFunc = partitionFunc
return rdd
# TODO: add control over map-side aggregation
def combineByKey(self, createCombiner, mergeValue, mergeCombiners,
numPartitions=None):
"""
Generic function to combine the elements for each key using a custom
set of aggregation functions.
Turns an RDD[(K, V)] into a result of type RDD[(K, C)], for a "combined
type" C. Note that V and C can be different -- for example, one might
group an RDD of type (Int, Int) into an RDD of type (Int, List[Int]).
Users provide three functions:
- C{createCombiner}, which turns a V into a C (e.g., creates
a one-element list)
- C{mergeValue}, to merge a V into a C (e.g., adds it to the end of
a list)
- C{mergeCombiners}, to combine two C's into a single one.
In addition, users can control the partitioning of the output RDD.
>>> x = sc.parallelize([("a", 1), ("b", 1), ("a", 1)])
>>> def f(x): return x
>>> def add(a, b): return a + str(b)
>>> sorted(x.combineByKey(str, add, add).collect())
[('a', '11'), ('b', '1')]
"""
if numPartitions is None:
numPartitions = self.ctx.defaultParallelism
def combineLocally(iterator):
combiners = {}
for x in iterator:
(k, v) = x
if k not in combiners:
combiners[k] = createCombiner(v)
else:
combiners[k] = mergeValue(combiners[k], v)
return combiners.iteritems()
locally_combined = self.mapPartitions(combineLocally)
shuffled = locally_combined.partitionBy(numPartitions)
def _mergeCombiners(iterator):
combiners = {}
for (k, v) in iterator:
if not k in combiners:
combiners[k] = v
else:
combiners[k] = mergeCombiners(combiners[k], v)
return combiners.iteritems()
return shuffled.mapPartitions(_mergeCombiners)
def aggregateByKey(self, zeroValue, seqFunc, combFunc, numPartitions=None):
"""
Aggregate the values of each key, using given combine functions and a neutral "zero value".
This function can return a different result type, U, than the type of the values in this RDD,
V. Thus, we need one operation for merging a V into a U and one operation for merging two U's,
The former operation is used for merging values within a partition, and the latter is used
for merging values between partitions. To avoid memory allocation, both of these functions are
allowed to modify and return their first argument instead of creating a new U.
"""
def createZero():
return copy.deepcopy(zeroValue)
return self.combineByKey(lambda v: seqFunc(createZero(), v), seqFunc, combFunc, numPartitions)
def foldByKey(self, zeroValue, func, numPartitions=None):
"""
Merge the values for each key using an associative function "func" and a neutral "zeroValue"
which may be added to the result an arbitrary number of times, and must not change
the result (e.g., 0 for addition, or 1 for multiplication.).
>>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)])
>>> from operator import add
>>> rdd.foldByKey(0, add).collect()
[('a', 2), ('b', 1)]
"""
def createZero():
return copy.deepcopy(zeroValue)
return self.combineByKey(lambda v: func(createZero(), v), func, func, numPartitions)
# TODO: support variant with custom partitioner
def groupByKey(self, numPartitions=None):
"""
Group the values for each key in the RDD into a single sequence.
Hash-partitions the resulting RDD with into numPartitions partitions.
Note: If you are grouping in order to perform an aggregation (such as a
sum or average) over each key, using reduceByKey will provide much better
performance.
>>> x = sc.parallelize([("a", 1), ("b", 1), ("a", 1)])
>>> map((lambda (x,y): (x, list(y))), sorted(x.groupByKey().collect()))
[('a', [1, 1]), ('b', [1])]
"""
def createCombiner(x):
return [x]
def mergeValue(xs, x):
xs.append(x)
return xs
def mergeCombiners(a, b):
return a + b
return self.combineByKey(createCombiner, mergeValue, mergeCombiners,
numPartitions).mapValues(lambda x: ResultIterable(x))
# TODO: add tests
def flatMapValues(self, f):
"""
Pass each value in the key-value pair RDD through a flatMap function
without changing the keys; this also retains the original RDD's
partitioning.
>>> x = sc.parallelize([("a", ["x", "y", "z"]), ("b", ["p", "r"])])
>>> def f(x): return x
>>> x.flatMapValues(f).collect()
[('a', 'x'), ('a', 'y'), ('a', 'z'), ('b', 'p'), ('b', 'r')]
"""
flat_map_fn = lambda (k, v): ((k, x) for x in f(v))
return self.flatMap(flat_map_fn, preservesPartitioning=True)
def mapValues(self, f):
"""
Pass each value in the key-value pair RDD through a map function
without changing the keys; this also retains the original RDD's
partitioning.
>>> x = sc.parallelize([("a", ["apple", "banana", "lemon"]), ("b", ["grapes"])])
>>> def f(x): return len(x)
>>> x.mapValues(f).collect()
[('a', 3), ('b', 1)]
"""
map_values_fn = lambda (k, v): (k, f(v))
return self.map(map_values_fn, preservesPartitioning=True)
# TODO: support varargs cogroup of several RDDs.
def groupWith(self, other):
"""
Alias for cogroup.
"""
return self.cogroup(other)
# TODO: add variant with custom parittioner
def cogroup(self, other, numPartitions=None):
"""
For each key k in C{self} or C{other}, return a resulting RDD that
contains a tuple with the list of values for that key in C{self} as well
as C{other}.
>>> x = sc.parallelize([("a", 1), ("b", 4)])
>>> y = sc.parallelize([("a", 2)])
>>> map((lambda (x,y): (x, (list(y[0]), list(y[1])))), sorted(list(x.cogroup(y).collect())))
[('a', ([1], [2])), ('b', ([4], []))]
"""
return python_cogroup(self, other, numPartitions)
def subtractByKey(self, other, numPartitions=None):
"""
Return each (key, value) pair in C{self} that has no pair with matching key
in C{other}.
>>> x = sc.parallelize([("a", 1), ("b", 4), ("b", 5), ("a", 2)])
>>> y = sc.parallelize([("a", 3), ("c", None)])
>>> sorted(x.subtractByKey(y).collect())
[('b', 4), ('b', 5)]
"""
filter_func = lambda (key, vals): len(vals[0]) > 0 and len(vals[1]) == 0
map_func = lambda (key, vals): [(key, val) for val in vals[0]]
return self.cogroup(other, numPartitions).filter(filter_func).flatMap(map_func)
def subtract(self, other, numPartitions=None):
"""
Return each value in C{self} that is not contained in C{other}.
>>> x = sc.parallelize([("a", 1), ("b", 4), ("b", 5), ("a", 3)])
>>> y = sc.parallelize([("a", 3), ("c", None)])
>>> sorted(x.subtract(y).collect())
[('a', 1), ('b', 4), ('b', 5)]
"""
rdd = other.map(lambda x: (x, True)) # note: here 'True' is just a placeholder
return self.map(lambda x: (x, True)).subtractByKey(rdd).map(lambda tpl: tpl[0]) # note: here 'True' is just a placeholder
def keyBy(self, f):
"""
Creates tuples of the elements in this RDD by applying C{f}.
>>> x = sc.parallelize(range(0,3)).keyBy(lambda x: x*x)
>>> y = sc.parallelize(zip(range(0,5), range(0,5)))
>>> map((lambda (x,y): (x, (list(y[0]), (list(y[1]))))), sorted(x.cogroup(y).collect()))
[(0, ([0], [0])), (1, ([1], [1])), (2, ([], [2])), (3, ([], [3])), (4, ([2], [4]))]
"""
return self.map(lambda x: (f(x), x))
def repartition(self, numPartitions):
"""
Return a new RDD that has exactly numPartitions partitions.
Can increase or decrease the level of parallelism in this RDD. Internally, this uses
a shuffle to redistribute data.
If you are decreasing the number of partitions in this RDD, consider using `coalesce`,
which can avoid performing a shuffle.
>>> rdd = sc.parallelize([1,2,3,4,5,6,7], 4)
>>> sorted(rdd.glom().collect())
[[1], [2, 3], [4, 5], [6, 7]]
>>> len(rdd.repartition(2).glom().collect())
2
>>> len(rdd.repartition(10).glom().collect())
10
"""
jrdd = self._jrdd.repartition(numPartitions)
return RDD(jrdd, self.ctx, self._jrdd_deserializer)
def coalesce(self, numPartitions, shuffle=False):
"""
Return a new RDD that is reduced into `numPartitions` partitions.
>>> sc.parallelize([1, 2, 3, 4, 5], 3).glom().collect()
[[1], [2, 3], [4, 5]]
>>> sc.parallelize([1, 2, 3, 4, 5], 3).coalesce(1).glom().collect()
[[1, 2, 3, 4, 5]]
"""
jrdd = self._jrdd.coalesce(numPartitions)
return RDD(jrdd, self.ctx, self._jrdd_deserializer)
def zip(self, other):
"""
Zips this RDD with another one, returning key-value pairs with the first element in each RDD
second element in each RDD, etc. Assumes that the two RDDs have the same number of
partitions and the same number of elements in each partition (e.g. one was made through
a map on the other).
>>> x = sc.parallelize(range(0,5))
>>> y = sc.parallelize(range(1000, 1005))
>>> x.zip(y).collect()
[(0, 1000), (1, 1001), (2, 1002), (3, 1003), (4, 1004)]
"""
pairRDD = self._jrdd.zip(other._jrdd)
deserializer = PairDeserializer(self._jrdd_deserializer,
other._jrdd_deserializer)
return RDD(pairRDD, self.ctx, deserializer)
def name(self):
"""
Return the name of this RDD.
"""
name_ = self._jrdd.name()
if not name_:
return None
return name_.encode('utf-8')
def setName(self, name):
"""
Assign a name to this RDD.
>>> rdd1 = sc.parallelize([1,2])
>>> rdd1.setName('RDD1')
>>> rdd1.name()
'RDD1'
"""
self._jrdd.setName(name)
def toDebugString(self):
"""
A description of this RDD and its recursive dependencies for debugging.
"""
debug_string = self._jrdd.toDebugString()
if not debug_string:
return None
return debug_string.encode('utf-8')
def getStorageLevel(self):
"""
Get the RDD's current storage level.
>>> rdd1 = sc.parallelize([1,2])
>>> rdd1.getStorageLevel()
StorageLevel(False, False, False, False, 1)
"""
java_storage_level = self._jrdd.getStorageLevel()
storage_level = StorageLevel(java_storage_level.useDisk(),
java_storage_level.useMemory(),
java_storage_level.useOffHeap(),
java_storage_level.deserialized(),
java_storage_level.replication())
return storage_level
# TODO: `lookup` is disabled because we can't make direct comparisons based
# on the key; we need to compare the hash of the key to the hash of the
# keys in the pairs. This could be an expensive operation, since those
# hashes aren't retained.
class PipelinedRDD(RDD):
"""
Pipelined maps:
>>> rdd = sc.parallelize([1, 2, 3, 4])
>>> rdd.map(lambda x: 2 * x).cache().map(lambda x: 2 * x).collect()
[4, 8, 12, 16]
>>> rdd.map(lambda x: 2 * x).map(lambda x: 2 * x).collect()
[4, 8, 12, 16]
Pipelined reduces:
>>> from operator import add
>>> rdd.map(lambda x: 2 * x).reduce(add)
20
>>> rdd.flatMap(lambda x: [x, x]).reduce(add)
20
"""
def __init__(self, prev, func, preservesPartitioning=False):
if not isinstance(prev, PipelinedRDD) or not prev._is_pipelinable():
# This transformation is the first in its stage:
self.func = func
self.preservesPartitioning = preservesPartitioning
self._prev_jrdd = prev._jrdd
self._prev_jrdd_deserializer = prev._jrdd_deserializer
else:
prev_func = prev.func
def pipeline_func(split, iterator):
return func(split, prev_func(split, iterator))
self.func = pipeline_func
self.preservesPartitioning = \
prev.preservesPartitioning and preservesPartitioning
self._prev_jrdd = prev._prev_jrdd # maintain the pipeline
self._prev_jrdd_deserializer = prev._prev_jrdd_deserializer
self.is_cached = False
self.is_checkpointed = False
self.ctx = prev.ctx
self.prev = prev
self._jrdd_val = None
self._jrdd_deserializer = self.ctx.serializer
self._bypass_serializer = False
@property
def _jrdd(self):
if self._jrdd_val:
return self._jrdd_val
if self._bypass_serializer:
self._jrdd_deserializer = NoOpSerializer()
command = (self.func, self._prev_jrdd_deserializer,
self._jrdd_deserializer)
pickled_command = CloudPickleSerializer().dumps(command)
broadcast_vars = ListConverter().convert(
[x._jbroadcast for x in self.ctx._pickled_broadcast_vars],
self.ctx._gateway._gateway_client)
self.ctx._pickled_broadcast_vars.clear()
class_tag = self._prev_jrdd.classTag()
env = MapConverter().convert(self.ctx.environment,
self.ctx._gateway._gateway_client)
includes = ListConverter().convert(self.ctx._python_includes,
self.ctx._gateway._gateway_client)
python_rdd = self.ctx._jvm.PythonRDD(self._prev_jrdd.rdd(),
bytearray(pickled_command), env, includes, self.preservesPartitioning,
self.ctx.pythonExec, broadcast_vars, self.ctx._javaAccumulator,
class_tag)
self._jrdd_val = python_rdd.asJavaRDD()
return self._jrdd_val
def _is_pipelinable(self):
return not (self.is_cached or self.is_checkpointed)
def _test():
import doctest
from pyspark.context import SparkContext
globs = globals().copy()
# The small batch size here ensures that we see multiple batches,
# even in these small test examples:
globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
(failure_count, test_count) = doctest.testmod(globs=globs,optionflags=doctest.ELLIPSIS)
globs['sc'].stop()
if failure_count:
exit(-1)
if __name__ == "__main__":
_test()