spark-instrumented-optimizer/python/pyspark/mllib.py

163 lines
6.8 KiB
Python

from numpy import *
# Double vector format:
#
# [8-byte 1] [8-byte length] [length*8 bytes of data]
#
# Double matrix format:
#
# [8-byte 2] [8-byte rows] [8-byte cols] [rows*cols*8 bytes of data]
#
# This is all in machine-endian. That means that the Java interpreter and the
# Python interpreter must agree on what endian the machine is.
def _deserialize_byte_array(shape, ba, offset):
ar = ndarray(shape=shape, buffer=ba, offset=offset, dtype="float64",
order='C')
return ar.copy()
def _serialize_double_vector(v):
if (type(v) == ndarray and v.dtype == float64 and v.ndim == 1):
length = v.shape[0]
ba = bytearray(16 + 8*length)
header = ndarray(shape=[2], buffer=ba, dtype="int64")
header[0] = 1
header[1] = length
copyto(ndarray(shape=[length], buffer=ba, offset=16,
dtype="float64"), v)
return ba
else:
raise TypeError("_serialize_double_vector called on a "
"non-double-vector")
def _deserialize_double_vector(ba):
if (type(ba) == bytearray and len(ba) >= 16 and (len(ba) & 7 == 0)):
header = ndarray(shape=[2], buffer=ba, dtype="int64")
if (header[0] != 1):
raise TypeError("_deserialize_double_vector called on bytearray "
"with wrong magic")
length = header[1]
if (len(ba) != 8*length + 16):
raise TypeError("_deserialize_double_vector called on bytearray "
"with wrong length")
return _deserialize_byte_array([length], ba, 16)
else:
raise TypeError("_deserialize_double_vector called on a non-bytearray")
def _serialize_double_matrix(m):
if (type(m) == ndarray and m.dtype == float64 and m.ndim == 2):
rows = m.shape[0]
cols = m.shape[1]
ba = bytearray(24 + 8 * rows * cols)
header = ndarray(shape=[3], buffer=ba, dtype="int64")
header[0] = 2
header[1] = rows
header[2] = cols
copyto(ndarray(shape=[rows, cols], buffer=ba, offset=24,
dtype="float64", order='C'), m)
return ba
else:
raise TypeError("_serialize_double_matrix called on a "
"non-double-matrix")
def _deserialize_double_matrix(ba):
if (type(ba) == bytearray and len(ba) >= 24 and (len(ba) & 7 == 0)):
header = ndarray(shape=[3], buffer=ba, dtype="int64")
if (header[0] != 2):
raise TypeError("_deserialize_double_matrix called on bytearray "
"with wrong magic")
rows = header[1]
cols = header[2]
if (len(ba) != 8*rows*cols + 24):
raise TypeError("_deserialize_double_matrix called on bytearray "
"with wrong length")
return _deserialize_byte_array([rows, cols], ba, 24)
else:
raise TypeError("_deserialize_double_matrix called on a non-bytearray")
class LinearModel(object):
def __init__(self, coeff, intercept):
self._coeff = coeff
self._intercept = intercept
def predict(self, x):
if (type(x) == ndarray):
if (x.ndim == 1):
return dot(_coeff, x) + _intercept
else:
raise RuntimeError("Bulk predict not yet supported.")
elif (type(x) == RDD):
raise RuntimeError("Bulk predict not yet supported.")
else:
raise TypeError("Bad type argument to "
"LinearRegressionModel::predict")
# Map a pickled Python RDD of numpy double vectors to a Java RDD of
# _serialized_double_vectors
def _get_unmangled_double_vector_rdd(data):
dataBytes = data.map(_serialize_double_vector)
dataBytes._bypass_serializer = True
dataBytes.cache()
return dataBytes;
# If we weren't given initial weights, take a zero vector of the appropriate
# length.
def _get_initial_weights(initial_weights, data):
if initial_weights is None:
initial_weights = data.first()
if type(initial_weights) != ndarray:
raise TypeError("At least one data element has type "
+ type(initial_weights) + " which is not ndarray")
if initial_weights.ndim != 1:
raise TypeError("At least one data element has "
+ initial_weights.ndim + " dimensions, which is not 1")
initial_weights = zeros([initial_weights.shape[0] - 1]);
return initial_weights;
# train_func should take two parameters, namely data and initial_weights, and
# return the result of a call to the appropriate JVM stub.
# _regression_train_wrapper is responsible for setup and error checking.
def _regression_train_wrapper(sc, train_func, klass, data, initial_weights):
initial_weights = _get_initial_weights(initial_weights, data)
dataBytes = _get_unmangled_double_vector_rdd(data)
ans = train_func(dataBytes, _serialize_double_vector(initial_weights))
if len(ans) != 2:
raise RuntimeError("JVM call result had unexpected length");
elif type(ans[0]) != bytearray:
raise RuntimeError("JVM call result had first element of type "
+ type(ans[0]) + " which is not bytearray");
elif type(ans[1]) != float:
raise RuntimeError("JVM call result had second element of type "
+ type(ans[0]) + " which is not float");
return klass(_deserialize_double_vector(ans[0]), ans[1]);
class LinearRegressionModel(LinearModel):
@classmethod
def train(cls, sc, data, iterations=100, step=1.0,
mini_batch_fraction=1.0, initial_weights=None):
"""Train a linear regression model on the given data."""
return _regression_train_wrapper(sc, lambda d, i:
sc._jvm.PythonMLLibAPI().trainLinearRegressionModel(
d._jrdd, iterations, step, mini_batch_fraction, i),
LinearRegressionModel, data, initial_weights)
class LassoModel(LinearModel):
@classmethod
def train(cls, sc, data, iterations=100, step=1.0, reg_param=1.0,
mini_batch_fraction=1.0, initial_weights=None):
"""Train a Lasso regression model on the given data."""
return _regression_train_wrapper(sc, lambda d, i:
sc._jvm.PythonMLLibAPI().trainLassoModel(d._jrdd,
iterations, step, reg_param, mini_batch_fraction, i),
LassoModel, data, initial_weights)
class RidgeRegressionModel(LinearModel):
@classmethod
def train(cls, sc, data, iterations=100, step=1.0, reg_param=1.0,
mini_batch_fraction=1.0, initial_weights=None):
"""Train a ridge regression model on the given data."""
return _regression_train_wrapper(sc, lambda d, i:
sc._jvm.PythonMLLibAPI().trainRidgeModel(d._jrdd,
iterations, step, reg_param, mini_batch_fraction, i),
RidgeRegressionModel, data, initial_weights)