
Provenance-aware Versioned Dataworkspaces

Xing Niu1, Bahareh Sadat Arab1, Dieter Gawlick2, Zhen Hua Liu2, Vasudha Krishnaswamy2,
Oliver Kennedy3, Boris Glavic1

1Illinois Institute of Technology
{xniu7,barab}@hawk.iit.edu,

bglavic@iit.edu

2Oracle Corporation
{dieter.gawlick,zhen.liu,

vasudha.krishnaswamy}@oracle.com

3SUNY Buffalo
okennedy@buffalo.edu

Abstract
Data preparation, curation, and analysis tasks are often exploratory
in nature, with analysts incrementally designing workflows that
transform, validate, and visualize their input sources. This requires
frequent adjustments to data and workflows. Unfortunately, in cur-
rent data management systems, even small changes can require
time- and resource-heavy operations like materialization, man-
ual version management, and re-execution. This added overhead
discourages exploration. We present Provenance-aware Versioned
Dataworkspaces (PVDs), our vision of a sandboxed environment
in which users can apply — and more importantly, easily undo —
changes to their data and workflows. A PVD keeps a log of the
user’s operations in a light-weight version graph structure. We de-
scribe a model for PVDs that admits efficient automatic refresh,
merging of histories, reenactment, and automated conflict resolu-
tion. We also highlight the conceptual and technical challenges that
need to be overcome to create a practical PVD.

1. Introduction
Data exploration and curation require analysts to develop and test
hypothesis, typically by applying transformations (e.g., cleaning,
re-structuring, or analytic querying) before interpreting the result.
Ideally, such an analysis would be linear, with the analyst itera-
tively resolving successive problems in the data, tightening his/her
analysis until the desired outcome is reached. However, in the real
world, it is often unclear what data is needed for an analysis, how
to obtain that data, how to curate and clean it to increase its qual-
ity, and how to express an analysis query. Thus, an analyst’s day-
to-day exploration often demands lots of interactive backtracking.
For example, the analyst might recognize a past mistake, correct
this mistake, and re-start the analysis from this step. Many data cu-
ration operations introduce uncertainty, e.g., when resolving con-
straint violations there often exist alternative ways of cleaning the
data. Uncertainty leads to additional backtracking when a user ex-
plores different options for an uncertain choice - specifically if there
are no tools available to understand the uncertainty and its effect on
analysis results. Before introducing our vision of a version model
that aids exploratory analysis, we present an exemplary curation
process to further illustrate the challenges faced by analysts.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page.

TaPP 2016, June 8–9, 2016, Washington, DC.
Copyright remains with the owner/author(s).

1 { ” T r e a t m e n t ” : [
2 {
3 ” P a t i e n t ” : ” John ” ,
4 ” D i s e a s e ” : ” Lung Cancer ” ,
5 ” Doc to r ” : ” Xing ” ,
6 ” T r e a t m e n t ” : ” Chemotherapy ” ,
7 ” Suc ” : t r u e ,
8 ” F i n i s h ” : t r u e
9 } ,

10 {
11 ” P a t i e n t ” : ”Bob” ,
12 ” D i s e a s e ” : ” Stomach Cancer ” ,
13 ” Doc to r ” : ” Bahareh ” ,
14 ” T r e a t m e n t ” : ” R a d i a t i o n ” ,
15 ” Suc ” : f a l s e
16 } ,
17 . . .
18 ]}

(a) JSON document J

Treatment Disease Success
Chemotherapy Lung Cancer TRUE
Chemotherapy Stomach Cancer NULL

Surgery Lung Cancer FALSE
Radiation Stomach Cancer FALSE
Surgery Lung Cancer NULL

(b) T (Before lens application)

Treatment Disease Success
Chemotherapy Lung Cancer TRUE
Chemotherapy Stomach Cancer FALSE

Surgery Lung Cancer FALSE
Radiation Stomach Cancer FALSE
Surgery Lung Cancer TRUE

(c) TFixed (After lens application)

Figure 1: JSON document J storing treatment data (a), extracted
relational treatment data T (b), and cleaned version TFixed (c).

1.1 Running Example
Alice is an analyst at a hospital who wants to build a workflow to
determine the success rate of different treatments for lung cancer.
Treatment information is available as a JSON document J (an ex-
ample is shown in Figure 1 (a)) that contains an array of treatments
storing the patient, the type of disease, the responsible doctor, the
treatment method, whether the treatment is finished, and whether
it is successful. The information about success (Suc) and termina-
tion (Finish) of treatments is not available for all records. As a
first step, Alice uses a query QJT to map the data from the JSON
document into a relational schema to create relation T shown in
Figure 1 (b). Assume that Alice misunderstood the data represen-
tation and retrieved the values of attribute Success from the field
Finish in the JSON document. Realizing that this attribute is null
in some of the tuples, Alice wants to apply a data curation step to fix
these missing values. Using the Mimir system [7], she could create
a missing value imputation lens. Lenses are data curation operators
that apply a data cleaning operation like replacing NULL values with
“best-guess” values selected heuristically by a classifier. Under the
hood, a lens uses probabilistic database techniques to keep track
of uncertainty introduced by the heuristic curation operation. This
uncertainty is propagated to the results of transformations that are
applied to a lens output and the Mimir system provides an API to
expose the uncertainty. For example, the missing value imputation
lens trains a model to predict the value for a missing attribute. In
this case the uncertainty is based on the fact that the trained model
predicts values with a certain probability. In our example, Alice
chooses to not explore the uncertainty introduced by the lens im-



mediately, but rather to continue building her analysis pipeline on
top of the lens output (relation TFixed shown in Figure 1 (c)). She
runs the SQL query Q1 shown below to compute the success rate
of treatment methods for lung cancer.
SELECT SUM(CASE WHEN S u c c e s s = TRUE

THEN 1 ELSE 0 END) / c o u n t (∗ )
AS Succes sRa te ,
T r e a t m e n t

FROM Tfixed

WHERE D i s e a s e = ” Lung Cancer ”
GROUP BY T r e a t m e n t

When interpreting the results of this query Alice realizes that
she made a mistake early on, i.e., when casting the JSON docu-
ment into a relational form. Alices corrects her query QJT to ex-
tract Suc instead of Finish from the JSON document resulting in
a query QJT

′ and a new version T ′ of the treatment relation. What
is frustrating for Alice is that she now has to repeat the lens cre-
ation and analysis query steps of her pipeline. Typically, the model
trained for replacing missing values provides a good estimate, but
should be tweaked to improve data quality if the attribute with miss-
ing values is critical for the analysis - as is the case in the running
example. Alice can use Mimir to understand how the uncertainty
exposed by the lens affects her result and focus her efforts to fix
parts of the data and pipeline that are relevant for her analysis. This
may require repeatedly modifying the parameters of the lens until
a satisfactory result is achieved. This part of the process is labor-
intensive, as most databases lack support for efficient modification
of materialized view queries, forcing Alice to rerun the lens and
analysis query after each modification. Her work would be greatly
simplified using a system that automatically refreshes the extracted
relation T , lens, and analysis query output for any change to QJT

as well as the lens output and analysis query result if the lens is
modified. Furthermore, during her exploration she should be able
to keep track of past versions of her pipeline and how they relate to
each other. The model we propose, supports both requirements.

1.2 Challenges and Requirements
Exploratory data curation systems should support the analyst in
tracking, understanding, and eventually resolving uncertainty in a
way that keeps her focused on her data and analysis. Current data
management platforms support neither this exploratory mode of
operation, nor do they expose uncertainty introduced by curation
operations. Provenance-aware workflow systems do help the ana-
lyst to keep track of her operations, but only once a workflow has
been developed and applied to inputs. Pay-as-you-go construction
and modification of workflows is not supported. Provenance-aware
databases can track uncertainty and potential errors in data, but
would require the user to manually expose the uncertainty in cura-
tion operations. In short, provenance is a critical tool for enabling
exploration, but current systems are lacking in several respects:
• Regret-free exploration - The user should be able to operate in

a sandboxed environment where she can change past decisions
and data derived based on these decisions should be automati-
cally refreshed. Both base data and derived data are versioned.

• Full accountability through provenance tracking - The sys-
tem should maintain both a record of the transformations exe-
cuted by the user and their dependencies as well as be able to
provide provenance at the data-level.

• Automatic conflict detection and resolution - The system
should automatically detect conflicts that exist in the data as
well as conflicts that are based on automatic refresh of derived
data. Furthermore, when detecting a conflict, the system should
propose potential resolution strategies.

• Merging of transformation pipelines - The system should
enable analysis pipelines to be merged. For instance, a user

J

T
T ′

TFixed

SR

TFixed
′

TFixed
′′

SR′

SR′′

QJT
′QJT

Lmissing Lmissing

Q1 Q1

Lmissing
′

Q1

Figure 2: Virtual version graph for the running example.

may want to update an analysis based on recent changes to a
database which requires merging the changes into the pipeline.

• Uncertainty as a first-class concept - Whenever an operation
introduces uncertainty, the system should track and propagate
this uncertainty through further operations, and be able to ex-
plain whether an output is uncertain and how the uncertainty af-
fects an analysis result. This requires fine-grained provenance.

Note that existing provenance-aware workflow systems can track
transformations applied by a user to data in a workflow and may
even keep track of changes to the workflow [6]. However, automatic
refresh of derived data based on changes to previous steps in a
workflow (e.g., Alice’s change to QJT ) is not supported. In this
work we present the Virtual Version Graph model (VVG), a
simple, yet powerful model for representing version histories that
supports derived objects which are updated automatically as well
as provides a clean semantics for changing past decisions (e.g., by
modifying a transformation). Furthermore, we discuss Provenance-
aware Versioned Dataworkspaces (PVD), our vision for a new
type of sandboxed curation and analysis environment based on
the VVG model. Data curation and analysis over large data sets
can be hindered by the cost of rerunning steps in a pipeline. The
PVD approach can lazily materialize relation versions once they
are needed (e.g., to refresh a visualization shown to the analyst).

2. Virtual Version Graph Model
The functionality outlined in the introduction and motivated by the
running example requires an expressive model for tracking objects,
versions of objects, transformations, and dependencies among ob-
jects. To this end we introduce a simple, yet powerful, model that
we call Virtual Version Graph Model. This model is a form of
version control mechanism (multiple parallel histories can co-exit)
with explicit tracking of transformations (version control systems
typically do not track what transformation created a version), auto-
matic updating of dependent objects, a principled and non-invasive
way of changing past transformations, and a lightweight way to
represent objects and versions that enables objects to be material-
ized on-demand. Although the model can be generalized, in this
work we limit our discussion to objects that are relations.

A version graph G in our model is a directed acyclic hyper-
graph where each node in the graph represents a version of a
relation. Any transformation (e.g., query or update) creates a new
relation that will be connected to the previous version via an edge
labelled with the transformation. Furthermore, edges in the graph
are classified into one of two categories: derivation or version
(hyper-)edges. Derivation hyper-edges are used for operations that
create a relation from one or more input relations (e.g., a relational
join operator). Version edges are used to connect different versions
of the same relation. To simplify the exposition we only consider
transformations with a single input relation, i.e., no hyper-edges.

2.1 Types of Transformations
We distinguish between two fundamental types of transformations:
1) Transformations such as view creation that create a new rela-



R

V1

V2

Q1

Q2

R R′

V1 V1
′

V2 V2
′

U

Q1

Q2

Q1

Q2

Figure 3: Recording an updateU to
a relation R in the VVG

R
R′

R′′

V1

V1
′

V1
′′

V2

V2
′

V2
′′

U1

Q1

Q2

Q1

Q2

U2

Q1

Q2

R̂′ R̂′′

V̂1
′

V̂1
′′

V̂2
′

V̂2
′′

U2

Q1

Q2

Q1

Q2

U1
′

Figure 4: Modifying transformation U1 to U1
′

R R′

V1

V1
′

V1
′′

R′fixed

U

Q1 Q1

Lfix

Q1

Figure 5: VVG with an ill-
defined relation version

tion; 2) Transformations such as updates that create a new version
of an existing relation. Both types of operations are represented as
derivation edges in the version graph, but they are treated differ-
ently in terms of refreshing depended relations. For a derivation
operation α (first type) applied to input relation R we create a re-
lation node with a new label S that does not occur in the graph
and connect R to S via an derivation edge labelled with α. For in-
stance, the relation T in the running example is created by such an
operation. When a versioning operation β (the second type of trans-
formation) is applied to a relation R, then we create a new version
ofR, sayR′. This version is connected toR via an edge labelled β.
We also add a version edge from R′ to R denoting that R′ is a new
version of R. A versioning operation also creates new versions for
the full subgraph of dependencies rooted at R. These new versions
of dependent relations will be connected to R′.

EXAMPLE 1. Figure 2 shows Alice’s pipeline construction as a
VVG (only one lens modification step is shown). Ignore node col-
ors for now. Solid edges are derivation edges and dotted edges are
version edges. The original version of her pipeline is shown on the
left: JSON Document J is used as an input to QJT producing rela-
tion T which in turn is cleaned up using lens Lmissing to produce
Tfixed. Finally, Q1 is run over this relation to produce relation
SR storing the success rate of chancer treatments. Changing QJT

(the query extracting relation T from JSON document J) intoQJT
′

causes new versions of the relations derived from T to be created
(these are relations T ′, Tfixed

′ and SR′). When Alice changes the
parameters of the lens afterwards (Lmissing

′), then new relations
versions SR′′ and TFixed

′′ are created. Note how versions of the
same relation are connected via version edges.

2.2 Automatic Update of Derived Relations
For a modification of a relation R (e.g., an update) we create new
versions of all relations that are derived from R, i.e., all relations
that are reachable fromR in the VVG. Thus, we create a copy of the
subtree rooted atR, the input of the edge corresponding to the mod-
ification, and connect it to the end point of the edge corresponding
to the modification (the new version R′ of the updated relation).
We also add a backlink from each copy S′ of a node to its previous
version S to indicate that it is a new version of S.

EXAMPLE 2. Figure 3 shows how applications of an update oper-
ation affects a VVG. In the graph before the update (shown on the
left), there are two relations that depend onR: V1 created by query
Q1 and V2 derived from V1 by running Q2. Once the update U is
applied, new versions V1

′ and V2
′ of these relations are created,

are connected to the new version R′ and linked back to V1 and
V2, respectively (shown on the right). In the figure, the subgraph
derived from R is enclosed in a red box and its copy in a blue box.

2.3 Modifying Transformations
In addition to creating new versions of data, we would like to sup-
port updates to transformations as well, e.g., such as Alice’s modi-

fication to the JSON extraction queryQJT in the running example.
By modeling the transformation’s arguments (e.g., the extraction
query) as data to be versioned as well, transformation updates are
naturally supported in the VVG model as well. When a transfor-
mation’s arguments are modified, a new version of the argument’s
node is created, and the effects are propagated throughout all of the
dependency edges as well. Note that for simplicity we do not show
nodes for transformation arguments in the example graphs.

EXAMPLE 3. Figure 4 shows a VVG for a variation of the previous
example. There is a relation R plus two views defined based on
R (V1 and V2). Two update operations U1 and U2 have been
applied toR creating new versions ofR and its dependent relations
(the views). Assume the user determines that transformation U1 is
buggy and should be modified. If the modified transformation U1

′

is applied to R, then all relations derived from R′ (enclosed in
a rectangle in the figure), the original output of U1, have to be
updated too. Thus, a copy of this subgraph is created and connected
to the new version of R. We use “̂ ” to denote versions in this
new subgraph. Note that for modifications to transformations the
new versions of derived relations that are created based on this
transformation retain the same versioning history as the versions
they are copied from. This effectively creates a branch in the history
of such relations. For instance, consider V̂1

′
which was copied from

V1
′ and is recorded to originate from V1, the origin of V1

′.

2.4 Detecting and Dealing with Conflicts
Our approach of automatically creating new versions of derived re-
lations when a new version of a relation is created may lead to the
creation of relation versions that are ill-defined. For instance, con-
sider a view V1 derived by a queryQ1: SELECT name, age FROM R.
If a user updates the R relation by deleting the age attribute, then
the automatically created version V1

′ of the view V1 derived by
applying Q1 to R′ is invalid. This is the case, because the age at-
tribute no longer exists. One option would be to reject every oper-
ation that would lead to invalid derived relations. Given the pay-
as-you-go nature of our technique we prefer to use a different ap-
proach. When new versions of derived relation are created we apply
basic sanity checks and if a transformation that created a relation
is no longer well-defined, then this relation is marked as invalid in
the graph. We envision to make a wide variety of semi-automated
and automatic conflict detection and resolution strategies available
to the user. For example, if we allow integrity constraints to be
defined for each relation, then we can automatically detect viola-
tions to these constraints and propose constraint-based data clean-
ing methods (e.g., lenses) to the user to resolve conflicts. For in-
stance, assume that the user has defined a primary key (name) for
relationR. An insert of a new person intoR with the same name as
an existing person would violate this constraint. Conflict resolution
operations are represented as transformations in our model.

EXAMPLE 4. Figure 5 shows an extension of the example de-
scribed above. Assume that an ill-defined relation version V1

′



(green triangle) was caused by the automatic refresh of view V1

based on an update U dropping the age attribute. The conflict
caused by the missing attribute age has been resolved by applying
a lens Lfix to compute values for the missing attribute age.

2.5 Merging VVGs
An important functionality we would like to provide is merging of
VVGs, e.g., to combine analysis pipelines or to repeat an analysis
with new data. When merging VVGs we face similar challenges
as do version control systems since there is no linear history and,
thus, merging strategies, conflict detection, and conflict resolution
are required. In contrast to version control systems we could take
transformation semantics into account when merging. Furthermore,
we will consider conflict detection and resolution strategies such as
the ones mentioned in the previous section in addition to traditional
types of conflicts such as conflicting updates to the same tuple.

3. PVD
We envision PVD to operate based on the version model introduced
in the previous section. To start an analysis a user would create a
new PVD as a virtual copy of the current state of a database (or
another PVD). This creates a sandbox environment for data cura-
tion and analysis tasks where every operation is reflected in a VVG
initialized during PVD creation. A PVD would be exposed through
an interface similar to iPython (http://ipython.org/). The user
can execute operations on current versions of relations and define
a set of visualizations based on relations. These visualizations are
automatically updated whenever a new version of an underlying
relation is created. Visualizations are represented as distinguished
nodes in the VVG. Only nodes that correspond to visualizations
have to be materialized. Thus, we can choose materializations in a
way to optimize a particular objective, e.g., the amount of storage
required or the cost of deriving new materializations.

3.1 PVD Building Blocks
We argue that recent provenance-related techniques introduced by
the authors - namely on-demand data curation through lenses [7] as
well as provenance tracking and reenactment for updates [2] - pro-
vide a solid foundation for implementing PVD. Lenses [7] would
provide PVD with powerful uncertainty aware data curation op-
erations. The build-in support for fine-grained data provenance in
lenses that records how uncertainty affects a query result could be
complemented with our approach for provenance for updates [2] to
be able to also track uncertainty through update operations. Fur-
thermore, reenactment, the declarative replay technique that we
have developed to retroactively compute provenance for updates
can be used to virtualize update operations. By translating an up-
date into an equivalent query we can compose it with other updates
and queries. This results in additional options for how to material-
ize a relation version (see Appendix B.2) and the ability to track
provenance through such a composed transformations.

3.2 Implementation Challenges
While the aforementioned technologies can be the foundation for
PVD, many challenges remain. Developing effective strategies
for determining which relation versions to materialize, when to
materialize, and how to materialize will be essential in scaling
workspaces. Similarly, methods for compressing VVGs, e.g., shar-
ing nodes among copies of a subgraph, will help keep the size
of such graphs manageable. Incremental view maintenance tech-
niques can provide a PVD system with additional, potentially more
efficient, options for materializing relations. We will study the types
of conflicts that can arise in VVGs given a class of allowed trans-
formations, develop efficient techniques for detecting and resolving
such conflicts, and study methods for merging VVGs.

4. Related Work
The version graph model we have introduced is inspired by how
version control systems such as Git (https://git-scm.com)
treat version histories with parallel branches which is a natural
way to model revisions of past decisions in data curation and ex-
ploration. However, version control systems lack the virtualization
capabilities (recompute a version instead of materializing it) and
automatic refresh of derived objects that are an inherent to PVD.
DataHub [3] is a system for dataset storage inspired by version
control systems. We share DataHub’s vision that the choice be-
tween materialization and re-computation can be turned into an
optimization problem. In contrast to DataHub, we target data ex-
ploration pipelines which informs our choice to propose automatic
refresh of derived relations and provide explanations for outcomes
based on fine-grained provenance. Many transformations in a VVG
will be declarative. Hence, incremental view maintenance, e.g., the
techniques provided by DBToaster [1], should be used to speed
up refresh of derived relations. Our approach to provenance man-
agement is informed by the large body of work on workflow [5]
and database provenance [4]. In contrast to typical approaches for
workflow provenance, in our model there is no direct notion of a
workflow - pipelines are built incrementally and data is automati-
cally kept up to date. Our model shares with [6] the aspect that ver-
sion histories do not have to be linear. In contrast to most database
provenance approaches we keep track of the transformations and
how they create versions of relations. The virtual nature of rela-
tion versions in our model aligns well with on-demand provenance
techniques such as the ones of GProM [2].

5. Conclusions
We have introduced our vision for Provenance-aware Versioned
Dataworkspaces, a novel approach for providing data analysts with
a sandboxed environment with several unique features that ease
their day-to-day work. A PVD enables users to keep full account
of their operations and supports exploratory application of data cu-
ration and analysis operators, because 1) derived objects including
visualizations are automatically refreshed if the object they depend
on is updated, 2) any past transformation can be modified, and 3)
conflicts caused by refresh are detected automatically. Versions of
relations in PVD do not have to be materialized giving a system
implementing PVD a wide range of options for optimization.

References
[1] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. Dbtoaster: Higher-

order delta processing for dynamic, frequently fresh views. PVLDB, 5
(10):968–979, 2012.

[2] B. Arab, D. Gawlick, V. Radhakrishnan, H. Guo, and B. Glavic. A
generic provenance middleware for database queries, updates, and
transactions. In TaPP, 2014.

[3] S. Bhattacherjee, A. Chavan, S. Huang, A. Deshpande, and
A. Parameswaran. Principles of dataset versioning: Exploring the recre-
ation/storage tradeoff. PVLDB, 8(12):1346–1357, 2015.

[4] J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance in Databases: Why,
How, and Where. Foundations and Trends in Databases, 1(4):379–474,
2009.

[5] S. B. Davidson, S. Cohen-Boulakia, A. Eyal, B. Ludäscher,
T. McPhillips, S. Bowers, and J. Freire. Provenance in Scientific Work-
flow Systems. IEEE Data Engineering Bulletin, 32(4):44–50, 2007.

[6] J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger,
and H. T. Vo. Managing rapidly-evolving scientific workflows. In
Provenance and Annotation of Data, pages 10–18. Springer, 2006.

[7] Y. Yang, N. Meneghetti, R. Fehling, Z. H. Liu, and O. Kennedy. Lenses:
an on-demand approach to etl. PVLDB, 8(12):1578–1589, 2015.

http://ipython.org/
https://git-scm.com


CREATE VISUALIZATION SUCCESSPLOT
STYLE BARCHART
PLOT FROM SR
WITH X = TREATMENT AND Y = SUCCESSRATE ;

Sur Chem Rad

0.2

0.3

0.4

SR SR′

Vp Vp
′

U

QP QP

Figure 6: Mock user interface for a PVD system. The user can ex-
ecute transformations and create visualizations that are automati-
cally refreshed whenever the user modifies a relation. Additionally,
the user can explore the VVG graph for her workspace and execute
operations such as replacing a past transformation (as decribed in
Section 2).

A. Our Vision for a PVD User Interface
Figure 6 shows a mock GUI for a PVD system. The main inter-
face is a notebook where the user can document her operations and
insert new visualizations and data curation operations by writing
code. The system would allow the user to browse the VVG for her
workspace and this would also be the starting point for modifying
past transformations and conflict resolution. In this example, Alice
has created a plot on top of her analysis result (relation SR) that
shows a bar chart for the success rates of treatments. In the VVG,
this plot is represented as a derived node Vp that is refreshed when-
ever the input relation SR is updated. For instance, if Alice updates
SR using an update operation U , a new version V ′p of the visual-
ization is created based on the updated relation SR′ and the plot in
the GUI is modified accordingly. Note that in such a user interface
not all object versions described by the VVG are visible to a user.
For instance, in the example shown in Figure 6 only V ′p is visible
to Alice whereas the content of SR′ is currently not exposed. As
explained further in the next section, a PVD system can exploit this
observation by delaying materialization of a relation version in a
VVG until the content of this relation is exposed through the user
interface.

B. Materialization, Reenactment, and
Compression

B.1 Materialization and Composition of Transformations
As mentioned before, a VVG G keeps track of how relations (dif-
ferent versions of the same relation or separate relations) are de-
rived from each other through the application of transformations
and only some of these relation versions may actually be material-
ized at a certain point in time. This can be modelled as a set MG

of nodes in the VVG G that are materialized. Based on such a set
we can determine whether the relation version corresponding to a
non-materialized nodeR can be materialized based on the currently
materialized relations in MG. Any relation version S can be mate-
rialized as long as there exists a path in the graph connecting a node
R ∈ MG to relation S. To materialize S we would apply a com-
position of the transformations on that path to R. Supporting lazy
materialization of relation versions is important for our approach,
because it enables a system implementing Provenance-aware Ver-
sioned Dataworkspaces to 1) avoid materializing relation versions
that are not needed and 2) to choose an optimal way of materi-
alizing a relation version, (e.g., optimal could mean choosing the

composed transformation with the minimal expected runtime). In
particular, eager materialization of automatically refreshed derived
relations may be expensive if relations they depend upon are up-
dated frequently. Thus, lazy schemes are essential for efficiently
implementing PVDs.

EXAMPLE 5. Reconsider Figure 3 and assume that MG = {R}
(nodes in MG are highlighted in red and have a bold outline).
Relation V2

′ from Figure 3 can be computed from R by composing
the operations on the path from R to V2

′ and applying them to the
start point of the path. In this case the composed operation would
be Q2 ◦Q1 ◦ U(R).

B.2 Nondestructive and Composable Updates Using
Reenactment

Note that in Section B.1 we did assume that relation versions are
immutable and that transformations can be composed. That is, an
application of a transformation creates a new relation instead of
destructively modifying the input relation. For instance, for rela-
tional updates this can be achieved by applying the declarative re-
play technique (reenactment) we have developed in [2] where se-
quences of updates are expressed as queries that return the updated
state of a relation. Nonetheless, destructive modification, e.g., stan-
dard relational update semantics, can be also be incorporated in
our model. These types of modifications create a new version of a
relation by destructively modifying the previous materialized ver-
sion. In the VVG this would be reflected by marking the input as
non-materialized and marking the output of the transformation as
materialized.

EXAMPLE 6. Continuing with Example 5 we would like to execute
the composed transformation Q2 ◦ Q1 ◦ U(R) to materialize V2

′.
Using a regular relational database we would have to execute
this transformation in two steps: running the update U and then
executing a query Q2 ◦ Q1 over the updated relation. This would
destructively modify R. After this execution, relation version R
is no longer available. In fact, it has been replaced by R′. In
addition V2

′ is now materialized. That is, MG = {R′, V2
′}. Using

reenactment an update U can be transformed into a so-called
reenactment query R(U) which returns the updated version of R.
Using this approach we could execute Q2 ◦ Q1 ◦ R(U)(R) to
materialize V2

′ without modifyingR. In the resulting graph, the set
of materialized relation versions is MG = {R, V2

′}. We are not
claiming that either of these options is superior to each other, but
would like to note that they represent different trade-offs. Even for
this simple example there exists additional plans for materializing
V2
′, e.g., by materializing V1

′ and then executing Q2 over V1
′.

B.3 Compressing Graphs Through Composition of
Transformations

Our model also allows for compression of the graph structure at
the cost of loosing details about transformation sequences. For in-
stance, a path R1

T1−→ R2
T2−→ R3 can be replaced with R1

T2◦T1−→
R3. Applications of this rule enable parts of the graph to be com-
pressed at the cost of loosing details about transformations. It
would be interesting to study such compression techniques in more
depth. Another interesting research direction is to incorporate in-
cremental view maintenance techniques. For example, for the VVG
in Figure 3 we could apply such techniques to determine how the U
propagates to V1 which would give us a direct transformation from
V1 to V1

′. Thus, incremental view maintenance can provide us with
additional options for materializing relations.


