spark-instrumented-optimizer/sql
Michael Armbrust 41bbd23004 [SPARK-11654][SQL] add reduce to GroupedDataset
This PR adds a new method, `reduce`, to `GroupedDataset`, which allows similar operations to `reduceByKey` on a traditional `PairRDD`.

```scala
val ds = Seq("abc", "xyz", "hello").toDS()
ds.groupBy(_.length).reduce(_ + _).collect()  // not actually commutative :P

res0: Array(3 -> "abcxyz", 5 -> "hello")
```

While implementing this method and its test cases several more deficiencies were found in our encoder handling.  Specifically, in order to support positional resolution, named resolution and tuple composition, it is important to keep the unresolved encoder around and to use it when constructing new `Datasets` with the same object type but different output attributes.  We now divide the encoder lifecycle into three phases (that mirror the lifecycle of standard expressions) and have checks at various boundaries:

 - Unresoved Encoders: all users facing encoders (those constructed by implicits, static methods, or tuple composition) are unresolved, meaning they have only `UnresolvedAttributes` for named fields and `BoundReferences` for fields accessed by ordinal.
 - Resolved Encoders: internal to a `[Grouped]Dataset` the encoder is resolved, meaning all input has been resolved to a specific `AttributeReference`.  Any encoders that are placed into a logical plan for use in object construction should be resolved.
 - BoundEncoder: Are constructed by physical plans, right before actual conversion from row -> object is performed.

It is left to future work to add explicit checks for resolution and provide good error messages when it fails.  We might also consider enforcing the above constraints in the type system (i.e. `fromRow` only exists on a `ResolvedEncoder`), but we should probably wait before spending too much time on this.

Author: Michael Armbrust <michael@databricks.com>
Author: Wenchen Fan <wenchen@databricks.com>

Closes #9673 from marmbrus/pr/9628.
2015-11-12 17:20:30 -08:00
..
catalyst [SPARK-11654][SQL] add reduce to GroupedDataset 2015-11-12 17:20:30 -08:00
core [SPARK-11654][SQL] add reduce to GroupedDataset 2015-11-12 17:20:30 -08:00
hive [SPARK-11191][SQL] Looks up temporary function using execution Hive client 2015-11-12 12:17:51 -08:00
hive-thriftserver [SPARK-11191][SQL] Looks up temporary function using execution Hive client 2015-11-12 12:17:51 -08:00
README.md [SPARK-8746] [SQL] update download link for Hive 0.13.1 2015-07-02 13:45:19 +01:00

Spark SQL

This module provides support for executing relational queries expressed in either SQL or a LINQ-like Scala DSL.

Spark SQL is broken up into four subprojects:

  • Catalyst (sql/catalyst) - An implementation-agnostic framework for manipulating trees of relational operators and expressions.
  • Execution (sql/core) - A query planner / execution engine for translating Catalysts logical query plans into Spark RDDs. This component also includes a new public interface, SQLContext, that allows users to execute SQL or LINQ statements against existing RDDs and Parquet files.
  • Hive Support (sql/hive) - Includes an extension of SQLContext called HiveContext that allows users to write queries using a subset of HiveQL and access data from a Hive Metastore using Hive SerDes. There are also wrappers that allows users to run queries that include Hive UDFs, UDAFs, and UDTFs.
  • HiveServer and CLI support (sql/hive-thriftserver) - Includes support for the SQL CLI (bin/spark-sql) and a HiveServer2 (for JDBC/ODBC) compatible server.

Other dependencies for developers

In order to create new hive test cases (i.e. a test suite based on HiveComparisonTest), you will need to setup your development environment based on the following instructions.

If you are working with Hive 0.12.0, you will need to set several environmental variables as follows.

export HIVE_HOME="<path to>/hive/build/dist"
export HIVE_DEV_HOME="<path to>/hive/"
export HADOOP_HOME="<path to>/hadoop-1.0.4"

If you are working with Hive 0.13.1, the following steps are needed:

  1. Download Hive's 0.13.1 and set HIVE_HOME with export HIVE_HOME="<path to hive>". Please do not set HIVE_DEV_HOME (See SPARK-4119).
  2. Set HADOOP_HOME with export HADOOP_HOME="<path to hadoop>"
  3. Download all Hive 0.13.1a jars (Hive jars actually used by Spark) from here and replace corresponding original 0.13.1 jars in $HIVE_HOME/lib.
  4. Download Kryo 2.21 jar (Note: 2.22 jar does not work) and Javolution 5.5.1 jar to $HIVE_HOME/lib.
  5. This step is optional. But, when generating golden answer files, if a Hive query fails and you find that Hive tries to talk to HDFS or you find weird runtime NPEs, set the following in your test suite...
val testTempDir = Utils.createTempDir()
// We have to use kryo to let Hive correctly serialize some plans.
sql("set hive.plan.serialization.format=kryo")
// Explicitly set fs to local fs.
sql(s"set fs.default.name=file://$testTempDir/")
// Ask Hive to run jobs in-process as a single map and reduce task.
sql("set mapred.job.tracker=local")

Using the console

An interactive scala console can be invoked by running build/sbt hive/console. From here you can execute queries with HiveQl and manipulate DataFrame by using DSL.

catalyst$ build/sbt hive/console

[info] Starting scala interpreter...
import org.apache.spark.sql.catalyst.analysis._
import org.apache.spark.sql.catalyst.dsl._
import org.apache.spark.sql.catalyst.errors._
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.catalyst.rules._
import org.apache.spark.sql.catalyst.util._
import org.apache.spark.sql.execution
import org.apache.spark.sql.functions._
import org.apache.spark.sql.hive._
import org.apache.spark.sql.hive.test.TestHive._
import org.apache.spark.sql.types._
Type in expressions to have them evaluated.
Type :help for more information.

scala> val query = sql("SELECT * FROM (SELECT * FROM src) a")
query: org.apache.spark.sql.DataFrame = org.apache.spark.sql.DataFrame@74448eed

Query results are DataFrames and can be operated as such.

scala> query.collect()
res2: Array[org.apache.spark.sql.Row] = Array([238,val_238], [86,val_86], [311,val_311], [27,val_27]...

You can also build further queries on top of these DataFrames using the query DSL.

scala> query.where(query("key") > 30).select(avg(query("key"))).collect()
res3: Array[org.apache.spark.sql.Row] = Array([274.79025423728814])