spark-instrumented-optimizer/docs/mllib-guide.md
Xiangrui Meng df0aa8353a [WIP][SPARK-1871][MLLIB] Improve MLlib guide for v1.0
Some improvements to MLlib guide:

1. [SPARK-1872] Update API links for unidoc.
2. [SPARK-1783] Added `page.displayTitle` to the global layout. If it is defined, use it instead of `page.title` for title display.
3. Add more Java/Python examples.

Author: Xiangrui Meng <meng@databricks.com>

Closes #816 from mengxr/mllib-doc and squashes the following commits:

ec2e407 [Xiangrui Meng] format scala example for ALS
cd9f40b [Xiangrui Meng] add a paragraph to summarize distributed matrix types
4617f04 [Xiangrui Meng] add python example to loadLibSVMFile and fix Java example
d6509c2 [Xiangrui Meng] [SPARK-1783] update mllib titles
561fdc0 [Xiangrui Meng] add a displayTitle option to global layout
195d06f [Xiangrui Meng] add Java example for summary stats and minor fix
9f1ff89 [Xiangrui Meng] update java api links in mllib-basics
7dad18e [Xiangrui Meng] update java api links in NB
3a0f4a6 [Xiangrui Meng] api/pyspark -> api/python
35bdeb9 [Xiangrui Meng] api/mllib -> api/scala
e4afaa8 [Xiangrui Meng] explicity state what might change
2014-05-18 17:00:57 -07:00

5.2 KiB

layout title
global Machine Learning Library (MLlib)

MLlib is a Spark implementation of some common machine learning algorithms and utilities, including classification, regression, clustering, collaborative filtering, dimensionality reduction, as well as underlying optimization primitives:

MLlib is a new component under active development. The APIs marked Experimental/DeveloperApi may change in future releases, and we will provide migration guide between releases.

Dependencies

MLlib uses linear algebra packages Breeze, which depends on netlib-java, and jblas. netlib-java and jblas depend on native Fortran routines. You need to install the gfortran runtime library if it is not already present on your nodes. MLlib will throw a linking error if it cannot detect these libraries automatically. Due to license issues, we do not include netlib-java's native libraries in MLlib's dependency set. If no native library is available at runtime, you will see a warning message. To use native libraries from netlib-java, please include artifact com.github.fommil.netlib:all:1.1.2 as a dependency of your project or build your own (see instructions).

To use MLlib in Python, you will need NumPy version 1.4 or newer.


Migration guide

From 0.9 to 1.0

In MLlib v1.0, we support both dense and sparse input in a unified way, which introduces a few breaking changes. If your data is sparse, please store it in a sparse format instead of dense to take advantage of sparsity in both storage and computation.

We used to represent a feature vector by Array[Double], which is replaced by Vector in v1.0. Algorithms that used to accept RDD[Array[Double]] now take RDD[Vector]. LabeledPoint is now a wrapper of (Double, Vector) instead of (Double, Array[Double]). Converting Array[Double] to Vector is straightforward:

{% highlight scala %} import org.apache.spark.mllib.linalg.{Vector, Vectors}

val array: Array[Double] = ... // a double array val vector: Vector = Vectors.dense(array) // a dense vector {% endhighlight %}

Vectors provides factory methods to create sparse vectors.

Note. Scala imports scala.collection.immutable.Vector by default, so you have to import org.apache.spark.mllib.linalg.Vector explicitly to use MLlib's Vector.

We used to represent a feature vector by double[], which is replaced by Vector in v1.0. Algorithms that used to accept RDD<double[]> now take RDD<Vector>. LabeledPoint is now a wrapper of (double, Vector) instead of (double, double[]). Converting double[] to Vector is straightforward:

{% highlight java %} import org.apache.spark.mllib.linalg.Vector; import org.apache.spark.mllib.linalg.Vectors;

double[] array = ... // a double array Vector vector = Vectors.dense(array); // a dense vector {% endhighlight %}

Vectors provides factory methods to create sparse vectors.

We used to represent a labeled feature vector in a NumPy array, where the first entry corresponds to the label and the rest are features. This representation is replaced by class LabeledPoint, which takes both dense and sparse feature vectors.

{% highlight python %} from pyspark.mllib.linalg import SparseVector from pyspark.mllib.regression import LabeledPoint

Create a labeled point with a positive label and a dense feature vector.

pos = LabeledPoint(1.0, [1.0, 0.0, 3.0])

Create a labeled point with a negative label and a sparse feature vector.

neg = LabeledPoint(0.0, SparseVector(3, [0, 2], [1.0, 3.0])) {% endhighlight %}