diff --git a/sections/derivation.tex b/sections/derivation.tex deleted file mode 100644 index 8cb2f8d..0000000 --- a/sections/derivation.tex +++ /dev/null @@ -1,43 +0,0 @@ - -$ z^2 = \sqrt{x^2 + y^2} $ - -%Logarithm: $ L(ab) = L(a) + L(b) $ - -%Exponent: $ E(a + b) = E(a)E(b) $ - -Derivative: - -\[ f'(x) = \lim_{h\to 0} \frac{f(x + h) - f(x)}{h} \] - -So for the Log function $ L(x) $, then: - -\[ L'(x) = \lim_{h\to 0} \frac{L(x + h) - L(x)}{h} \] - -Since $ L(a) - L(b) = L(\frac{a}{b})$ then: - -\[ \Rightarrow L'(x) = \lim_{h\to 0} \frac{L(\frac{x + h}{x})}{h} = \lim_{h\to 0} \frac{L(1 + \frac{h}{x})}{h} = \lim_{h\to 0} \frac{1}{h}L(1 + \frac{h}{x}) \] - -Since $ bL(a) = L(a^b) $ then: - -\[ \Rightarrow L'(x) = \lim_{h\to 0} L(1 + \frac{h}{x})^{\frac{1}{h}} \] - -Substituting $ j = \frac{h}{x} \Rightarrow h = xj $ then: - -\[ \Rightarrow L'(x) = \lim_{xj\to 0} L(1 + j)^{\frac{1}{xj}} = \lim_{j\to 0} L(1 + j)^\frac{1}{xj} \] - -or, reverting the limit back to $h$, - -\[ = \lim_{h\to 0} L(1 + h)^\frac{1}{xh} \] - -Since \[ \lim_{h\to 0} (1 + h)^{\frac{x}{h}} = e^x \Rightarrow \lim_{h\to 0} (1 + h)^{\frac{1}{xh}} = e^\frac{1}{x} \] - -then: - -\[ \Rightarrow L'(x) = \lim_{h\to 0} L(e^\frac{1}{x}) = \frac{1}{x} \] - -for $ L(x) = \log_e(x) $ - - - - -