spark-instrumented-optimizer/sql/core/benchmarks/ParquetNestedSchemaPruningBenchmark-results.txt
Maxim Gekk f5118f81e3 [SPARK-30409][SPARK-29173][SQL][TESTS] Use NoOp datasource in SQL benchmarks
### What changes were proposed in this pull request?
In the PR, I propose to replace `.collect()`, `.count()` and `.foreach(_ => ())` in SQL benchmarks and use the `NoOp` datasource. I added an implicit class to `SqlBasedBenchmark` with the `.noop()` method. It can be used in benchmark like: `ds.noop()`. The last one is unfolded to `ds.write.format("noop").mode(Overwrite).save()`.

### Why are the changes needed?
To avoid additional overhead that `collect()` (and other actions) has. For example, `.collect()` has to convert values according to external types and pull data to the driver. This can hide actual performance regressions or improvements of benchmarked operations.

### Does this PR introduce any user-facing change?
No

### How was this patch tested?
Re-run all modified benchmarks using Amazon EC2.

| Item | Description |
| ---- | ----|
| Region | us-west-2 (Oregon) |
| Instance | r3.xlarge (spot instance) |
| AMI | ami-06f2f779464715dc5 (ubuntu/images/hvm-ssd/ubuntu-bionic-18.04-amd64-server-20190722.1) |
| Java | OpenJDK8/10 |

- Run `TPCDSQueryBenchmark` using instructions from the PR #26049
```
# `spark-tpcds-datagen` needs this. (JDK8)
$ git clone https://github.com/apache/spark.git -b branch-2.4 --depth 1 spark-2.4
$ export SPARK_HOME=$PWD
$ ./build/mvn clean package -DskipTests

# Generate data. (JDK8)
$ git clone gitgithub.com:maropu/spark-tpcds-datagen.git
$ cd spark-tpcds-datagen/
$ build/mvn clean package
$ mkdir -p /data/tpcds
$ ./bin/dsdgen --output-location /data/tpcds/s1  // This need `Spark 2.4`
```
- Other benchmarks ran by the script:
```
#!/usr/bin/env python3

import os
from sparktestsupport.shellutils import run_cmd

benchmarks = [
    ['sql/test', 'org.apache.spark.sql.execution.benchmark.AggregateBenchmark'],
    ['avro/test', 'org.apache.spark.sql.execution.benchmark.AvroReadBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.benchmark.BloomFilterBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.benchmark.DataSourceReadBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.benchmark.DateTimeBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.benchmark.ExtractBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.benchmark.FilterPushdownBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.benchmark.InExpressionBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.benchmark.IntervalBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.benchmark.JoinBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.benchmark.MakeDateTimeBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.benchmark.MiscBenchmark'],
    ['hive/test', 'org.apache.spark.sql.execution.benchmark.ObjectHashAggregateExecBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.benchmark.OrcNestedSchemaPruningBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.benchmark.OrcV2NestedSchemaPruningBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.benchmark.ParquetNestedSchemaPruningBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.benchmark.RangeBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.benchmark.UDFBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.benchmark.WideSchemaBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.benchmark.WideTableBenchmark'],
    ['hive/test', 'org.apache.spark.sql.hive.orc.OrcReadBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.datasources.csv.CSVBenchmark'],
    ['sql/test', 'org.apache.spark.sql.execution.datasources.json.JsonBenchmark']
]

print('Set SPARK_GENERATE_BENCHMARK_FILES=1')
os.environ['SPARK_GENERATE_BENCHMARK_FILES'] = '1'

for b in benchmarks:
    print("Run benchmark: %s" % b[1])
    run_cmd(['build/sbt', '%s:runMain %s' % (b[0], b[1])])
```

Closes #27078 from MaxGekk/noop-in-benchmarks.

Lead-authored-by: Maxim Gekk <max.gekk@gmail.com>
Co-authored-by: Maxim Gekk <maxim.gekk@databricks.com>
Co-authored-by: Dongjoon Hyun <dhyun@apple.com>
Signed-off-by: Dongjoon Hyun <dhyun@apple.com>
2020-01-12 13:18:19 -08:00

54 lines
4.6 KiB
Plaintext

================================================================================================
Nested Schema Pruning Benchmark For Parquet
================================================================================================
OpenJDK 64-Bit Server VM 1.8.0_232-8u232-b09-0ubuntu1~18.04.1-b09 on Linux 4.15.0-1044-aws
Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz
Selection: Best Time(ms) Avg Time(ms) Stdev(ms) Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------------------------------
Top-level column 136 157 19 7.3 136.3 1.0X
Nested column 254 267 8 3.9 254.3 0.5X
Nested column in array 1071 1089 18 0.9 1071.1 0.1X
OpenJDK 64-Bit Server VM 1.8.0_232-8u232-b09-0ubuntu1~18.04.1-b09 on Linux 4.15.0-1044-aws
Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz
Limiting: Best Time(ms) Avg Time(ms) Stdev(ms) Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------------------------------
Top-level column 134 147 12 7.5 134.1 1.0X
Nested column 288 295 5 3.5 287.7 0.5X
Nested column in array 1104 1135 35 0.9 1104.1 0.1X
OpenJDK 64-Bit Server VM 1.8.0_232-8u232-b09-0ubuntu1~18.04.1-b09 on Linux 4.15.0-1044-aws
Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz
Repartitioning: Best Time(ms) Avg Time(ms) Stdev(ms) Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------------------------------
Top-level column 361 372 14 2.8 361.1 1.0X
Nested column 522 535 16 1.9 521.8 0.7X
Nested column in array 1540 1553 11 0.6 1539.6 0.2X
OpenJDK 64-Bit Server VM 1.8.0_232-8u232-b09-0ubuntu1~18.04.1-b09 on Linux 4.15.0-1044-aws
Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz
Repartitioning by exprs: Best Time(ms) Avg Time(ms) Stdev(ms) Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------------------------------
Top-level column 375 384 11 2.7 374.6 1.0X
Nested column 2686 2715 24 0.4 2686.2 0.1X
Nested column in array 3067 3080 13 0.3 3067.2 0.1X
OpenJDK 64-Bit Server VM 1.8.0_232-8u232-b09-0ubuntu1~18.04.1-b09 on Linux 4.15.0-1044-aws
Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz
Sample: Best Time(ms) Avg Time(ms) Stdev(ms) Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------------------------------
Top-level column 120 135 8 8.3 120.3 1.0X
Nested column 280 290 13 3.6 279.9 0.4X
Nested column in array 1114 1143 29 0.9 1114.2 0.1X
OpenJDK 64-Bit Server VM 1.8.0_232-8u232-b09-0ubuntu1~18.04.1-b09 on Linux 4.15.0-1044-aws
Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz
Sorting: Best Time(ms) Avg Time(ms) Stdev(ms) Rate(M/s) Per Row(ns) Relative
------------------------------------------------------------------------------------------------------------------------
Top-level column 263 277 18 3.8 263.0 1.0X
Nested column 1724 1763 38 0.6 1724.1 0.2X
Nested column in array 2530 2605 65 0.4 2529.9 0.1X