spark-instrumented-optimizer/python/pyspark/mllib/feature.py
Davies Liu 04e44b37cc [SPARK-4897] [PySpark] Python 3 support
This PR update PySpark to support Python 3 (tested with 3.4).

Known issue: unpickle array from Pyrolite is broken in Python 3, those tests are skipped.

TODO: ec2/spark-ec2.py is not fully tested with python3.

Author: Davies Liu <davies@databricks.com>
Author: twneale <twneale@gmail.com>
Author: Josh Rosen <joshrosen@databricks.com>

Closes #5173 from davies/python3 and squashes the following commits:

d7d6323 [Davies Liu] fix tests
6c52a98 [Davies Liu] fix mllib test
99e334f [Davies Liu] update timeout
b716610 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
cafd5ec [Davies Liu] adddress comments from @mengxr
bf225d7 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
179fc8d [Davies Liu] tuning flaky tests
8c8b957 [Davies Liu] fix ResourceWarning in Python 3
5c57c95 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
4006829 [Davies Liu] fix test
2fc0066 [Davies Liu] add python3 path
71535e9 [Davies Liu] fix xrange and divide
5a55ab4 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
125f12c [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
ed498c8 [Davies Liu] fix compatibility with python 3
820e649 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
e8ce8c9 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
ad7c374 [Davies Liu] fix mllib test and warning
ef1fc2f [Davies Liu] fix tests
4eee14a [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
20112ff [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
59bb492 [Davies Liu] fix tests
1da268c [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
ca0fdd3 [Davies Liu] fix code style
9563a15 [Davies Liu] add imap back for python 2
0b1ec04 [Davies Liu] make python examples work with Python 3
d2fd566 [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
a716d34 [Davies Liu] test with python 3.4
f1700e8 [Davies Liu] fix test in python3
671b1db [Davies Liu] fix test in python3
692ff47 [Davies Liu] fix flaky test
7b9699f [Davies Liu] invalidate import cache for Python 3.3+
9c58497 [Davies Liu] fix kill worker
309bfbf [Davies Liu] keep compatibility
5707476 [Davies Liu] cleanup, fix hash of string in 3.3+
8662d5b [Davies Liu] Merge branch 'master' of github.com:apache/spark into python3
f53e1f0 [Davies Liu] fix tests
70b6b73 [Davies Liu] compile ec2/spark_ec2.py in python 3
a39167e [Davies Liu] support customize class in __main__
814c77b [Davies Liu] run unittests with python 3
7f4476e [Davies Liu] mllib tests passed
d737924 [Davies Liu] pass ml tests
375ea17 [Davies Liu] SQL tests pass
6cc42a9 [Davies Liu] rename
431a8de [Davies Liu] streaming tests pass
78901a7 [Davies Liu] fix hash of serializer in Python 3
24b2f2e [Davies Liu] pass all RDD tests
35f48fe [Davies Liu] run future again
1eebac2 [Davies Liu] fix conflict in ec2/spark_ec2.py
6e3c21d [Davies Liu] make cloudpickle work with Python3
2fb2db3 [Josh Rosen] Guard more changes behind sys.version; still doesn't run
1aa5e8f [twneale] Turned out `pickle.DictionaryType is dict` == True, so swapped it out
7354371 [twneale] buffer --> memoryview  I'm not super sure if this a valid change, but the 2.7 docs recommend using memoryview over buffer where possible, so hoping it'll work.
b69ccdf [twneale] Uses the pure python pickle._Pickler instead of c-extension _pickle.Pickler. It appears pyspark 2.7 uses the pure python pickler as well, so this shouldn't degrade pickling performance (?).
f40d925 [twneale] xrange --> range
e104215 [twneale] Replaces 2.7 types.InstsanceType with 3.4 `object`....could be horribly wrong depending on how types.InstanceType is used elsewhere in the package--see http://bugs.python.org/issue8206
79de9d0 [twneale] Replaces python2.7 `file` with 3.4 _io.TextIOWrapper
2adb42d [Josh Rosen] Fix up some import differences between Python 2 and 3
854be27 [Josh Rosen] Run `futurize` on Python code:
7c5b4ce [Josh Rosen] Remove Python 3 check in shell.py.
2015-04-16 16:20:57 -07:00

486 lines
15 KiB
Python

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Python package for feature in MLlib.
"""
from __future__ import absolute_import
import sys
import warnings
import random
import binascii
if sys.version >= '3':
basestring = str
unicode = str
from py4j.protocol import Py4JJavaError
from pyspark import SparkContext
from pyspark.rdd import RDD, ignore_unicode_prefix
from pyspark.mllib.common import callMLlibFunc, JavaModelWrapper
from pyspark.mllib.linalg import Vectors, _convert_to_vector
__all__ = ['Normalizer', 'StandardScalerModel', 'StandardScaler',
'HashingTF', 'IDFModel', 'IDF', 'Word2Vec', 'Word2VecModel']
class VectorTransformer(object):
"""
.. note:: DeveloperApi
Base class for transformation of a vector or RDD of vector
"""
def transform(self, vector):
"""
Applies transformation on a vector.
:param vector: vector to be transformed.
"""
raise NotImplementedError
class Normalizer(VectorTransformer):
"""
.. note:: Experimental
Normalizes samples individually to unit L\ :sup:`p`\ norm
For any 1 <= `p` < float('inf'), normalizes samples using
sum(abs(vector) :sup:`p`) :sup:`(1/p)` as norm.
For `p` = float('inf'), max(abs(vector)) will be used as norm for
normalization.
>>> v = Vectors.dense(range(3))
>>> nor = Normalizer(1)
>>> nor.transform(v)
DenseVector([0.0, 0.3333, 0.6667])
>>> rdd = sc.parallelize([v])
>>> nor.transform(rdd).collect()
[DenseVector([0.0, 0.3333, 0.6667])]
>>> nor2 = Normalizer(float("inf"))
>>> nor2.transform(v)
DenseVector([0.0, 0.5, 1.0])
"""
def __init__(self, p=2.0):
"""
:param p: Normalization in L^p^ space, p = 2 by default.
"""
assert p >= 1.0, "p should be greater than 1.0"
self.p = float(p)
def transform(self, vector):
"""
Applies unit length normalization on a vector.
:param vector: vector or RDD of vector to be normalized.
:return: normalized vector. If the norm of the input is zero, it
will return the input vector.
"""
sc = SparkContext._active_spark_context
assert sc is not None, "SparkContext should be initialized first"
if isinstance(vector, RDD):
vector = vector.map(_convert_to_vector)
else:
vector = _convert_to_vector(vector)
return callMLlibFunc("normalizeVector", self.p, vector)
class JavaVectorTransformer(JavaModelWrapper, VectorTransformer):
"""
Wrapper for the model in JVM
"""
def transform(self, vector):
if isinstance(vector, RDD):
vector = vector.map(_convert_to_vector)
else:
vector = _convert_to_vector(vector)
return self.call("transform", vector)
class StandardScalerModel(JavaVectorTransformer):
"""
.. note:: Experimental
Represents a StandardScaler model that can transform vectors.
"""
def transform(self, vector):
"""
Applies standardization transformation on a vector.
Note: In Python, transform cannot currently be used within
an RDD transformation or action.
Call transform directly on the RDD instead.
:param vector: Vector or RDD of Vector to be standardized.
:return: Standardized vector. If the variance of a column is
zero, it will return default `0.0` for the column with
zero variance.
"""
return JavaVectorTransformer.transform(self, vector)
def setWithMean(self, withMean):
"""
Setter of the boolean which decides
whether it uses mean or not
"""
self.call("setWithMean", withMean)
return self
def setWithStd(self, withStd):
"""
Setter of the boolean which decides
whether it uses std or not
"""
self.call("setWithStd", withStd)
return self
class StandardScaler(object):
"""
.. note:: Experimental
Standardizes features by removing the mean and scaling to unit
variance using column summary statistics on the samples in the
training set.
>>> vs = [Vectors.dense([-2.0, 2.3, 0]), Vectors.dense([3.8, 0.0, 1.9])]
>>> dataset = sc.parallelize(vs)
>>> standardizer = StandardScaler(True, True)
>>> model = standardizer.fit(dataset)
>>> result = model.transform(dataset)
>>> for r in result.collect(): r
DenseVector([-0.7071, 0.7071, -0.7071])
DenseVector([0.7071, -0.7071, 0.7071])
"""
def __init__(self, withMean=False, withStd=True):
"""
:param withMean: False by default. Centers the data with mean
before scaling. It will build a dense output, so this
does not work on sparse input and will raise an
exception.
:param withStd: True by default. Scales the data to unit
standard deviation.
"""
if not (withMean or withStd):
warnings.warn("Both withMean and withStd are false. The model does nothing.")
self.withMean = withMean
self.withStd = withStd
def fit(self, dataset):
"""
Computes the mean and variance and stores as a model to be used
for later scaling.
:param data: The data used to compute the mean and variance
to build the transformation model.
:return: a StandardScalarModel
"""
dataset = dataset.map(_convert_to_vector)
jmodel = callMLlibFunc("fitStandardScaler", self.withMean, self.withStd, dataset)
return StandardScalerModel(jmodel)
class HashingTF(object):
"""
.. note:: Experimental
Maps a sequence of terms to their term frequencies using the hashing
trick.
Note: the terms must be hashable (can not be dict/set/list...).
>>> htf = HashingTF(100)
>>> doc = "a a b b c d".split(" ")
>>> htf.transform(doc)
SparseVector(100, {...})
"""
def __init__(self, numFeatures=1 << 20):
"""
:param numFeatures: number of features (default: 2^20)
"""
self.numFeatures = numFeatures
def indexOf(self, term):
""" Returns the index of the input term. """
return hash(term) % self.numFeatures
def transform(self, document):
"""
Transforms the input document (list of terms) to term frequency
vectors, or transform the RDD of document to RDD of term
frequency vectors.
"""
if isinstance(document, RDD):
return document.map(self.transform)
freq = {}
for term in document:
i = self.indexOf(term)
freq[i] = freq.get(i, 0) + 1.0
return Vectors.sparse(self.numFeatures, freq.items())
class IDFModel(JavaVectorTransformer):
"""
Represents an IDF model that can transform term frequency vectors.
"""
def transform(self, x):
"""
Transforms term frequency (TF) vectors to TF-IDF vectors.
If `minDocFreq` was set for the IDF calculation,
the terms which occur in fewer than `minDocFreq`
documents will have an entry of 0.
Note: In Python, transform cannot currently be used within
an RDD transformation or action.
Call transform directly on the RDD instead.
:param x: an RDD of term frequency vectors or a term frequency
vector
:return: an RDD of TF-IDF vectors or a TF-IDF vector
"""
if isinstance(x, RDD):
return JavaVectorTransformer.transform(self, x)
x = _convert_to_vector(x)
return JavaVectorTransformer.transform(self, x)
def idf(self):
"""
Returns the current IDF vector.
"""
return self.call('idf')
class IDF(object):
"""
.. note:: Experimental
Inverse document frequency (IDF).
The standard formulation is used: `idf = log((m + 1) / (d(t) + 1))`,
where `m` is the total number of documents and `d(t)` is the number
of documents that contain term `t`.
This implementation supports filtering out terms which do not appear
in a minimum number of documents (controlled by the variable
`minDocFreq`). For terms that are not in at least `minDocFreq`
documents, the IDF is found as 0, resulting in TF-IDFs of 0.
>>> n = 4
>>> freqs = [Vectors.sparse(n, (1, 3), (1.0, 2.0)),
... Vectors.dense([0.0, 1.0, 2.0, 3.0]),
... Vectors.sparse(n, [1], [1.0])]
>>> data = sc.parallelize(freqs)
>>> idf = IDF()
>>> model = idf.fit(data)
>>> tfidf = model.transform(data)
>>> for r in tfidf.collect(): r
SparseVector(4, {1: 0.0, 3: 0.5754})
DenseVector([0.0, 0.0, 1.3863, 0.863])
SparseVector(4, {1: 0.0})
>>> model.transform(Vectors.dense([0.0, 1.0, 2.0, 3.0]))
DenseVector([0.0, 0.0, 1.3863, 0.863])
>>> model.transform([0.0, 1.0, 2.0, 3.0])
DenseVector([0.0, 0.0, 1.3863, 0.863])
>>> model.transform(Vectors.sparse(n, (1, 3), (1.0, 2.0)))
SparseVector(4, {1: 0.0, 3: 0.5754})
"""
def __init__(self, minDocFreq=0):
"""
:param minDocFreq: minimum of documents in which a term
should appear for filtering
"""
self.minDocFreq = minDocFreq
def fit(self, dataset):
"""
Computes the inverse document frequency.
:param dataset: an RDD of term frequency vectors
"""
if not isinstance(dataset, RDD):
raise TypeError("dataset should be an RDD of term frequency vectors")
jmodel = callMLlibFunc("fitIDF", self.minDocFreq, dataset.map(_convert_to_vector))
return IDFModel(jmodel)
class Word2VecModel(JavaVectorTransformer):
"""
class for Word2Vec model
"""
def transform(self, word):
"""
Transforms a word to its vector representation
Note: local use only
:param word: a word
:return: vector representation of word(s)
"""
try:
return self.call("transform", word)
except Py4JJavaError:
raise ValueError("%s not found" % word)
def findSynonyms(self, word, num):
"""
Find synonyms of a word
:param word: a word or a vector representation of word
:param num: number of synonyms to find
:return: array of (word, cosineSimilarity)
Note: local use only
"""
if not isinstance(word, basestring):
word = _convert_to_vector(word)
words, similarity = self.call("findSynonyms", word, num)
return zip(words, similarity)
def getVectors(self):
"""
Returns a map of words to their vector representations.
"""
return self.call("getVectors")
@ignore_unicode_prefix
class Word2Vec(object):
"""
Word2Vec creates vector representation of words in a text corpus.
The algorithm first constructs a vocabulary from the corpus
and then learns vector representation of words in the vocabulary.
The vector representation can be used as features in
natural language processing and machine learning algorithms.
We used skip-gram model in our implementation and hierarchical
softmax method to train the model. The variable names in the
implementation matches the original C implementation.
For original C implementation,
see https://code.google.com/p/word2vec/
For research papers, see
Efficient Estimation of Word Representations in Vector Space
and Distributed Representations of Words and Phrases and their
Compositionality.
>>> sentence = "a b " * 100 + "a c " * 10
>>> localDoc = [sentence, sentence]
>>> doc = sc.parallelize(localDoc).map(lambda line: line.split(" "))
>>> model = Word2Vec().setVectorSize(10).setSeed(42).fit(doc)
>>> syms = model.findSynonyms("a", 2)
>>> [s[0] for s in syms]
[u'b', u'c']
>>> vec = model.transform("a")
>>> syms = model.findSynonyms(vec, 2)
>>> [s[0] for s in syms]
[u'b', u'c']
"""
def __init__(self):
"""
Construct Word2Vec instance
"""
self.vectorSize = 100
self.learningRate = 0.025
self.numPartitions = 1
self.numIterations = 1
self.seed = random.randint(0, sys.maxsize)
self.minCount = 5
def setVectorSize(self, vectorSize):
"""
Sets vector size (default: 100).
"""
self.vectorSize = vectorSize
return self
def setLearningRate(self, learningRate):
"""
Sets initial learning rate (default: 0.025).
"""
self.learningRate = learningRate
return self
def setNumPartitions(self, numPartitions):
"""
Sets number of partitions (default: 1). Use a small number for
accuracy.
"""
self.numPartitions = numPartitions
return self
def setNumIterations(self, numIterations):
"""
Sets number of iterations (default: 1), which should be smaller
than or equal to number of partitions.
"""
self.numIterations = numIterations
return self
def setSeed(self, seed):
"""
Sets random seed.
"""
self.seed = seed
return self
def setMinCount(self, minCount):
"""
Sets minCount, the minimum number of times a token must appear
to be included in the word2vec model's vocabulary (default: 5).
"""
self.minCount = minCount
return self
def fit(self, data):
"""
Computes the vector representation of each word in vocabulary.
:param data: training data. RDD of list of string
:return: Word2VecModel instance
"""
if not isinstance(data, RDD):
raise TypeError("data should be an RDD of list of string")
jmodel = callMLlibFunc("trainWord2Vec", data, int(self.vectorSize),
float(self.learningRate), int(self.numPartitions),
int(self.numIterations), int(self.seed),
int(self.minCount))
return Word2VecModel(jmodel)
def _test():
import doctest
from pyspark import SparkContext
globs = globals().copy()
globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
globs['sc'].stop()
if failure_count:
exit(-1)
if __name__ == "__main__":
sys.path.pop(0)
_test()