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ABSTRACT

The database community has developed a plethora of tools
and techniques for data curation and exploration, from declar-
ative languages, to specialized techniques for data repair,
and more. Yet, there is currently no consensus on how to
best expose these powerful tools to an analyst in a simple, in-
tuitive, and above all, flexible way. Thus, analysts continue
to rely on tools such as spreadsheets, imperative languages,
and notebook style programming environments like Jupyter
for data curation. In this work, we explore the integration
of spreadsheets, notebooks, and relational databases. We
focus on a key advantage that both spreadsheets and imper-
ative notebook environments have over classical relational
databases: ease of exception. By relying on set-at-a-time
operations, relational databases sacrifice the ability to easily
define singleton operations, exceptions to a normal data pro-
cessing workflow that affect query processing for a fixed set
of explicitly targeted records. In comparison, a spreadsheet
user can easily change the formula for just one cell, while a
notebook user can add an imperative operation to her note-
book that alters an output “view”. We believe that enabling
such idiosyncratic manual transformations in a classical rela-
tional database is critical for curation, as curation operations
that are easy to declare for individual values can often be ex-
tremely challenging to generalize. We explore the challenges
of enabling singletons in relational databases, propose a hy-
brid spreadsheet/relational notebook environment for data
curation, and present our vision of Vizier, a system that
exposes data curation through such an interface.

1. INTRODUCTION

In spite of the availability of powerful automated cura-
tion, cleaning, and analysis tools, spreadsheets and note-
book Uls (e.g., Jupyter/iPython) are still the predominant
tools used by most data scientists. Although their ubiqg-
uity is in part a matter of user familiarity [5], we argue

*The authors are listed in alphabetical order.

that they also offer several compelling benefits for curation
workloads. Key among these is the simplicity with which
users can define exceptions to bulk set-at-a-time operations
in both a spreadsheet and a notebook setting. In this paper,
we examine the spreadsheet and notebook interface models,
and explore how lessons from both can be incorporated into
relational database interfaces. We present a new user in-
terface for data curation and a tool implementing this in-
terface called Vizier. Vizier will combine UI elements from
both spreadsheets and notebooks and will support function-
ality not commonly found in either spreadsheets or note-
books, including automated curation operators [19], deploy-
ment of curation workflows over large datasets |11], declar-
ative queries [2}/14], and support for exploratory curation
tasks [16]. This hybrid UI enables powerful relational queries,
while still being flexible enough to permit easy data manip-
ulation, summarization, and visualization.

Spreadsheets. Spreadsheets are a ubiquitous data process-
ing tool. Their simplicity, generality, and adaptability make
them ideal for “playing” with data through predominantly
visual programming metaphors. Spreadsheets provide sev-
eral important features that are useful during data curation:
— Convenient modification of values and computations: The
user can update any cell’s value or formula directly from the
user interface. This enables manual curation operations like
resolving missing values and correcting data errors.

— Manual operations with inlined results: By using formulas
in cells, a user-defined computation and its result are shown
together with its input data.

— Visual mapping over data collections: Most spreadsheet
systems enable the user to take a formula (computation)
and map it to a range of cells through position-relative ref-
erences in cell formulas. For example, this can be done by
copy/paste or by a fill operation. We refer to this mecha-
nism as adapt&apply. This approach to bulk, set-at-a-time
functionality is very useful in data curation: A fix to repair
one piece of data (e.g., conversion between units) can be
deployed over the whole dataset. Importantly, the formulas
applied in this fashion are independent of each other creat-
ing an affordance for declaring exceptions to the bulk rule
by allowing individual formulas to be modified.

Indeed, many curation applications require users to “break
the rules” and apply one-off modifications or transformations
to individual fields or records. For example, (1) hypothetical
what-if scenarios require users to apply small ad-hoc updates
to adjust the inputs under test; (2) repairs for data errors
may be easy to define for individual cases, but far harder to
define in a general case; (3) complex data transformations
that need to be generalized would still be easier to define



for individual test cases than in bulk. By making it easy for
users to break the rules, even if only temporarily, spread-
sheets empower users to explore data, evaluate options, and
better understand the effects of their curation efforts. Such
exceptions, or singleton operations, are not handled grace-
fully by existing relational DBMSes. However spreadsheets
also have several drawbacks compared to a DBMS:

— Non-Adaptive Computations over Collections: While spread-

sheets allow a computation defined in one cell to be adapted
to larger collections of cells, the two dominant systems, i.e.,
Microsoft Excel and Google Sheets, do not support auto-
matically extending formulas to new cells as data is added El
This is in stark contrast to relational databases with their
declarative, data-independent query languages.

— Collection operation intent is not explicit: Adapt&apply
allows a computation to be mapped over a collection, but
there is no visual cue that indicates that a set of cells are
storing formulas which were mapped in this way. There is
no abstraction in spreadsheets to represent higher-level bulk
operations such as view queries in a database.

— No order among operations or workflow branch tracking:
Spreadsheets use cell highlighting as a visual metaphor for
dependency tracking. These visualizations are specific to
single cells and do not lend themselves to tracking large cu-
ration workflows. Furthermore, these visualizations are lim-
ited to tracing one dependency at a time, making tracking
transitive dependencies cumbersome.

— Unintuitive results for adapt&apply: As we will discuss fur-
ther in Section[3] adapt&apply functionality as implemented
in many systems can lead to unexpected results.

Notebook-style Uls. Systems like Jupyter expose an in-
teractive, interpreted programming environment through a
notebook-like interface where the user mixes documentation
(text) with code. The output for code blocks is shown di-
rectly in the notebook — a feature that is widely used to
produce data visualizations.

— Inline documentation: Notebooks allow users to integrate
comments, descriptive text, notes, and formatting details,
making it easier for others to retrace their steps.

— Incremental development of complex workflows: Notebooks
allow users to incrementally build curation workflows, one
page at a time. The (always linear) structure of the workflow
is made explicit through the notebook interface.

However, some operations that are supported well in spread-

sheets are harder to express in notebooks, and some disad-
vantages are shared among both paradigms:

— Small edits are cumbersome: Compared to spreadsheets,
modifying individual data values requires users to write code.
— Linear workflows and no backtracking: Notebooks are in-
herently linear and do not allow users to backtrack or branch
their development efforts.

— All-at-once processing: Both spreadsheets and notebooks
operate over datasets in their entirety, something that is not
feasible for large giga-/tera-byte files.

Visualizations. Both spreadsheets and notebook Uls make
it very easy for users to create visualizations from data on
the fly and show these visualization inline with the data.
Also both paradigms allow these visualization to be tweaked
and to be refreshed based on changes to their inputs. Spread-
sheets in particular provide a very easy-to-use interface for
selecting what data should be visualized.

'We note that Apple Numbers does exhibit this behavior.

Combining Spreadsheets and Notebooks. Spreadsheets
permit intuitive visual interactions with data, while note-
books provide a clearer expression of the user’s intent that
can actually be reproduced. We propose a hybrid UI that
combines elements of both interfaces, augmenting them with
capabilities common to relational data processing. We dis-
cuss the challenges of developing such an integrated interface
and how it facilitates data curation and exploration. We also
introduce our proposed system, called Vizier, which empow-
ers users with spreadsheet-like flexibility for transforming,
visualizing, and exploring relational data, while still retain-
ing the expressiveness and workflow capabilities of a note-
book. At the heart of our approach is support for singleton
operations in a relational setting, which in turn enables a
bi-directional mapping between a spreadsheet-style graphi-
cal interface, and a notebook-style programmatic interface.
To enable singleton transformations within the framework
of a classical relational database, we extend the notebook
programming model with support for interactive views. An
interactive view begins its life as a classical view, presented
to the user in tabular form. In contrast to a classical view
however, an interactive view can be edited much like a spread-
sheet. Such updates are not propagated back to the view’s
inputs, but are treated as updates to the view definition.
Users can modify fields, add new rows and columns, use a
spreadsheet-style equation editor to define derived values,
and more. As the user edits the view, the user’s actions
are seamlessly transformed into a program of relational(-ish)
data transformation operators that derive the new, edited
view. This program serves as a form of history, allowing the
user to revisit and revise earlier edits, even out of order. Fur-
thermore, the program defines a workflow, highly specialized
to a specific dataset. Even this is sufficient to provide classi-
cal benefits of workflow provenance such as auditability and
explainability for derived data. Once an interactive view is
developed for one dataset, it can more readily be adapted to
new data or to react to changes in its inputs. Recasting the
user’s actions programmatically allows us to leverage exist-
ing work on algebraic equivalences |12| and program rewrit-
ing |2] to first obtain multiple interpretations of sequences of
user actions, and then to extrapolate more general expres-
sions of the user’s intent [8,/20]. An important challenge is
controlling unexpected side effects arising from these edits.
Unlike a relational database where query semantics are ex-
plicit, visual interactions in a spreadsheet trigger many im-
plicit behaviors. Existing spreadsheet software is carefully
designed to ensure that these behaviors follow a consistent,
intuitive pattern, and we ensure that Vizier retains this con-
sistent behavior through a data model that links relational
data with the spreadsheet interface’s coordinate system.

Contributions. Our core contributions are as follows: (1)
We present Vizier, a hybrid relational notebook/spreadsheet
exploration-based data curation framework and outline its
capabilities, (2) We discuss the challenges of mapping ac-
tions back and forth between the different components, (3)
We define a data model for Vizier that allows us to pre-
cisely characterize the side-effects of a user’s actions on a
spreadsheet. (4) We apply this model through a case study
on existing spreadsheet software, and show how user actions
in spreadsheet software follow a specific heuristic that we
believe captures the principle of least surprise [15]. (5) We
outline future research directions, including a readability-
optimizer and generalization of singleton-based workflows.
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Figure 1: An example of Vizier’s Ul

LOAD ’lineitem.csv’;

ADD COLUMN total;

UPDATE total = price * (1 - discount);

UPDATE total = 1020 WHERE ID = 90;

INSERT ROW ( name = ’table’, price = 10,
discount = 0.05, total = 9.5 );

Figure 2: An example VIZUAL script
2. INTERFACE DESIGN

Figure (1] illustrates the interface for Vizier, our proposed
tool for data curation and exploration. This interface com-
bines elements of both notebooks and spreadsheets.

2.1 The Notebook UI

Notebook interfaces like Jupyter’s use an analogy of pages
in a notebook that consist of a block of code and an output
for the block, e.g., a table, visualization, or documentation.
Blocks are part of a continuous program, allowing a user to
quickly probe intermediate states by creating new visualiza-
tions or views of the data.

Each page in a Vizier notebook includes a block of SQL
DML/DDL code that imperatively manipulates a relation
that is displayed as a table or visualization. Pages are eval-
uated in sequential order. Code defining later pages may
reference preceding pages as if they were views, and edits to
a page may result in cascading changes to pages that depend
on it. We refer to this SQL-based language as the Vizier user
action language (ViZUAL). In spite of its imperative flavor,
operators in VIZUAL form a monad that can be compiled
down to a generalized form of relational algebra [2].

Figure [2| shows an example VIZUAL script that loads a
CSV file, extends it with a new column named total, de-
fines a value for the column (derived from the remaining
attributes), and applies two minor singleton edits to the re-
sult (a single value update and a row pasted into the result).
The script defines a sequence of declarative transformations
on the data imported by the LOAD operation in the first line.
The entire script can be rewritten into a SQL query:

SELECT *, CASE WHEN ID = 90 THEN 1020
ELSE pricex(1-discount)
END AS total
FROM LOAD(lineitem.csv)
UNION ALL
SELECT ’table’ AS name, 10 AS price,
0.05 AS discount, 9.5 AS total

Imperative-flavored declarative syntax has been repeatedly
found to be more user-friendly than classic declarative syn-
tax |14]. Here however, it also serves to highlight the com-

= UPDATE attribute = formula WHERE condition
| ADD COLUMN colname

| REMOVE COLUMN colname

| INSERT ROW ( attribute = formula, ... )

| DELETE WHERE condition

| REORDER COLUMNS ( colname, colname, ... )

| REORDER ROWS ( rowid, rowid, ... )

| SORT ROWS sortorder

page := LOAD ’>file’ | page ; s
Figure 3: Grammar for VIZUAL (s denotes a statement)

positional nature of interactive views: each user action that
changes the view’s schema or contents is reflected in the
script by a new statement appended to its end. Thus, we
aim for — in principle at least — a bi-directional mapping
between user actions and statements in VIZUAL.

In addition to enabling singletons and being easy to inte-
grate with spreadsheets, the imperative flavor of ViZUAL
also enables backtracking and branching. As illustrated
in Figure |1} users can quickly try hypothetical changes by
checkpointing program state and applying new edits. Vizier
will support a comprehensive suite of branching and merging
capabilities for both data [13| and workflows [16].

2.2 The Spreadsheet UI

As a user edits tables and visualizations directly, these
edits are reflected in the page where the table resides and
are propagated to subsequent pages that depend on it. The
user’s edits, whether applied via the spreadsheet or notebook
Ul, are recorded as a form of workflow provenance [116,71/16].
Our goal is not to reproduce the full interface of a spread-
sheet, but rather to replicate as many of the flexible data
and schema manipulation features as possible within a more
structured framework. Vizier’s Ul allows users to:

— Overwrite arbitrary cells with constants, formulas, or reg-
ular expressions: Users may click on any cell in the output
to overwrite its contents (as in a spreadsheet).

— Cast cells to a new type: Dropdown menus allow the user
to apply general transformations like typecasting. The bulk
transformation is applied to all cells in a selected region.

— Copy/Paste cells: Users can copy and paste regions of
cells. The formula of the copied cell(s) is replicated in the
target region through adapt&apply. If the target region is
larger than the source, cells in the source region are tiled to
scale over the entire target region.

— Add/Delete/Reorder columns or rows: Users may drag
columns or rows to reposition them. A tab at the bottom
and right edges of the displayed table allows users to widen
or lengthen the table, adding new columns or rows respec-
tively. Other interface elements allow users to insert rows
(resp., columns) before or after any existing row (column).

— Sort data: A dropdown menu allows users to sort data
according to values in one or more columns.

— Filter data: A dropdown menu allows users to filter out
rows according to a formula defined over the row.

Many of these operations (e.g., paste, typecast) require the
user to define a target, typically a rectangular area selected
by clicking and dragging with the cursor; We also propose
to support declarative regions, as discussed below.

2.3 Spreadsheet to Notebook and Back

To create a seamless interface between the spreadsheet
and notebook Uls, we need to map operational semantics



and effects between the two interaction models. We now
sketch solutions to several of the resulting challenges.

Identifying Singletons. To allow singleton operations,
VIizUAL must be able to uniquely identify specific rows and
columns of the dataset, including rows and columns intro-
duced in the code itself. More importantly, these identifying
markers must persist through the program: A user edit ap-
plied to the row 10 of *lineitem.csv’ must continue to be
applied to the same entity, even if an insert operation occurs
between rows 8 and 9. We address this challenge through
provenance: Each operation that creates rows generates a
unique tag for each row, column, and cell, which persists
through the lifetime of the row, column, or cell.

Positional vs Qualitative Semantics. Spreadsheets al-
low formulas to reference other cells by relative position.
For example, a cell’s formula might compute a cumulative
average over all rows up to that point. To capture these
semantics, bulk update operations must permit a form of
implicit windowing, semantics that can be unintuitive if han-
dled incorrectly. We address positional semantics as part of
VizUAL’s data model.

Readability. Interactive spreadsheet interfaces encourage
many small transformations. In contrast, code promotes
abstraction and terse expressions that precisely convey the
user’s intent. As a result, directly translating visually gener-
ated operations into code is likely to produce a large, hard-
to-follow, unreadable mess. We address this by proposing a
source-to-source readability-optimizing compiler below.

Formula Extraction. An important challenge arises in the
reverse direction as well. When a user clicks on a formula
to edit it, we need to reconstruct the formula that derived
the cell’s value. However, obtaining the precise formula may
not be as simple as tracing the provenance of the cell’s value,
since operations (e.g., reordering rows) may alter dependen-
cies. We address this specific issue as part of our data model.

3. THE vizuAL DATA MODEL

The fundamental unit of data in VIZUAL is a cell, a 3-
tuple: C' = (4d, f,v ), consisting of a globally unique identi-
fier id, a formula expression f, and a value v. The identifier
of a cell is assigned to it when it is first allocated and is im-
mutable — even if the cell is moved to a different position in
the spreadsheet. By storing both a formula f and its result
v, a cell maintains data provenance akin to a provenance-
aware data management system, where each record is associ-
ated with metadata describing how it was computed. Here,
this metadata serves two purposes. First, as noted above, we
need to be able to reliably materialize the formula backing
each cell so that it can be edited. We need to ensure that
each operator defines precise semantics for how it affects
formulas. Second, and perhaps more importantly, we track
both values and the formula used to derive them as a way to
define operational semantics that minimize user surprise. As
we discuss shortly, one specific update to a spreadsheet may
have many secondary, incidental effects on the spreadsheet’s
formulas and/or values. By tracking both, we can better
understand these effects and minimize the complexities and
unexpected side-effects of each operation.

Coordinate System. Cells are arranged into a 2-dimensional

grid of rows and columns indexed by a coordinate system, a
function s : N x N — id that maps positions in the grid to

the cell occupying that position. The function s need not be
complete, but must be one-to-one: a cell may only appear
in one position in the spreadsheet.

Formulas. A formula is a primitive-valued expression that
may include references to the values of other cells, identified
by the cell’s global id or by absolute coordinates (explicit
and absolute references, respectively). A formula evaluated
in the context of a cell may also specify coordinate references
as being relative to the cell (relative references). Columns
are usually denoted by letters and rows by numbers. A state
is a 2-tuple { C, s ) consisting of a set of cells C' = {C;} and
a coordinate system. We say that a formula f evaluates to
a value v in the context of a given state (f — ¢y v) if,
after replacing all references (coordinate references using s
and C, and explicit references using C'), the formula reduces
to v El We say that a state ( C,s ) is valid E| if each cell’s
formula evaluates to the cell’s value:

V{(idi, fi,vi) € C 1 fir(csy Vi

User actions in VIZUAL transform a state ( C1,s1 ) into
a new state ( Ca,s2 ). We call the semantics for an action
correct if they ensure that if the input to an action is valid,
then the action’s output is also valid.

3.1 Unsurprising Inconsistencies

User actions on a spreadsheet have both direct, intended
effects, and may also have indirect, incidental effects. Ex-
amples include changing a formula (dependent formulas are
recomputed), repositioning a row (formulas depending on
the row are modified), or sorting (formulas are recomputed
based on the new, sorted coordinate system). In commercial
spreadsheet systems, indirect effect semantics can sometimes
be inconsistent. Take, for example, two mechanisms for re-
arranging rows in the table given in Figure@ A user might
manually drag row 3 to a position between rows 1 and 2, ef-
fecting a swap of rows 2 and 3. Microsoft Excel, Apple’s
Numbers, and Google’s Sheets E| all have identical behavior,
each resulting in the table shown in Figure[db] Note that the
formulas for C2 and C3 have changed to ensure that each
cell retains its original value under the transposed coordi-
nate system. In other words, the user’s MOVE action treats
formula references as being explicit references. Conversely, a
user might sort the rows of the table in descending order on
Column B. The resulting table in all three systems is iden-
tical, and shown in Figure Here, the formulas in column
C are changed only in appearance; each continues to refer-
ence the cells immediately to the left and above. However
the values of each cell have changed as a result. In other
words, the user’s SORT action treats formula references as
being relative references.

Clearly, in spite of the superficial similarity between these
two operations, their semantics are quite different. How-
ever, viewed through the lens of VIZUAL’s data model, this

2Similar operational semantics were previously proposed by
Krishnamurthi and Ramakrishnan [9].

3Note that this definition does not preclude direct or indirect
circular references as long as the computations defined by
the cell formulas have a fixpoint. However, such a fixpoint
computation may be hard to understand for a user and, thus,
we disallow circular references for now.

4These and other behaviors described were evaluated on Ex-
cel for Mac version 15.20, Numbers version 3.6.1, and Google
Sheets as of April 2016.



A B c A
1 Alice | 10 =B1 (10) 1 Alice
2 Bob 4 | =B2+C1 (14) 2 Carol
3 Carol | 8 [ =B3+C2 (22) 3 Bob
4+ Dave | 9 | =B4+C3 (31) 4 Dave

(a) Initial State

om0l 5w

(b) After swapping rows 2 and 3

c A B c

=B1 (10) 1 Alice | 10 | =B1 (10)
=B2+C3 (22) > Dave | O | =B2+C1 (19)
=B3+C1 (14) 3 Carol | 8 [ =B3+C2 (27)
=Ba+c3 (31) © Bob | 4 | =B4+C3 (31)

(c) After sorting on column ’B’

Figure 4: Examples of both swapping rows and sorting rows in commercial database systems.

Stability
Action | Excel Numbers Sheets
Cut/Paste \% F \%
Drag Cell/Row/Col n/a A% \Y%
Insert Row/Col A% A% \Y%
Sort F F F
Filter A\ \% Vv

Figure 5: Interface actions and whether they are Formula-
stable, or Value-stable. Excel does not support dragging.

design choice emerges as a form of the principle of least sur-
prise [15]. Concretely, for purely structural operations (i.e.,
operations that simply manipulate the coordinate scheme),
it is still necessary to propagate incidental effects to formu-
las and/or values. The MOVE action translates cell formulas
into the new coordinate scheme — retaining stable values at
the cost of changing formulas. Meanwhile the SORT action
re-evaluates cell-formulas under the new coordinate scheme
— retaining stable formulas at the cost of changing values.
By enforcing one of these two forms of stability (value or for-
mula) for each user action, spreadsheet designers are guard-
ing against hard to follow “magic” semantics. We also note
that ViZUAL’s data model admits both forms of stability.

We tested a range of structural actions, and all consis-
tently exhibited one of these types of stability: either on
values (formulas are translated), or on formulas (new values
are computed). Our results are shown in Figure Virtually
all action semantics favor value stability — clearly the sim-
pler case in general. Semantics that enforce formula stability
are used primarily in sorting, which applies a non-intuitive,
effectively random coordinate transform. The other outlier
is Numbers, where the cut operation removes data immedi-
ately, compared to Excel and Sheets, where the cut opera-
tion simply marks data to be moved on the subsequent paste.
This distinction allows Numbers to provide consistent paste
semantics between cut and copy, while Excel and Sheets
treat cut/paste as a special MOVE-like operation. Specific
tradeoffs aside, each system exhibits a preference for value-
stability, falling back to formula-stability for non-intuitive
coordinate transforms.

3.2 Regions to Relations

Many operations in Vizier operate over sets or collections
of cells. For example, aggregates in formulas, the ‘paste’ op-
eration, and type conversions all target or reference entire
regions of cells. In a typical spreadsheet, such regions are
specified as rectangular regions of cells in the current coor-
dinate system (e.g., [A3 : B99] or [A : A]). Conversely, in a
relational setting, sets of target values are specified qualita-
tively through selection predicates.

The former semantics are critical for enabling the spread-
sheet interaction model, while the latter is important for

generalizing the curation workflow beyond the initial dataset.

Existing data curation systems focus on the latter approach;
Even Wrangler [11], which does allow users to initially write
curation operators as singletons, still forces users to define
a generalized predicate before moving on.

In ViZUAL, regions combine both semantics. Concretely,
a region is defined through a 3-tuple ( XY, f ), where X is
a (possibly infinite) set of columns, Y is a (possibly infinite)
set of rows, and f is a boolean-valued formula defining a
predicate over cells in the specified range. All cells in the
intersection of X and Y fulfilling f are part of the region.

4. WORKFLOW REWRITING

As the user makes edits in the spreadsheet interface, the
corresponding actions are recorded in the notebook as a
VIzZzUAL script. Although these scripts do encode the eval-
uation logic that generates the spreadsheet being displayed,
they also serve as an audit trail, tool for reverting or al-
tering older edits, and template for generalizing the same
curation process to new data. As such, VIZUAL is subject
to a different set of optimization goals than most program-
ming languages. Rather than optimizing for performance or
resource usage as in a normal optimizer, ViZUAL needs an
optimizer that prioritizes both readability and generality.

4.1 Rewriting for Readability

User actions on the spreadsheet are expected to be small,
isolated changes. Recording them directly in this form is
likely to produce long, hard to follow ViZUAL scripts. Thus,
it will be necessary for Vizier to dynamically rewrite scripts
being modified in a principled way that optimizes for read-
ability. We consider readability to be a tradeoff between
minimizing two measures: size and complexity. For exam-
ple, consider a sequence of 10 update actions with the form:
UPDATE A = 3 WHERE ROWID = 7?7

with 7 taking values from 1 to 10. Instead, we could express
all 10 updates in a single expression using a BETWEEN pred-
icate that (a) more concisely represents the same concept,
with (b) a similar level of complexity, and (c) is semantically
equivalent. Similar transformations appear in optimizing
compilers — the above equivalence inverts a common com-
piler optimization called loop unrolling. Although there has
been substantial research effort on obfuscating compilers,
we are not aware of any source-to-source compilers designed
to increase code readability. Vizier will not just record a
VizZzUAL script for a workflow, but also keep track of what
user operations each operation in the script is based on.
This information can be exploited during rewriting. A set
of formulas created by an adapt&apply operation is a good
candidate for rewriting, because we know that all formulas
in such a set follow the same pattern.

4.2 Generalizing Singletons

Singletons allow users to try out hypotheticals, explore
cleaning solutions, and conduct small-scale tests. It is often
easier for users to perform one-off curation steps initially,
repairing errors in the data as singletons, rather than ex-
pending the mental effort to generalize the repair upfront.
However, when the user needs to adapt their preliminary
data cleaning solution to new data, to a larger dataset, or



to an updated dataset, these singleton operations can be-
come a burden. Although they put more control over the
curation process in the user’s hands, singleton actions in-
crease the size and complexity of a VIZUAL script, with no
benefits beyond the initial dataset. In addition to consid-
ering readability-enhancing rewrites that preserve semantic
equivalence, it will be necessary for Vizier to evaluate how
singleton actions can be generalized — effectively a form of
query (or curation, in this case) by example [20]. Concretely,
given a set of similar statements with singleton targets, we
would like to propose to the user a set of rewrites that apply
a single update to many (or all) of the singletons at once.

S. RELATED WORK

Spreadsheet-style interfaces for relational data have been
of interest to researchers and practitioners alike for some
time now as a desperately needed form of direct data manip-
ulation [10]. Tyszkiewicz [17] demonstrated an embedding
of SQL into spreadsheet formula semantics. Excel provides
database integration capabilities, and there is a spectrum of
attempts at hybrid environments [3}/4{11}/12}/18].

Spreadsheets with Workflows. Trifacta/Wrangler [11]
have features that are similar to Vizier. As in Vizier, users
generate curation workflows by directly editing data. How-
ever, unlike Vizier, there is no support for singleton oper-
ations in the workflow language — user edits must be gen-
eralized immediately through a recommendation interface.
Query-by-Excel [18] (QBX) provides support for cube-style
operations in a spreadsheet-like environment. Although the
goal is different, the mechanism is quite similar: QBX allows
singleton outputs in the cube query, encoding them as UP-
DATE operations on the query output. However, QBX treats
only query outputs as mutable, while source data is fixed;
VizUAL is free of this limitation.

Relational Spreadsheets. SheetMusiq [12] uses seman-
tics for relational queries over spreadsheets. Though su-
perficially similar to VIZUAL, it assumes static data, and
does not attempt to preserve formula semantics through
queries. Related Worksheets [3] provide a spreadsheet UI
for structured relational data, focusing on enabling strongly-
typed data and foreign key references. However, although
editing cells is permitted, the work does not address cell
formulas. DataSpread [4] extends spreadsheets with rela-
tional database functionality: structured query support and
a scalable relational engine for a backend. By comparison,
VizUAL starts with a structured relational data model and
extends it with the illusion of freeform editing.

Inspiration. The idea of generalizing singleton operations
is based on Query by Example [20] and Query by Explana-
tion [8]. As individual operations are grouped together, the
system can learn to describe what the user is attempting to
accomplish. We plan to draw heavily on work in this area to
develop Vizier’s generalization engine. As the basis for the
notebook-style interface and script provenance, we leverage
work on scientific workflows [6][7}/16], and we borrow ideas
from reenactment [2] as the basis for VIZUAL scripts.

6. CONCLUSIONS

We present our vision for Visier, a data curation system
which exposes powerful curation operations through a Ul
that is a hybrid between the spreadsheet and notebook inter-
face paradigms. In this work we focus on the user interface
as well as present the initial design of a language ViZUAL

that can serve as the underlying computational model for
operations in the system.
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