Finished layout rework for the main part of the paper in acmart format.

master
Aaron Huber 2022-03-16 08:28:18 -04:00
parent 0920523d57
commit b85044e7b3
3 changed files with 5 additions and 3 deletions

View File

@ -2,7 +2,7 @@
%!TEX root=./main.tex %!TEX root=./main.tex
\section{$1 \pm \epsilon$ Approximation Algorithm}\label{sec:algo} \section{$1 \pm \epsilon$ Approximation Algorithm}\label{sec:algo}
In \Cref{sec:hard}, we showed that \Cref{prob:bag-pdb-poly-expected} cannot be solved in $\bigO{\qruntime{\optquery{\query},\tupset,\bound}}$ runtime. In light of this, we desire to produce an approximation algorithm that runs in time $\bigO{\qruntime{\optquery{\query},\tupset,\bound}}$. We do this by showing the result via circuits, We showed in~\Cref{sec:hard} that a runtime of $\bigO{\qruntime{\optquery{\query},\tupset,\bound}}$ cannot be acheived for~\Cref{prob:bag-pdb-poly-expected}. In light of this, we desire to produce an approximation algorithm that runs in time $\bigO{\qruntime{\optquery{\query},\tupset,\bound}}$. We do this by showing the result via circuits,
such that our approximation algorithm for this problem runs in $\bigO{\abs{\circuit}}$ for a very broad class of circuits, (thus affirming~\Cref{prob:intro-stmt}); see the discussion after \Cref{lem:val-ub} for more. such that our approximation algorithm for this problem runs in $\bigO{\abs{\circuit}}$ for a very broad class of circuits, (thus affirming~\Cref{prob:intro-stmt}); see the discussion after \Cref{lem:val-ub} for more.
The following approximation algorithm applies to bag query semantics over both The following approximation algorithm applies to bag query semantics over both
\abbrCTIDB lineage polynomials and general \abbrBIDB lineage polynomials in practice, where for the latter we note that a $1$-\abbrTIDB is equivalently a \abbrBIDB (blocks are size $1$). Our experimental results (see~\Cref{app:subsec:experiment}) which use queries from the PDBench benchmark~\cite{pdbench} show a low $\gamma$ (see~\Cref{def:param-gamma}) supporting the notion that our bounds hold for general \abbrBIDB in practice. \abbrCTIDB lineage polynomials and general \abbrBIDB lineage polynomials in practice, where for the latter we note that a $1$-\abbrTIDB is equivalently a \abbrBIDB (blocks are size $1$). Our experimental results (see~\Cref{app:subsec:experiment}) which use queries from the PDBench benchmark~\cite{pdbench} show a low $\gamma$ (see~\Cref{def:param-gamma}) supporting the notion that our bounds hold for general \abbrBIDB in practice.
@ -21,7 +21,7 @@ $\expansion{\circuit}$ has the following recursive definition ($\circ$ is list c
$\expansion{\circuit} = $\expansion{\circuit} =
\begin{cases} \begin{cases}
\expansion{\circuit_\linput} \circ \expansion{\circuit_\rinput} &\textbf{ if }\circuit.\type = \circplus\\ \expansion{\circuit_\linput} \circ \expansion{\circuit_\rinput} &\textbf{ if }\circuit.\type = \circplus\\
\left\{(\monom_\linput \cup \monom_\rinput, \coef_\linput \cdot \coef_\rinput) ~|~(\monom_\linput, \coef_\linput) \in \expansion{\circuit_\linput}, (\monom_\rinput, \coef_\rinput) \in \expansion{\circuit_\rinput}\right\} &\textbf{ if }\circuit.\type = \circmult\\ \left\{(\monom_\linput \cup \monom_\rinput, \coef_\linput \cdot \coef_\rinput) \right.\\\left.~|~(\monom_\linput, \coef_\linput) \in \expansion{\circuit_\linput}, (\monom_\rinput, \coef_\rinput) \in \expansion{\circuit_\rinput}\right\} &\textbf{ if }\circuit.\type = \circmult\\
\elist{(\emptyset, \circuit.\val)} &\textbf{ if }\circuit.\type = \tnum\\ \elist{(\emptyset, \circuit.\val)} &\textbf{ if }\circuit.\type = \tnum\\
\elist{(\{\circuit.\val\}, 1)} &\textbf{ if }\circuit.\type = \var.\\ \elist{(\{\circuit.\val\}, 1)} &\textbf{ if }\circuit.\type = \var.\\
\end{cases} \end{cases}
@ -102,11 +102,13 @@ satisfying
\probOf\left(\left|\mathcal{E} - \rpoly(\prob_1,\dots,\prob_\numvar)\right|> \error' \cdot \rpoly(\prob_1,\dots,\prob_\numvar)\right) \leq \conf \probOf\left(\left|\mathcal{E} - \rpoly(\prob_1,\dots,\prob_\numvar)\right|> \error' \cdot \rpoly(\prob_1,\dots,\prob_\numvar)\right) \leq \conf
\end{equation} \end{equation}
can be computed in time can be computed in time
\begin{footnotesize}
\begin{equation} \begin{equation}
\label{eq:approx-algo-runtime} \label{eq:approx-algo-runtime}
O\left(\left(\size(\circuit) + \frac{\log{\frac{1}{\conf}}\cdot k\cdot \log{k} \cdot \depth(\circuit))}{\inparen{\error'}^2\cdot(1-\gamma)^2\cdot \prob_0^{2k}}\right)\cdot\multc{\log\left(\abs{\circuit}(1,\ldots, 1)\right)}{\log\left(\size(\circuit)\right)}\right). O\left(\left(\size(\circuit) + \frac{\log{\frac{1}{\conf}}\cdot k\cdot \log{k} \cdot \depth(\circuit))}{\inparen{\error'}^2\cdot(1-\gamma)^2\cdot \prob_0^{2k}}\right)\cdot\multc{\log\left(\abs{\circuit}(1,\ldots, 1)\right)}{\log\left(\size(\circuit)\right)}\right).
\end{equation} \end{equation}
In particular, if $\prob_0>0$ and $\gamma<1$ are absolute constants then the above runtime simplifies to $O_k\left(\left(\frac 1{\inparen{\error'}^2}\cdot\size(\circuit)\cdot \log{\frac{1}{\conf}}\right)\cdot\multc{\log\left(\abs{\circuit}(1,\ldots, 1)\right)}{\log\left(\size(\circuit)\right)}\right)$. \end{footnotesize}
In particular, if $\prob_0>0$ and $\gamma<1$ are absolute constants then the above runtime simplifies to $$O_k\left(\left(\frac 1{\inparen{\error'}^2}\cdot\size(\circuit)\cdot \log{\frac{1}{\conf}}\right)\cdot\multc{\log\left(\abs{\circuit}(1,\ldots, 1)\right)}{\log\left(\size(\circuit)\right)}\right).$$
\end{Theorem} \end{Theorem}
The restriction on $\gamma$ is satisfied by any The restriction on $\gamma$ is satisfied by any

BIN
main.pdf

Binary file not shown.

Binary file not shown.