spark-instrumented-optimizer/sql
Michael Armbrust e720dda42e [SPARK-13665][SQL] Separate the concerns of HadoopFsRelation
`HadoopFsRelation` is used for reading most files into Spark SQL.  However today this class mixes the concerns of file management, schema reconciliation, scan building, bucketing, partitioning, and writing data.  As a result, many data sources are forced to reimplement the same functionality and the various layers have accumulated a fair bit of inefficiency.  This PR is a first cut at separating this into several components / interfaces that are each described below.  Additionally, all implementations inside of Spark (parquet, csv, json, text, orc, svmlib) have been ported to the new API `FileFormat`.  External libraries, such as spark-avro will also need to be ported to work with Spark 2.0.

### HadoopFsRelation
A simple `case class` that acts as a container for all of the metadata required to read from a datasource.  All discovery, resolution and merging logic for schemas and partitions has been removed.  This an internal representation that no longer needs to be exposed to developers.

```scala
case class HadoopFsRelation(
    sqlContext: SQLContext,
    location: FileCatalog,
    partitionSchema: StructType,
    dataSchema: StructType,
    bucketSpec: Option[BucketSpec],
    fileFormat: FileFormat,
    options: Map[String, String]) extends BaseRelation
```

### FileFormat
The primary interface that will be implemented by each different format including external libraries.  Implementors are responsible for reading a given format and converting it into `InternalRow` as well as writing out an `InternalRow`.  A format can optionally return a schema that is inferred from a set of files.

```scala
trait FileFormat {
  def inferSchema(
      sqlContext: SQLContext,
      options: Map[String, String],
      files: Seq[FileStatus]): Option[StructType]

  def prepareWrite(
      sqlContext: SQLContext,
      job: Job,
      options: Map[String, String],
      dataSchema: StructType): OutputWriterFactory

  def buildInternalScan(
      sqlContext: SQLContext,
      dataSchema: StructType,
      requiredColumns: Array[String],
      filters: Array[Filter],
      bucketSet: Option[BitSet],
      inputFiles: Array[FileStatus],
      broadcastedConf: Broadcast[SerializableConfiguration],
      options: Map[String, String]): RDD[InternalRow]
}
```

The current interface is based on what was required to get all the tests passing again, but still mixes a couple of concerns (i.e. `bucketSet` is passed down to the scan instead of being resolved by the planner).  Additionally, scans are still returning `RDD`s instead of iterators for single files.  In a future PR, bucketing should be removed from this interface and the scan should be isolated to a single file.

### FileCatalog
This interface is used to list the files that make up a given relation, as well as handle directory based partitioning.

```scala
trait FileCatalog {
  def paths: Seq[Path]
  def partitionSpec(schema: Option[StructType]): PartitionSpec
  def allFiles(): Seq[FileStatus]
  def getStatus(path: Path): Array[FileStatus]
  def refresh(): Unit
}
```

Currently there are two implementations:
 - `HDFSFileCatalog` - based on code from the old `HadoopFsRelation`.  Infers partitioning by recursive listing and caches this data for performance
 - `HiveFileCatalog` - based on the above, but it uses the partition spec from the Hive Metastore.

### ResolvedDataSource
Produces a logical plan given the following description of a Data Source (which can come from DataFrameReader or a metastore):
 - `paths: Seq[String] = Nil`
 - `userSpecifiedSchema: Option[StructType] = None`
 - `partitionColumns: Array[String] = Array.empty`
 - `bucketSpec: Option[BucketSpec] = None`
 - `provider: String`
 - `options: Map[String, String]`

This class is responsible for deciding which of the Data Source APIs a given provider is using (including the non-file based ones).  All reconciliation of partitions, buckets, schema from metastores or inference is done here.

### DataSourceAnalysis / DataSourceStrategy
Responsible for analyzing and planning reading/writing of data using any of the Data Source APIs, including:
 - pruning the files from partitions that will be read based on filters.
 - appending partition columns*
 - applying additional filters when a data source can not evaluate them internally.
 - constructing an RDD that is bucketed correctly when required*
 - sanity checking schema match-up and other analysis when writing.

*In the future we should do that following:
 - Break out file handling into its own Strategy as its sufficiently complex / isolated.
 - Push the appending of partition columns down in to `FileFormat` to avoid an extra copy / unvectorization.
 - Use a custom RDD for scans instead of `SQLNewNewHadoopRDD2`

Author: Michael Armbrust <michael@databricks.com>
Author: Wenchen Fan <wenchen@databricks.com>

Closes #11509 from marmbrus/fileDataSource.
2016-03-07 15:15:10 -08:00
..
catalyst [SPARK-13665][SQL] Separate the concerns of HadoopFsRelation 2016-03-07 15:15:10 -08:00
core [SPARK-13665][SQL] Separate the concerns of HadoopFsRelation 2016-03-07 15:15:10 -08:00
hive [SPARK-13665][SQL] Separate the concerns of HadoopFsRelation 2016-03-07 15:15:10 -08:00
hive-thriftserver [SPARK-13632][SQL] Move commands.scala to command package 2016-03-03 15:24:38 -08:00
README.md [SPARK-13264][DOC] Removed multi-byte characters in spark-env.sh.template 2016-02-11 09:30:36 +00:00

Spark SQL

This module provides support for executing relational queries expressed in either SQL or a LINQ-like Scala DSL.

Spark SQL is broken up into four subprojects:

  • Catalyst (sql/catalyst) - An implementation-agnostic framework for manipulating trees of relational operators and expressions.
  • Execution (sql/core) - A query planner / execution engine for translating Catalyst's logical query plans into Spark RDDs. This component also includes a new public interface, SQLContext, that allows users to execute SQL or LINQ statements against existing RDDs and Parquet files.
  • Hive Support (sql/hive) - Includes an extension of SQLContext called HiveContext that allows users to write queries using a subset of HiveQL and access data from a Hive Metastore using Hive SerDes. There are also wrappers that allows users to run queries that include Hive UDFs, UDAFs, and UDTFs.
  • HiveServer and CLI support (sql/hive-thriftserver) - Includes support for the SQL CLI (bin/spark-sql) and a HiveServer2 (for JDBC/ODBC) compatible server.

Other dependencies for developers

In order to create new hive test cases (i.e. a test suite based on HiveComparisonTest), you will need to setup your development environment based on the following instructions.

If you are working with Hive 0.12.0, you will need to set several environmental variables as follows.

export HIVE_HOME="<path to>/hive/build/dist"
export HIVE_DEV_HOME="<path to>/hive/"
export HADOOP_HOME="<path to>/hadoop"

If you are working with Hive 0.13.1, the following steps are needed:

  1. Download Hive's 0.13.1 and set HIVE_HOME with export HIVE_HOME="<path to hive>". Please do not set HIVE_DEV_HOME (See SPARK-4119).
  2. Set HADOOP_HOME with export HADOOP_HOME="<path to hadoop>"
  3. Download all Hive 0.13.1a jars (Hive jars actually used by Spark) from here and replace corresponding original 0.13.1 jars in $HIVE_HOME/lib.
  4. Download Kryo 2.21 jar (Note: 2.22 jar does not work) and Javolution 5.5.1 jar to $HIVE_HOME/lib.
  5. This step is optional. But, when generating golden answer files, if a Hive query fails and you find that Hive tries to talk to HDFS or you find weird runtime NPEs, set the following in your test suite...
val testTempDir = Utils.createTempDir()
// We have to use kryo to let Hive correctly serialize some plans.
sql("set hive.plan.serialization.format=kryo")
// Explicitly set fs to local fs.
sql(s"set fs.default.name=file://$testTempDir/")
// Ask Hive to run jobs in-process as a single map and reduce task.
sql("set mapred.job.tracker=local")

Using the console

An interactive scala console can be invoked by running build/sbt hive/console. From here you can execute queries with HiveQl and manipulate DataFrame by using DSL.

catalyst$ build/sbt hive/console

[info] Starting scala interpreter...
import org.apache.spark.sql.catalyst.analysis._
import org.apache.spark.sql.catalyst.dsl._
import org.apache.spark.sql.catalyst.errors._
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.catalyst.rules._
import org.apache.spark.sql.catalyst.util._
import org.apache.spark.sql.execution
import org.apache.spark.sql.functions._
import org.apache.spark.sql.hive._
import org.apache.spark.sql.hive.test.TestHive._
import org.apache.spark.sql.types._
Type in expressions to have them evaluated.
Type :help for more information.

scala> val query = sql("SELECT * FROM (SELECT * FROM src) a")
query: org.apache.spark.sql.DataFrame = org.apache.spark.sql.DataFrame@74448eed

Query results are DataFrames and can be operated as such.

scala> query.collect()
res2: Array[org.apache.spark.sql.Row] = Array([238,val_238], [86,val_86], [311,val_311], [27,val_27]...

You can also build further queries on top of these DataFrames using the query DSL.

scala> query.where(query("key") > 30).select(avg(query("key"))).collect()
res3: Array[org.apache.spark.sql.Row] = Array([274.79025423728814])