spark-instrumented-optimizer/python/pyspark/worker.py
HyukjinKwon 4ad9bfd53b [SPARK-32138] Drop Python 2.7, 3.4 and 3.5
### What changes were proposed in this pull request?

This PR aims to drop Python 2.7, 3.4 and 3.5.

Roughly speaking, it removes all the widely known Python 2 compatibility workarounds such as `sys.version` comparison, `__future__`. Also, it removes the Python 2 dedicated codes such as `ArrayConstructor` in Spark.

### Why are the changes needed?

 1. Unsupport EOL Python versions
 2. Reduce maintenance overhead and remove a bit of legacy codes and hacks for Python 2.
 3. PyPy2 has a critical bug that causes a flaky test, SPARK-28358 given my testing and investigation.
 4. Users can use Python type hints with Pandas UDFs without thinking about Python version
 5. Users can leverage one latest cloudpickle, https://github.com/apache/spark/pull/28950. With Python 3.8+ it can also leverage C pickle.

### Does this PR introduce _any_ user-facing change?

Yes, users cannot use Python 2.7, 3.4 and 3.5 in the upcoming Spark version.

### How was this patch tested?

Manually tested and also tested in Jenkins.

Closes #28957 from HyukjinKwon/SPARK-32138.

Authored-by: HyukjinKwon <gurwls223@apache.org>
Signed-off-by: HyukjinKwon <gurwls223@apache.org>
2020-07-14 11:22:44 +09:00

652 lines
27 KiB
Python

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Worker that receives input from Piped RDD.
"""
import os
import sys
import time
from inspect import getfullargspec
import importlib
# 'resource' is a Unix specific module.
has_resource_module = True
try:
import resource
except ImportError:
has_resource_module = False
import traceback
from pyspark.accumulators import _accumulatorRegistry
from pyspark.broadcast import Broadcast, _broadcastRegistry
from pyspark.java_gateway import local_connect_and_auth
from pyspark.taskcontext import BarrierTaskContext, TaskContext
from pyspark.files import SparkFiles
from pyspark.resource import ResourceInformation
from pyspark.rdd import PythonEvalType
from pyspark.serializers import write_with_length, write_int, read_long, read_bool, \
write_long, read_int, SpecialLengths, UTF8Deserializer, PickleSerializer, \
BatchedSerializer
from pyspark.sql.pandas.serializers import ArrowStreamPandasUDFSerializer, CogroupUDFSerializer
from pyspark.sql.pandas.types import to_arrow_type
from pyspark.sql.types import StructType
from pyspark.util import fail_on_stopiteration
from pyspark import shuffle
pickleSer = PickleSerializer()
utf8_deserializer = UTF8Deserializer()
def report_times(outfile, boot, init, finish):
write_int(SpecialLengths.TIMING_DATA, outfile)
write_long(int(1000 * boot), outfile)
write_long(int(1000 * init), outfile)
write_long(int(1000 * finish), outfile)
def add_path(path):
# worker can be used, so donot add path multiple times
if path not in sys.path:
# overwrite system packages
sys.path.insert(1, path)
def read_command(serializer, file):
command = serializer._read_with_length(file)
if isinstance(command, Broadcast):
command = serializer.loads(command.value)
return command
def chain(f, g):
"""chain two functions together """
return lambda *a: g(f(*a))
def wrap_udf(f, return_type):
if return_type.needConversion():
toInternal = return_type.toInternal
return lambda *a: toInternal(f(*a))
else:
return lambda *a: f(*a)
def wrap_scalar_pandas_udf(f, return_type):
arrow_return_type = to_arrow_type(return_type)
def verify_result_type(result):
if not hasattr(result, "__len__"):
pd_type = "Pandas.DataFrame" if type(return_type) == StructType else "Pandas.Series"
raise TypeError("Return type of the user-defined function should be "
"{}, but is {}".format(pd_type, type(result)))
return result
def verify_result_length(result, length):
if len(result) != length:
raise RuntimeError("Result vector from pandas_udf was not the required length: "
"expected %d, got %d" % (length, len(result)))
return result
return lambda *a: (verify_result_length(
verify_result_type(f(*a)), len(a[0])), arrow_return_type)
def wrap_pandas_iter_udf(f, return_type):
arrow_return_type = to_arrow_type(return_type)
def verify_result_type(result):
if not hasattr(result, "__len__"):
pd_type = "Pandas.DataFrame" if type(return_type) == StructType else "Pandas.Series"
raise TypeError("Return type of the user-defined function should be "
"{}, but is {}".format(pd_type, type(result)))
return result
return lambda *iterator: map(lambda res: (res, arrow_return_type),
map(verify_result_type, f(*iterator)))
def wrap_cogrouped_map_pandas_udf(f, return_type, argspec):
def wrapped(left_key_series, left_value_series, right_key_series, right_value_series):
import pandas as pd
left_df = pd.concat(left_value_series, axis=1)
right_df = pd.concat(right_value_series, axis=1)
if len(argspec.args) == 2:
result = f(left_df, right_df)
elif len(argspec.args) == 3:
key_series = left_key_series if not left_df.empty else right_key_series
key = tuple(s[0] for s in key_series)
result = f(key, left_df, right_df)
if not isinstance(result, pd.DataFrame):
raise TypeError("Return type of the user-defined function should be "
"pandas.DataFrame, but is {}".format(type(result)))
if not len(result.columns) == len(return_type):
raise RuntimeError(
"Number of columns of the returned pandas.DataFrame "
"doesn't match specified schema. "
"Expected: {} Actual: {}".format(len(return_type), len(result.columns)))
return result
return lambda kl, vl, kr, vr: [(wrapped(kl, vl, kr, vr), to_arrow_type(return_type))]
def wrap_grouped_map_pandas_udf(f, return_type, argspec):
def wrapped(key_series, value_series):
import pandas as pd
if len(argspec.args) == 1:
result = f(pd.concat(value_series, axis=1))
elif len(argspec.args) == 2:
key = tuple(s[0] for s in key_series)
result = f(key, pd.concat(value_series, axis=1))
if not isinstance(result, pd.DataFrame):
raise TypeError("Return type of the user-defined function should be "
"pandas.DataFrame, but is {}".format(type(result)))
if not len(result.columns) == len(return_type):
raise RuntimeError(
"Number of columns of the returned pandas.DataFrame "
"doesn't match specified schema. "
"Expected: {} Actual: {}".format(len(return_type), len(result.columns)))
return result
return lambda k, v: [(wrapped(k, v), to_arrow_type(return_type))]
def wrap_grouped_agg_pandas_udf(f, return_type):
arrow_return_type = to_arrow_type(return_type)
def wrapped(*series):
import pandas as pd
result = f(*series)
return pd.Series([result])
return lambda *a: (wrapped(*a), arrow_return_type)
def wrap_window_agg_pandas_udf(f, return_type, runner_conf, udf_index):
window_bound_types_str = runner_conf.get('pandas_window_bound_types')
window_bound_type = [t.strip().lower() for t in window_bound_types_str.split(',')][udf_index]
if window_bound_type == 'bounded':
return wrap_bounded_window_agg_pandas_udf(f, return_type)
elif window_bound_type == 'unbounded':
return wrap_unbounded_window_agg_pandas_udf(f, return_type)
else:
raise RuntimeError("Invalid window bound type: {} ".format(window_bound_type))
def wrap_unbounded_window_agg_pandas_udf(f, return_type):
# This is similar to grouped_agg_pandas_udf, the only difference
# is that window_agg_pandas_udf needs to repeat the return value
# to match window length, where grouped_agg_pandas_udf just returns
# the scalar value.
arrow_return_type = to_arrow_type(return_type)
def wrapped(*series):
import pandas as pd
result = f(*series)
return pd.Series([result]).repeat(len(series[0]))
return lambda *a: (wrapped(*a), arrow_return_type)
def wrap_bounded_window_agg_pandas_udf(f, return_type):
arrow_return_type = to_arrow_type(return_type)
def wrapped(begin_index, end_index, *series):
import pandas as pd
result = []
# Index operation is faster on np.ndarray,
# So we turn the index series into np array
# here for performance
begin_array = begin_index.values
end_array = end_index.values
for i in range(len(begin_array)):
# Note: Create a slice from a series for each window is
# actually pretty expensive. However, there
# is no easy way to reduce cost here.
# Note: s.iloc[i : j] is about 30% faster than s[i: j], with
# the caveat that the created slices shares the same
# memory with s. Therefore, user are not allowed to
# change the value of input series inside the window
# function. It is rare that user needs to modify the
# input series in the window function, and therefore,
# it is be a reasonable restriction.
# Note: Calling reset_index on the slices will increase the cost
# of creating slices by about 100%. Therefore, for performance
# reasons we don't do it here.
series_slices = [s.iloc[begin_array[i]: end_array[i]] for s in series]
result.append(f(*series_slices))
return pd.Series(result)
return lambda *a: (wrapped(*a), arrow_return_type)
def read_single_udf(pickleSer, infile, eval_type, runner_conf, udf_index):
num_arg = read_int(infile)
arg_offsets = [read_int(infile) for i in range(num_arg)]
chained_func = None
for i in range(read_int(infile)):
f, return_type = read_command(pickleSer, infile)
if chained_func is None:
chained_func = f
else:
chained_func = chain(chained_func, f)
if eval_type == PythonEvalType.SQL_SCALAR_PANDAS_ITER_UDF:
func = chained_func
else:
# make sure StopIteration's raised in the user code are not ignored
# when they are processed in a for loop, raise them as RuntimeError's instead
func = fail_on_stopiteration(chained_func)
# the last returnType will be the return type of UDF
if eval_type == PythonEvalType.SQL_SCALAR_PANDAS_UDF:
return arg_offsets, wrap_scalar_pandas_udf(func, return_type)
elif eval_type == PythonEvalType.SQL_SCALAR_PANDAS_ITER_UDF:
return arg_offsets, wrap_pandas_iter_udf(func, return_type)
elif eval_type == PythonEvalType.SQL_MAP_PANDAS_ITER_UDF:
return arg_offsets, wrap_pandas_iter_udf(func, return_type)
elif eval_type == PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF:
argspec = getfullargspec(chained_func) # signature was lost when wrapping it
return arg_offsets, wrap_grouped_map_pandas_udf(func, return_type, argspec)
elif eval_type == PythonEvalType.SQL_COGROUPED_MAP_PANDAS_UDF:
argspec = getfullargspec(chained_func) # signature was lost when wrapping it
return arg_offsets, wrap_cogrouped_map_pandas_udf(func, return_type, argspec)
elif eval_type == PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF:
return arg_offsets, wrap_grouped_agg_pandas_udf(func, return_type)
elif eval_type == PythonEvalType.SQL_WINDOW_AGG_PANDAS_UDF:
return arg_offsets, wrap_window_agg_pandas_udf(func, return_type, runner_conf, udf_index)
elif eval_type == PythonEvalType.SQL_BATCHED_UDF:
return arg_offsets, wrap_udf(func, return_type)
else:
raise ValueError("Unknown eval type: {}".format(eval_type))
def read_udfs(pickleSer, infile, eval_type):
runner_conf = {}
if eval_type in (PythonEvalType.SQL_SCALAR_PANDAS_UDF,
PythonEvalType.SQL_COGROUPED_MAP_PANDAS_UDF,
PythonEvalType.SQL_SCALAR_PANDAS_ITER_UDF,
PythonEvalType.SQL_MAP_PANDAS_ITER_UDF,
PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF,
PythonEvalType.SQL_GROUPED_AGG_PANDAS_UDF,
PythonEvalType.SQL_WINDOW_AGG_PANDAS_UDF):
# Load conf used for pandas_udf evaluation
num_conf = read_int(infile)
for i in range(num_conf):
k = utf8_deserializer.loads(infile)
v = utf8_deserializer.loads(infile)
runner_conf[k] = v
# NOTE: if timezone is set here, that implies respectSessionTimeZone is True
timezone = runner_conf.get("spark.sql.session.timeZone", None)
safecheck = runner_conf.get("spark.sql.execution.pandas.convertToArrowArraySafely",
"false").lower() == 'true'
# Used by SQL_GROUPED_MAP_PANDAS_UDF and SQL_SCALAR_PANDAS_UDF when returning StructType
assign_cols_by_name = runner_conf.get(
"spark.sql.legacy.execution.pandas.groupedMap.assignColumnsByName", "true")\
.lower() == "true"
if eval_type == PythonEvalType.SQL_COGROUPED_MAP_PANDAS_UDF:
ser = CogroupUDFSerializer(timezone, safecheck, assign_cols_by_name)
else:
# Scalar Pandas UDF handles struct type arguments as pandas DataFrames instead of
# pandas Series. See SPARK-27240.
df_for_struct = (eval_type == PythonEvalType.SQL_SCALAR_PANDAS_UDF or
eval_type == PythonEvalType.SQL_SCALAR_PANDAS_ITER_UDF or
eval_type == PythonEvalType.SQL_MAP_PANDAS_ITER_UDF)
ser = ArrowStreamPandasUDFSerializer(timezone, safecheck, assign_cols_by_name,
df_for_struct)
else:
ser = BatchedSerializer(PickleSerializer(), 100)
num_udfs = read_int(infile)
is_scalar_iter = eval_type == PythonEvalType.SQL_SCALAR_PANDAS_ITER_UDF
is_map_iter = eval_type == PythonEvalType.SQL_MAP_PANDAS_ITER_UDF
if is_scalar_iter or is_map_iter:
if is_scalar_iter:
assert num_udfs == 1, "One SCALAR_ITER UDF expected here."
if is_map_iter:
assert num_udfs == 1, "One MAP_ITER UDF expected here."
arg_offsets, udf = read_single_udf(
pickleSer, infile, eval_type, runner_conf, udf_index=0)
def func(_, iterator):
num_input_rows = 0
def map_batch(batch):
nonlocal num_input_rows
udf_args = [batch[offset] for offset in arg_offsets]
num_input_rows += len(udf_args[0])
if len(udf_args) == 1:
return udf_args[0]
else:
return tuple(udf_args)
iterator = map(map_batch, iterator)
result_iter = udf(iterator)
num_output_rows = 0
for result_batch, result_type in result_iter:
num_output_rows += len(result_batch)
# This assert is for Scalar Iterator UDF to fail fast.
# The length of the entire input can only be explicitly known
# by consuming the input iterator in user side. Therefore,
# it's very unlikely the output length is higher than
# input length.
assert is_map_iter or num_output_rows <= num_input_rows, \
"Pandas SCALAR_ITER UDF outputted more rows than input rows."
yield (result_batch, result_type)
if is_scalar_iter:
try:
next(iterator)
except StopIteration:
pass
else:
raise RuntimeError("pandas iterator UDF should exhaust the input "
"iterator.")
if num_output_rows != num_input_rows:
raise RuntimeError(
"The length of output in Scalar iterator pandas UDF should be "
"the same with the input's; however, the length of output was %d and the "
"length of input was %d." % (num_output_rows, num_input_rows))
# profiling is not supported for UDF
return func, None, ser, ser
def extract_key_value_indexes(grouped_arg_offsets):
"""
Helper function to extract the key and value indexes from arg_offsets for the grouped and
cogrouped pandas udfs. See BasePandasGroupExec.resolveArgOffsets for equivalent scala code.
:param grouped_arg_offsets: List containing the key and value indexes of columns of the
DataFrames to be passed to the udf. It consists of n repeating groups where n is the
number of DataFrames. Each group has the following format:
group[0]: length of group
group[1]: length of key indexes
group[2.. group[1] +2]: key attributes
group[group[1] +3 group[0]]: value attributes
"""
parsed = []
idx = 0
while idx < len(grouped_arg_offsets):
offsets_len = grouped_arg_offsets[idx]
idx += 1
offsets = grouped_arg_offsets[idx: idx + offsets_len]
split_index = offsets[0] + 1
offset_keys = offsets[1: split_index]
offset_values = offsets[split_index:]
parsed.append([offset_keys, offset_values])
idx += offsets_len
return parsed
if eval_type == PythonEvalType.SQL_GROUPED_MAP_PANDAS_UDF:
# We assume there is only one UDF here because grouped map doesn't
# support combining multiple UDFs.
assert num_udfs == 1
# See FlatMapGroupsInPandasExec for how arg_offsets are used to
# distinguish between grouping attributes and data attributes
arg_offsets, f = read_single_udf(pickleSer, infile, eval_type, runner_conf, udf_index=0)
parsed_offsets = extract_key_value_indexes(arg_offsets)
# Create function like this:
# mapper a: f([a[0]], [a[0], a[1]])
def mapper(a):
keys = [a[o] for o in parsed_offsets[0][0]]
vals = [a[o] for o in parsed_offsets[0][1]]
return f(keys, vals)
elif eval_type == PythonEvalType.SQL_COGROUPED_MAP_PANDAS_UDF:
# We assume there is only one UDF here because cogrouped map doesn't
# support combining multiple UDFs.
assert num_udfs == 1
arg_offsets, f = read_single_udf(pickleSer, infile, eval_type, runner_conf, udf_index=0)
parsed_offsets = extract_key_value_indexes(arg_offsets)
def mapper(a):
df1_keys = [a[0][o] for o in parsed_offsets[0][0]]
df1_vals = [a[0][o] for o in parsed_offsets[0][1]]
df2_keys = [a[1][o] for o in parsed_offsets[1][0]]
df2_vals = [a[1][o] for o in parsed_offsets[1][1]]
return f(df1_keys, df1_vals, df2_keys, df2_vals)
else:
udfs = []
for i in range(num_udfs):
udfs.append(read_single_udf(pickleSer, infile, eval_type, runner_conf, udf_index=i))
def mapper(a):
result = tuple(f(*[a[o] for o in arg_offsets]) for (arg_offsets, f) in udfs)
# In the special case of a single UDF this will return a single result rather
# than a tuple of results; this is the format that the JVM side expects.
if len(result) == 1:
return result[0]
else:
return result
func = lambda _, it: map(mapper, it)
# profiling is not supported for UDF
return func, None, ser, ser
def main(infile, outfile):
try:
boot_time = time.time()
split_index = read_int(infile)
if split_index == -1: # for unit tests
sys.exit(-1)
version = utf8_deserializer.loads(infile)
if version != "%d.%d" % sys.version_info[:2]:
raise Exception(("Python in worker has different version %s than that in " +
"driver %s, PySpark cannot run with different minor versions." +
"Please check environment variables PYSPARK_PYTHON and " +
"PYSPARK_DRIVER_PYTHON are correctly set.") %
("%d.%d" % sys.version_info[:2], version))
# read inputs only for a barrier task
isBarrier = read_bool(infile)
boundPort = read_int(infile)
secret = UTF8Deserializer().loads(infile)
# set up memory limits
memory_limit_mb = int(os.environ.get('PYSPARK_EXECUTOR_MEMORY_MB', "-1"))
if memory_limit_mb > 0 and has_resource_module:
total_memory = resource.RLIMIT_AS
try:
(soft_limit, hard_limit) = resource.getrlimit(total_memory)
msg = "Current mem limits: {0} of max {1}\n".format(soft_limit, hard_limit)
print(msg, file=sys.stderr)
# convert to bytes
new_limit = memory_limit_mb * 1024 * 1024
if soft_limit == resource.RLIM_INFINITY or new_limit < soft_limit:
msg = "Setting mem limits to {0} of max {1}\n".format(new_limit, new_limit)
print(msg, file=sys.stderr)
resource.setrlimit(total_memory, (new_limit, new_limit))
except (resource.error, OSError, ValueError) as e:
# not all systems support resource limits, so warn instead of failing
print("WARN: Failed to set memory limit: {0}\n".format(e), file=sys.stderr)
# initialize global state
taskContext = None
if isBarrier:
taskContext = BarrierTaskContext._getOrCreate()
BarrierTaskContext._initialize(boundPort, secret)
# Set the task context instance here, so we can get it by TaskContext.get for
# both TaskContext and BarrierTaskContext
TaskContext._setTaskContext(taskContext)
else:
taskContext = TaskContext._getOrCreate()
# read inputs for TaskContext info
taskContext._stageId = read_int(infile)
taskContext._partitionId = read_int(infile)
taskContext._attemptNumber = read_int(infile)
taskContext._taskAttemptId = read_long(infile)
taskContext._resources = {}
for r in range(read_int(infile)):
key = utf8_deserializer.loads(infile)
name = utf8_deserializer.loads(infile)
addresses = []
taskContext._resources = {}
for a in range(read_int(infile)):
addresses.append(utf8_deserializer.loads(infile))
taskContext._resources[key] = ResourceInformation(name, addresses)
taskContext._localProperties = dict()
for i in range(read_int(infile)):
k = utf8_deserializer.loads(infile)
v = utf8_deserializer.loads(infile)
taskContext._localProperties[k] = v
shuffle.MemoryBytesSpilled = 0
shuffle.DiskBytesSpilled = 0
_accumulatorRegistry.clear()
# fetch name of workdir
spark_files_dir = utf8_deserializer.loads(infile)
SparkFiles._root_directory = spark_files_dir
SparkFiles._is_running_on_worker = True
# fetch names of includes (*.zip and *.egg files) and construct PYTHONPATH
add_path(spark_files_dir) # *.py files that were added will be copied here
num_python_includes = read_int(infile)
for _ in range(num_python_includes):
filename = utf8_deserializer.loads(infile)
add_path(os.path.join(spark_files_dir, filename))
importlib.invalidate_caches()
# fetch names and values of broadcast variables
needs_broadcast_decryption_server = read_bool(infile)
num_broadcast_variables = read_int(infile)
if needs_broadcast_decryption_server:
# read the decrypted data from a server in the jvm
port = read_int(infile)
auth_secret = utf8_deserializer.loads(infile)
(broadcast_sock_file, _) = local_connect_and_auth(port, auth_secret)
for _ in range(num_broadcast_variables):
bid = read_long(infile)
if bid >= 0:
if needs_broadcast_decryption_server:
read_bid = read_long(broadcast_sock_file)
assert(read_bid == bid)
_broadcastRegistry[bid] = \
Broadcast(sock_file=broadcast_sock_file)
else:
path = utf8_deserializer.loads(infile)
_broadcastRegistry[bid] = Broadcast(path=path)
else:
bid = - bid - 1
_broadcastRegistry.pop(bid)
if needs_broadcast_decryption_server:
broadcast_sock_file.write(b'1')
broadcast_sock_file.close()
_accumulatorRegistry.clear()
eval_type = read_int(infile)
if eval_type == PythonEvalType.NON_UDF:
func, profiler, deserializer, serializer = read_command(pickleSer, infile)
else:
func, profiler, deserializer, serializer = read_udfs(pickleSer, infile, eval_type)
init_time = time.time()
def process():
iterator = deserializer.load_stream(infile)
out_iter = func(split_index, iterator)
try:
serializer.dump_stream(out_iter, outfile)
finally:
if hasattr(out_iter, 'close'):
out_iter.close()
if profiler:
profiler.profile(process)
else:
process()
# Reset task context to None. This is a guard code to avoid residual context when worker
# reuse.
TaskContext._setTaskContext(None)
BarrierTaskContext._setTaskContext(None)
except Exception:
try:
exc_info = traceback.format_exc()
if isinstance(exc_info, bytes):
# exc_info may contains other encoding bytes, replace the invalid bytes and convert
# it back to utf-8 again
exc_info = exc_info.decode("utf-8", "replace").encode("utf-8")
else:
exc_info = exc_info.encode("utf-8")
write_int(SpecialLengths.PYTHON_EXCEPTION_THROWN, outfile)
write_with_length(exc_info, outfile)
except IOError:
# JVM close the socket
pass
except Exception:
# Write the error to stderr if it happened while serializing
print("PySpark worker failed with exception:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
sys.exit(-1)
finish_time = time.time()
report_times(outfile, boot_time, init_time, finish_time)
write_long(shuffle.MemoryBytesSpilled, outfile)
write_long(shuffle.DiskBytesSpilled, outfile)
# Mark the beginning of the accumulators section of the output
write_int(SpecialLengths.END_OF_DATA_SECTION, outfile)
write_int(len(_accumulatorRegistry), outfile)
for (aid, accum) in _accumulatorRegistry.items():
pickleSer._write_with_length((aid, accum._value), outfile)
# check end of stream
if read_int(infile) == SpecialLengths.END_OF_STREAM:
write_int(SpecialLengths.END_OF_STREAM, outfile)
else:
# write a different value to tell JVM to not reuse this worker
write_int(SpecialLengths.END_OF_DATA_SECTION, outfile)
sys.exit(-1)
if __name__ == '__main__':
# Read information about how to connect back to the JVM from the environment.
java_port = int(os.environ["PYTHON_WORKER_FACTORY_PORT"])
auth_secret = os.environ["PYTHON_WORKER_FACTORY_SECRET"]
(sock_file, _) = local_connect_and_auth(java_port, auth_secret)
main(sock_file, sock_file)