
PocketBench:
A Framework for Small Data Benchmark Design

Gokhan Kul and Gourab Mitra
University at Buffalo, SUNY

{gokhanku, gourabmi}@buffalo.edu

ABSTRACT
Mobile databases are the statutory backbones of many ap-
plications on smartphones. Their performance very much
depends on the performance of the underlying databases.
However, these databases and the querying engines in the
applications are usually uncontrolled, not properly designed
and not tuned for optimal performance. We take the initia-
tive to analyze mobile database logs to investigate the inter-
action between the application and the database to model
the application characteristics. Although various techniques
have already been produced for database log exploration,
they target enterprise environments where the data is ac-
cessed from many different machines and by many different
users. On Android phones, on the other hand, the database
is exclusive to one application, which means, understanding
the log can lead to understanding the application, hence, al-
lowing for opportunities to improve the performance consid-
erably. In this paper, we introduce the first steps of a frame-
work to create a benchmarking tool which aims to emulate
the workloads of Android applications to compare different
mobile database management system implementations. We
first describe the PocketData dataset while pointing out the
details that we exploit. We then propose a clustering scheme
where we analyze the query logs to identify and group the
SQL queries with similar interests together. We show ex-
perimentally that the clustering scheme is able to categorize
queries with similar interests together. Finally, we elaborate
on using these clusters to model common behaviors and un-
usual patterns. We believe these common patterns can be
used to realistically emulate synthetic workloads created by
Android applications, allowing to test the performance of
different mobile database management systems. Another
possible usage of this system is to identify unnecessarily re-
peating patterns; which can be an indicator of bugs in the
source code, hence, allowing the application developers to
solve problems that do not create the application to crash
but reducing performance.

Keywords
Benchmark, Database, Workload, Mobile Systems

1. INTRODUCTION
Smartphones we so naturally carry and use today do not

have a long history. The smartphones as we know them to-
day started to get used worldwide by average people around
2007. Of course, there were earlier representatives of smart-
phones, but most of them did not reach to the mass crowds
due to their price and lack of network coverage. This funda-
mental shift in technology pushed phone-makers into adopt-
ing their technology into the new trends as fast as possi-
ble, to be able to stay in the market. Once world leaders
Nokia and Blackberry rapidly lost their market shares due
to failing to adapt to the new trends [1, 2]. However, these
developments led to a chaotic environment, where creating
clear and consistent standards got disregarded.

One of the areas affected by this environment was how
the data is stored on these devices. The data can be struc-
tured or unstructured, and the data storage methodologies
got adopted from computers which had a lot more process-
ing power and available memory. Although the processing
power and memory barriers are fading away with the current
technology in the smartphones, the applications still depend
on either file-based storages like JSON and CSV or embed-
ded SQL database systems like SQLite [3,4]. Although there
is a limited number of choices for database management sys-
tems available for smartphones, we anticipate the release of
alternative systems soon.

In this paper, we introduce PocketBench, a framework
to create a benchmarking tool which aims to emulate the
workloads of Android applications to compare different mo-
bile database management system implementations. Utiliz-
ing Android query logs, we model common behaviors and
unusual patterns which can be used to realistically emu-
late synthetic workloads created by Android applications,
allowing to test the performance of different mobile database
management systems.

Scenario 1. Charles, a Mobile Systems Product Man-
ager at Facebook wants to find a way to improve the perfor-
mance of their mobile applications and decides to find the
performance bottlenecks and performance improvement op-
portunities. Setting up PocketBench, his team can use the
query logs of alpha test users and find out if the current
DBMS system in use is better or worse than other alterna-
tives.



We also argue that many apps could benefit from under-
standing how the user uses that particular app. For example,

Scenario 2. Bob, an Android photographer, may be us-
ing Instagram to post a lot of pictures for the brands, hotels
and touristic places. Alice, on the other hand, may be using
Instagram for browsing photos from the users she follows,
and may not have the habit of posting too many photos.

The workload these two people in the scenario create on
the local mobile database is different and should be ad-
dressed accordingly. We can utilize this usage character-
istics information to (1) increase performance for various
workloads, (2) find out bugs and unnecessary database calls
in the apps, (3) give more accurate recommendations to the
user, and (4) explore the data flow improvement opportuni-
ties within the app.

Concretely, in this paper we: (1) motivate for a mobile
database benchmark, (2) utilize query similarity metrics to
find similar queries by structural similarity, (3) analyze the
vectors and similarity matrix of the query load to create clus-
ters of structurally similar queries, and (4) introduce tech-
niques for exploring repeating usage patterns and unusual
usage characteristics. We finally experimentally demonstrate
that our methods are able to infer usage characteristics of
users for specified Android applications.

Note that although we motivate for creating a benchmark
in this paper, developing the data and query emulation step
is not in the scope of this work.

This paper is organized as follows. We first describe the
motivation and give background reasoning in Section 2. Then,
we introduce a sample dataset for workload characterization
and explain methods we utilize in Section 3. In Section 4,
we evaluate the accuracy and performance of our proposed
techniques. Finally, we conclude in Section 5 and identify
the steps needed to deploy our methods into practice in Sec-
tion 6.

2. BACKGROUND AND MOTIVATION
The lack of standards and the need for a better under-

standing of mobile storage systems can easily be seen by sur-
veying through standardized and well-known mobile database
system benchmarks, which in fact non-existent [5], while
traditional database systems have a few dependable bench-
marks [6, 7]. Also, traditional database systems are usually
managed by professional database administrators who tune-
up the databases according to changing workloads while
smartphone databases work with predetermined indexes and
are not subject to tuning up depending on the workload they
are experiencing. Although there were some efforts to mea-
sure the performance of SQLite and Android devices under
different workloads [8], these benchmarks do not specify the
bottlenecks, how and where the tune ups should be per-
formed or they do not provide any information specific to
the app performance.

While the most visible parameter of data is its volume, it
is not the only characteristic that matters. In fact, there are
four key characteristics about data [9]:

• Volume. The most intuitive characteristic about data
is the amount of data itself. In fact, it is the sheer
amount of data that we generate and process these
days that calls for a better approach to data manage-
ment. It is one of the driving forces behind this work.

• Velocity. Velocity refers to the idea of the amount of
data flowing through an interface in unit time.

• Variety. Traditional data formats were relatively well
defined by a data schema and changed slowly. In con-
trast, modern data formats change at a dizzying rate.
This is referred as variety in data.

• Value. The value of data varies significantly. The
challenge in drawing insights from data is identifying
what is valuable and then transforming and extracting
the data for analysis.

Database servers and web applications experience a work-
load that is not typical in smartphones. The majority of
these servers form the backbone of an application. In most
cases, they store the business data to support OLTP and
OLAP operations. The data volumes may range from medium
to high amounts for systems with a large concurrent user
base. The data velocity also grows in proportion to the
number of concurrent users.

The usage pattern of databases in smartphones differs sig-
nificantly from the above-mentioned ideas. Most modern
day smartphones rely on some kind of a web service to help
a mobile application deliver the desired functionality to the
user. This introduces various new application design con-
siderations. Mobile users must be able to work without a
network connection due to poor or nonexistent connection.
In that case, a mobile database serves as a cache to hold
recently accessed data and transactions so that they are not
lost due to connection failure. In many cases, users might
not expect live data during connection failures; only recently
modified data. Update of recent changes and downloading
of live data can be deferred until connection is restored.

Mobile computing devices tend to have slower CPUs and
limited battery life. The luxury of having a cluster of pow-
erful computers to deploy a database is just not there. Also,
the fact that battery power is scarce drives the case further
to achieve high resource utilization.

It is a common practice among smartphone users to have
multiple devices. Most smartphones have an authentication
system which is powered by an email account which is ac-
cessed in other devices too. In most cases, the user has at
least one more device or a web service that needs to sync
with the smartphone. This leads to occasional synchroniza-
tion activities that occur between different devices and a
centralized data store. Often, this activity happens in the
background so that the user is not blocked from using other
functions on a smartphone.

The PocketData dataset [5] provides handset-based data
directly collected from smartphones for multiple users. User
sessions in context of smartphones might not be similar to
a session on other more traditional computing devices like
PCs. Typically, an end user would use their smartphones in
multiple small intervals of time through a day. These ‘bursts
of activity’ can be referred to as session. In context of a sin-
gle mobile application, the user would access multiple logical
transactions in these bursts of activity. Intuitively, a user
session is quite straightforward to understand, but its techni-
cal aspects require defining. Some smartphone usage studies
define a session as the time period where the smartphone’s
screen is active [10]. Smartphone usage is dominated by
usage of the applications that the smartphone has to offer.
Thus, the idea of a smartphone usage session can be reduced



to an application usage session. This is relevant to us be-
cause we aim to study the interaction with the smartphone
database through understanding a single application.

3. METHODOLOGY
We propose a heuristic to analyze query logs and find out

interesting patterns. This process has three steps:

1. Figuring out the activities of interest with respect to
the application

2. Clustering the queries

(a) Extracting features

(b) Query comparison

(c) Clustering with different strategies

3. Detecting patterns in user activity

(a) Appoint an integer label to each cluster

(b) Identify which cluster a new-coming query be-
longs to

(c) Identify patterns with different strategies

The strategies for applying these steps are given in this
section.

3.1 Dataset
As a sample dataset, we use PocketData [5] dataset. This

dataset includes one month’s trace of SQLite activity on
11 PhoneLab [11] smartphones running the Android smart-
phone platform.

This dataset consists of various information about the us-
age patterns across a wide variety of apps. Each line in the
log has:

• Device ID: Unique identifier for each device

• UNIX timestamp: Milliseconds since 1970

• Ordering: Timestamp and request order

• Date and time: Human readable timestamp

• Process ID: Standard UNIX process ID

• Thread ID: Standard UNIX thread ID

• Log level: Verbose (V), Debug (D), Info (I), Warning
(W), Error (E)

• Tag: Source of log information,“SQLite-Query-PhoneLab”

• JSON object that holds various information about the
event that is logged

information.
Note that the app ID is not included in the log, because

different apps can have the same process and thread IDs in
different times. Our strategy to get the log lines for our app
of interest is to search for the app name in JSON object
parsing from the beginning of the file. When we first en-
counter the app of interest, we use process and thread IDs
to identify the events related to that app until we encounter
a different app name in the JSON object.

Privacy Concerns: PocketData dataset is a best-effort
anonymized dataset. Most of the private information is irre-
versibly concealed but there are still some constants in the
queries. Hence, we implement all the functions of the system
with Java for it to be repackaged and be able to be imported
into mobile phones as well as servers. This may solve the
privacy concerns of the users: allowing the processing to be
performed on the phone instead of a company server even
if it is not the ideal case due to performance and energy
consumption constraints.

3.2 Clustering
The main goal of this step is to group queries into classes

that exhibit similar ’intent’. Clustering the query workload
narrows down the space of possible patterns that could be
detected. This facilitates easier and more accurate under-
standing of query workload [12]. In the clustering process,
we first filter the activities belonging to the app of our in-
terest without distinguishing which user the activity belongs
to. Then, we create clusters using all the activities belonging
to that specific app. The workflow is illustrated in Figure 1.

PocketData
Query Log

User1

User2

User N

For each User X
Query Log

Facebook

Instagram

Google+

App Y
Query Log

Cluster 1

Cluster 2

Cluster k

Figure 1: The workflow for clustering process

To achieve this we need to be able to extract features out
of SQL queries, compare them and compute their similarity.
Extracting features from a SQL query, can be done in many
ways. Let’s consider the following queries:

Q1: SELECT username FROM user WHERE rank = "admin"

Q2: SELECT rank, count(*) FROM user

WHERE rank <> "admin" GROUP BY rank

These two queries share many attributes and seem to be
working on similar concepts although not performing seman-
tically very similar tasks. Usually, what we consider impor-
tant in a query can roughly be listed as:

• Selection

• Joins

• Group-By

• Projection

• Order-By



Workload exploration:
One of the main topics in Ettu [13] project is to investigate

how SQL queries can be compared effectively and accurately.
In their research [14], the authors survey the literature for
the methodologies used in this field and elaborate on three
available methods [15–17].

Aouiche et al. [15] utilize a pairwise similarity metric be-
tween two SQL queries in order to optimize view selection in
data warehouses by creating feature vectors out of the selec-
tion, joins and group by items in the query while not consid-
ering the appearance count. They use Hamming Distance
to calculate a similarity value between these two vectors.

Aligon et al. [16] present a survey on a great range of
approaches which seek to put forward a similarity function
to compare the similarity of OLAP sessions. Inspired by
their findings, they propose their own query similarity met-
ric which considers projection, group by, selection and join
items for queries issued on OLAP datacubes. Their method
creates separate sets for each of these components and ap-
point an importance weighting to each set. When comparing
two SQL queries, each of these three sets get compared to
the other query’s corresponding set, hence, by using Jaccard
Coefficient, they get a similarity score for each set. Finally,
they compute an overall similarity score by the average of
these three scores.

Makiyama et al. [17] put forward the most similar work
we are working on. They perform query log analysis with
a motivation of analyzing the workload on the system, and
they provide a set of experiments on Sloan Digital Sky Sur-
vey (SDSS) dataset. They extract the terms in selection,
joins, projection, from, group by and order by items sepa-
rately, and create the query vector out of their appearance
frequency for each query in the dataset. They compute the
pairwise similarity of queries with cosine similarity.

When we inspect closely, we can easily see that Aouiche
method is a naive version of the other two methods. In our
experiments, we apply both Aligon and Makiyama methods,
since they have competitive performance as shown in Ettu’s
log summarization study [14]. Makiyama method can be
used to perform k-means and hierarchical clustering since
they provide the feature vectors, whereas Aligon method
can only be used to apply hierarchical clustering since the
method is used to create a distance matrix, not feature vec-
tors.

To clarify the ambiguity between distance and similarity
terms, we define distance as follows:

distance = 1− similarity
where the similarity is the score we get from the methods

explained above.
Structural complexity:
Another approach to calculate a pairwise similarity score

for SQL queries is to treat SQL as a programming lan-
guage, and utilize an approach that code plagiarism detec-
tors take [18]: first, we generalize all grammar items into
their SQL types, and extract n-grams of each query. For
example,

Q1: SELECT rank, count(*) FROM user

WHERE rank <> "admin" GROUP BY rank

gives us the following terms:

Terms(Q1) = {SQL_SELECT,

COLUMN,

COUNT,

OPEN_PARANTHESIS,

ALL_COLUMNS,

CLOSE_PARANTHESIS,

SQL_FROM,

TABLE,

SQL_WHERE,

COLUMN,

NOT_EQUALS,

CONSTANT,

SQL_GROUPBY

COLUMN}

Pairwise comparison of the n-gram vectors created from
these items for each query with cosine similarity is the pair-
wise similarity score.

Although this approach clearly cannot be used to under-
stand the workload characteristics of a query log due to the
information loss while converting the query into term type
n-grams, it is expected to successfully cluster queries engi-
neered with the same approach.

We consider two possible clustering approaches for use in
our system: k-means and hierarchical clustering [19]. K-
means outputs a set of queries for k clusters. On the other
hand, hierarchical clustering outputs a dendrogram – a tree
structure which shows how each query can be grouped to-
gether. In addition, a dendrogram is a convenient way to vi-
sualize the relationship between queries and how each query
is grouped in the clustering process. We will explore the
possibility of using both of these methods.

3.3 Pattern Matching
Soikkeli et al. [10] say that even considering the time be-

tween launch and close of an application is not a reliable
notion of an application usage session. Applications run-
ning in the foreground are visible to the user. Applications
which are running in background are not visible to user even
though he might have launched them before. An individual
session now consists of two parameters: a start time and an
end time. Two user sessions can be back to back or might
have an idle time in between them. User sessions for a sin-
gle application can now be modeled as a time-wise closely-
spaced series of queries issued to the smartphone database.
A threshold value T is defined for the idle time between two
transactions. If the idle time is less than or equal compared
to T, the transaction belongs belong to the same user ses-
sion. This approach enables us to identify a time window
which can be applied to the transactions in the PocketData
dataset. This time window would contain a chronologically
ordered subset of queries issued to the smartphone database.

Suppose, if a query for a user consists of a series of chron-
ically ordered queries Q = [q1, q2, ...qn] and f be the func-
tion which converts this series into windows using the above
mentioned logic.

f(q1, q2, ...qn)→ [w1, w2, ..., wm]

where [w1, w2, ..., wm] is the series of user sessions the are
obtained. Each wi consists of chronologically ordered bag
queries Qwi . Also,

⋃m
1 Qwi = Q and Qwi ∩ Qwj = ∅

∀ i, j ε [1,m] and i 6= j
There are some peculiarities of the query logs that must

be considered in order to design the methodology of working
with them. Any user activity on a smartphone app consists



of a sequence of multiple asynchronous operations. For ex-
ample, a user might want to refresh the Facebook feed up-
dates from time to time. The user might perceive this as
a single repeating activity performed multiples times in a
day. But on app performs multiple transactions during each
”burst” of the same activity. Given the asynchronous name
of most smartphone applications, the relative order in which
these queries are issued is not fixed. This is also reflected
in the query logs. User sessions might be similar to each
other in terms of the intent. The intent is reflected by the
query cluster that a particular query belongs to. But we can
not test for similarity among these sessions by searching for
common subsequences. It is highly probable that a group of
queries might be be issued as part of the same logical task
but they might appear to be interleaved in the query log.
Each user session can be treated as a bag of queries. Hence,
we need to use a similarity measure which works on the basis
of membership for a particular bag. Jaccard Similarity is a
simple measure to meet the above mentioned requirements.

The Jaccard similarity coefficient is a statistic used for
comparing the similarity and diversity of sample sets. The
Jaccard coefficient measures similarity between finite sample
sets, and is defined as the size of the intersection divided by
the size of the union of the sample sets. For two user sessions
wi and wj , we compare the membership of the clusters that
the constituent queries belong to.

J(wi, wj) =
[wi ∩ wj ]

[wi ∪ wj ]

If wi and wj are both empty, we define J(wi, wj) = 1. Also,
0 ≤ J(wi, wj) ≤ 1 .

We calculate J(wi, wj) for all pairs of user sessions. Now,
we start to look for ”interesting”user sessions. One notion of
of user sessions being interesting can be that their contents
occur in the query log more frequently. A high Jaccard sim-
ilarity score for a pair of user sessions can be interpreted as
them being similar to each other, thereby leading the con-
tents to occur more frequently. For a particular user session
wi, we would be now looking out for the top K user sessions
which are most similar with wi. Calculating the average sim-
ilarity of wi with the most similar K sessions [w1, w2..., wk]
yields a notion of the importance of wi in representing the
characteristics of the workload represented in the query log.
We denote this average similarity for wi with top K windows
as Jwiavg.

Jwiavg =

∑k
j=1 J(wi, wj)

k

When we calculate Jwiavg for all w1, w2..., wm, we obtain
a vector of average similarity scores for the entire query log
for a user.

[Jw1avg
, Jw2avg

, Jw3avg
, ..., Jwmavg

]

This vector denotes the relative importance of the user
sessions to characterize the workload of the application.

4. EXPERIMENTS

4.1 Environment
In our experiments regarding clustering, we used an Apple

Macbook Pro with macOS Sierra operating system, 2.7 GHz

Intel Core i5 processor, 8GB RAM, Java 1.8 SE Runtime
Environment and R v3.3.2.

In our experiments regarding pattern matching, we used
a Lenovo Thinkpad with Windows 10, 2.3 GHz Intel Core
i5 processor, 8GB RAM, Java 1.8 SE Runtime Environment
and R v3.3.1.

4.2 Clustering
For our experiments, we selected Facebook to be our ex-

ample app. For visual purposes, we clustered the activi-
ties of only one user in Figure 2. For this specific user’s
case, there are 84273 rows of activities in the log. There
are 8795 parsable select queries, however, there are only 59
unique queries among them. Keep in mind that PocketData
dataset is an anonymized dataset where most of the constant
values are replaced with “?”, which reduces the number of
distinct queries greatly. The dendrogram we created using
Makiyama method and hierarchical clustering can be seen
in Figure 2.

19 47
2 46

3 22
52

57 55
20 48

39 23 32
38 53

9
14 37 26 35 21 24

4 5
33

40 45 44 58 12 25
11 50

56
36 54

13 27
28

10 51
6 42

59 49 43 41 34 31 30 29 18 17 16 15 8 1 7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Cluster Dendrogram

hclust (*, "ward.D2")
input

H
ei

gh
t

Figure 2: Makiyama Clustering Dendrogram of Facebook
usage for a user

As random examples, here are some the queries that are
put in the same clusters:

Cluster 1:

19 -> SELECT seen_state,

updated,

cursor,

cache_id,

dashing,

icon_uri,

photo_uri,

profile_picture_uri,

summary_graphql_text_with_entities,

short_summary_graphql_text_with_entities,

notif_id,

star_rating

FROM gql_notifications

WHERE (recipient_id=?)

ORDER BY updated DESC LIMIT ?

3 -> SELECT cursor

FROM gql_notifications



WHERE (recipient_id=?)

ORDER BY updated DESC LIMIT 1

Cluster 4:

4 -> SELECT timestamp,

data,

fetchreason

FROM cache

WHERE cachekey= ?

21 -> SELECT value, timestamp

FROM cache

WHERE (name=’MFacewebVersion:MRootVersion’)

ORDER BY name DESC

As seen in Figure 2, there are 5 different clusters of queries
when clustered with Makiyama method. In Table 1, we pro-
vide the tasks performed by the queries within the corre-
sponding cluster.

Table 1: Makiyama lustering results
Cluster Explanation

1 New notification check
2 Prefetch and retrieve notification
3 Fill home feed
4 Cache operations
5 Housekeeping

Also, for the n-gram approach, when we choose n to be 2,
we created the clustering shown in Figure 3.

11 50
24

38
34 22 3 9 2 21 46 53

23
32 39

20 48
49 30 27 13 6 7

52
55 57 51 29 15 16 18 59

1 41
31 42

44 58 12 25
56

33
40 45 36 54

8
35 37 19 47 14 26

10 28 4 5 17 43

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Cluster Dendrogram

hclust (*, "ward.D2")
input

H
ei

gh
t

Figure 3: N-Gram Clustering Dendrogram of Facebook us-
age for a user

In Table 2, we provide the explanations for the queries
according to the clusters they got appointed with n-gram
feature extraction scheme.

We also created a tanglegram to show how similar cluster-
ings these two methods created in Figure 4. As can be seen
in the figure, there is little to no similarity between these
clusterings which is not unexpected since the two feature
extraction mechanisms completely have different strategies
and targets different features.

Table 2: N-Gram clustering results
Cluster Explanation

1 Key-Value lookups
2 No filter or multiple row lookups
3 Lookup in a provided list
4 Complex queries
5 Top-k row queries

4.3 Session Identification
The first set of experiments were directed towards coming

up with an idle time tolerance. We ran our user sessions
segmentation routine for query logs of 3 users for the time-
line of a month. The idle time tolerances used were 10ms,
100ms, 1s, 5s, 10s, 1min, 2min and 5min. We noticed that
the number of user sessions generated converged to around
10000 milliseconds of idle time tolerance as can be seen in
Figure 5. So, we chose an idle time of 10 seconds for further
experiments.

While the idea of a low idle time tolerance might be entic-
ing because it enables us to look into the query log at a more
granular level, we decided that this approach was more suit-
able. When the number of user sessions became too high,
neighboring sessions started to become very similar to each
other. This might lead to a myopic view of the data. Also,
it is reasonable to hypothesize that the general usage pat-
tern of smartphones is in bursts. The user would pickup
the smartphone for a few minutes, perform a bunch of tasks
and then keep it away. During these bursts of activity, the
high similarity among smaller user sessions could be because
of the fact that if a user is checking the Facebook feed for
5 seconds, it is highly probably that they will keep doing
that for the next many seconds. However, we are able to
deal with this myopic view with larger idle time tolerances.
Also, higher idle time tolerances lead to lower number of user
session windows. The time complexity of similarity calcula-
tion operation is O(n2). Higher idle time tolerances fit the
general usage patterns, as well as, reduce the computational
complexity of calculating the average similarity vector.

4.4 Common patterns
Extracting meaningful patterns from user data is central

to a reliable characterization of the smartphone database
workload. We proposed a robust similarity measure which
takes into the account the considerations and constraints
that are imposed by the problem domain. We believe that
our experimental results support the dependability of this
approach for mobile applications.

We applied the idle time treshold as 10 seconds over the
Facebook query set for a month of usage for 11 users as we
indicated in the previous section in order to determine how
many sessions there are. This operation revealed that there
were 15820 sessions initiated in the dataset according to the
session definition. Among these 15820 sessions, 5184 of them
had 90% or higher average similarity with all other sessions
and there are 25 sessions that had 25% or less average sim-
ilarity with all other sessions as show in Figure 6.

We believe that a random session selection among the
5184 sessions can provide us with a representative query set
of the workloads for all users since 90% average similarity
means the query set represents 90% of all the sessions in
the dataset. The average, minimum and maximum session
lengths are given in Table 3.



2.
5

2.
0

1.
5

1.
0

0.
5

0.
0

1947246322525755204839233238539143726352124453340454458122511505636541327281051642594943413431302918171615817

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

1150243834223922146532332392048493027136752555751291516185914131424458122556334045365483537194714261028451743

Figure 4: Matching of n-gram clustering (on the top) and Makiyama clustering (on the bottom)

As for outlier detection, the 25 sessions that have 25%
or less average similarity is a very moderate number that
should be inspected to understand the structure of extraor-
dinarily different sessions.

5. CONCLUSION
The focus of this paper is to identify common behaviors

and unusual patterns in user activities on mobile databases
with the hypothesis that making use of this information can



0

20000

40000

60000

80000

100000

120000

140000

160000

1 0 1 0 0 1 0 0 0 5 0 0 0 1 0 0 0 0 6 0 0 0 0 1 2 0 0 0 0 3 0 0 0 0 0

N
U

M
B

ER
 O

F 
W

IN
D

O
W

S

IDLE TIME TOLERANCE (MILLISECONDS)

NUMBER OF SESSIONS VERSUS IDLE TIME TOLERANCE
User 1 User 2 User 3

Figure 5: Number of user sessions generated with varying idle time tolerances

All users - Number of sessions vs Average Similarity

N
u
m

b
e
r
 o

f 
s
e
s
s
io

n
s

0

1500

3000

4500

6000

Average Similarity

0.9 0.86 0.87 0.920.53 0.54 0.34 0.49 0.3 0.35 0.470.37 0.06 0.070.39 0.48 0.380.31 0.52 0.290.08 0.4 0.46 0.250.26 0.36 0.280.02

Figure 6: Number of sessions separated by their average similarity

open up a lot of opportunities for mobile apps. Identify-
ing the common behaviors are essential for creating a small
data benchmark which compares the performance of mobile
database management systems under different workloads.

Another usage scenario of this information is to find out
bugs and unnecessary function calls by identifying repeat-
ing queries on data that has not change the last reading. To
achieve this, we analyze PocketData dataset which consists



Table 3: Session length
Average Session Length Minimum Session Length Maximum Session Length

Sessions with 90% or higher similarity 3474.32 ms 10 ms 159320 ms
Sessions with 25% or less similarity 2402.91 ms 4 ms 136110 ms

All sessions 5065.02 ms 4 ms 218959 ms

of SQL queries posed by different applications for 11 users
for a month. We utilize different query similarity methods to
identify important features out of these queries, form feature
vectors out of them, and cluster the similar queries together
by their feature vectors with hierarchical clustering. Finally,
we discuss on how we can make use of this clusters; we ap-
point an integer label to each cluster, and whenever there
is an incoming query from a user, we identify which cluster
the new query belongs to. These labels create a sequential
array of integers for that specific user, in which we explore
interesting and repeating patterns.

6. FUTURE WORK
This paper represents the first steps for developing a small

data benchmarking tool for apps running on mobile devices.
We plan several extensions as future work.

First, our efforts, until now, focused on how users access
data instead of their total utilization of database system
capabilities: inserts, updates, and deletions along with se-
lect statements. This will require us to modify the current
query comparison methods since their specifications do not
support them. We will continue to expand the scope of our
analysis through understanding more statement types and
their effects on the query load.

Second, the PocketData dataset contains the time which
the query took to execute itself. We have not used this mea-
sure in our analysis yet. This could prove to be a valuable
aid in uncovering further characteristics of the data.

Finally, we will investigate how to emulate a workload
utilizing the findings in this paper automatically. This step
is essential for creating a benchmarking tool. This includes
concentrating our focus on both emulating the queries and
generating data for the mobile application we are evaluating.

PocketBench will be a decision support benchmark that
will consist of a series of queries that are created from real
user query logs and concurrent mobile data manipulation op-
erations. The queries and the data populating the database
will be realistically emulated from the common patterns and
sessions that we identified in this work. This benchmark will

1. Examine realistic amounts of data in a mobile database

2. Execute queries with complexities proportional to the
mobile app produces

3. Give answers to real-world mobile application perfor-
mance questions

4. Simulate generated queries

5. Generate realistic activity on the mobile database un-
der test

6. Be implemented with constraints that real production
line mobile databases have.

Acknowledgments. We would like to thank Dr. Oliver
Kennedy and Dr. Lukasz Ziarek for their support and guid-
ance for our project. We also would like to thank the CSE662
students for their helpful comments and suggestions.

7. REFERENCES
[1] Jyrki Ali-Yrkkö, Matias Kalm, Mika Pajarinen, Petri

Rouvinen, Timo Seppälä, Antti-Jussi Tahvanainen,
et al. Microsoft acquires nokia: Implications for the
two companies and finland. ETLA Brief, 16(3), 2013.

[2] Felix Gillette, Diane Brady, and Caroline Winter. The
rise and fall of blackberry: An oral history. Bloomberg
Business Week. Bloomberg, 5, 2013.

[3] Jason Wei. Android database programming. Packt
Publishing Ltd, 2012.

[4] Grant Allen and Mike Owens. The definitive guide to
SQLite. Springer, 2010.

[5] Oliver Kennedy, Jerry Ajay, Geoffrey Challen, and
Lukasz Ziarek. Pocket data: The need for tpc-mobile.
In Technology Conference on Performance Evaluation
and Benchmarking, pages 8–25. Springer, 2015.

[6] Transaction Processing Performance Council. TPC-H
benchmark specification. Published at
http://www.tpc.org/tpch/, 2008.

[7] Transaction Processing Performance Council. TPC-C
benchmark specification, v5.11. Published at
http://www.tpc.org/tpcc/, 2010.

[8] Je-Min Kim and Jin-Soo Kim. Androbench:
Benchmarking the storage performance of
android-based mobile devices. In Frontiers in
Computer Education, pages 667–674. Springer, 2012.

[9] Jean-Pierre Dijcks. White paper: Big data for the
enterprise. Technical Report 519135, Oracle
Corporation, 500 Oracle Parkway Redwood Shores,
CA 94065 U.S.A., June 2013.

[10] Tapio Soikkeli, Juuso Karikoski, and Heikki
Hammainen. Diversity and end user context in
smartphone usage sessions. In 2011 Fifth International
Conference on Next Generation Mobile Applications,
Services and Technologies, pages 7–12. IEEE, 2011.

[11] Jinghao Shi, Edwin Santos, and Geoffrey Challen.
Why and how to use phonelab. GetMobile: Mobile
Comp. and Comm., 19(4):32–38, March 2016.

[12] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin
Lin, Jiexi Lin, Lin Ma, Prashanth Menon, Todd C
Mowry, Matthew Perron, Ian Quah, et al. Self-driving
database management systems. In CIDR 2017,
Conference on Innovative Data Systems Research,
volume 10, pages 707–722. VLDB Endowment, 2017.

[13] Gokhan Kul, Duc Luong, Ting Xie, Patrick Coonan,
Varun Chandola, Oliver Kennedy, and Shambhu
Upadhyaya. Ettu: Analyzing query intents in
corporate databases. In Proceedings of the 25th
International Conference Companion on World Wide



Web, pages 463–466. International World Wide Web
Conferences Steering Committee, 2016.

[14] Gokhan Kul, Duc Luong, Ting Xie, Varun Chandola,
Oliver Kennedy, and Shambhu Upadhyaya. Towards
effective log summarization. Published at
http://odin.cse.buffalo.edu/papers/2017/EDBT-
SummarizingSQL-submitted.pdf,
2016.

[15] Kamel Aouiche, Pierre-Emmanuel Jouve, and Jérôme
Darmont. Clustering-based materialized view selection
in data warehouses. In ADBIS, 2006.

[16] Julien Aligon, Matteo Golfarelli, Patrick Marcel,
Stefano Rizzi, and Elisa Turricchia. Similarity
measures for OLAP sessions. Knowledge and
information systems, 2014.

[17] Vitor Hirota Makiyama, M Jordan Raddick, and
Rafael DC Santos. Text mining applied to SQL
queries: A case study for the SDSS SkyServer. In
SIMBig, 2015.

[18] Ameera Jadalla and Ashraf Elnagar. Pde4java:
Plagiarism detection engine for java source code: a
clustering approach. International Journal of Business
Intelligence and Data Mining, 3(2):121–135, 2008.

[19] Rui Xu, Donald Wunsch, et al. Survey of clustering
algorithms. Neural Networks, IEEE Transactions on,
16(3):645–678, 2005.


	INTRODUCTION
	BACKGROUND AND MOTIVATION
	METHODOLOGY
	Dataset
	Clustering
	Pattern Matching

	EXPERIMENTS
	Environment
	Clustering
	Session Identification
	Common patterns

	CONCLUSION
	FUTURE WORK
	References

