spark-instrumented-optimizer/docs/mllib-frequent-pattern-mining.md
Xin Ren 27cdde2ff8 [SPARK-10669] [DOCS] Link to each language's API in codetabs in ML docs: spark.mllib
In the Markdown docs for the spark.mllib Programming Guide, we have code examples with codetabs for each language. We should link to each language's API docs within the corresponding codetab, but we are inconsistent about this. For an example of what we want to do, see the "ChiSqSelector" section in 64743870f2/docs/mllib-feature-extraction.md
This JIRA is just for spark.mllib, not spark.ml.

Please let me know if more work is needed, thanks a lot.

Author: Xin Ren <iamshrek@126.com>

Closes #8977 from keypointt/SPARK-10669.
2015-10-07 15:00:19 +01:00

337 lines
12 KiB
Markdown

---
layout: global
title: Frequent Pattern Mining - MLlib
displayTitle: <a href="mllib-guide.html">MLlib</a> - Frequent Pattern Mining
---
Mining frequent items, itemsets, subsequences, or other substructures is usually among the
first steps to analyze a large-scale dataset, which has been an active research topic in
data mining for years.
We refer users to Wikipedia's [association rule learning](http://en.wikipedia.org/wiki/Association_rule_learning)
for more information.
MLlib provides a parallel implementation of FP-growth,
a popular algorithm to mining frequent itemsets.
## FP-growth
The FP-growth algorithm is described in the paper
[Han et al., Mining frequent patterns without candidate generation](http://dx.doi.org/10.1145/335191.335372),
where "FP" stands for frequent pattern.
Given a dataset of transactions, the first step of FP-growth is to calculate item frequencies and identify frequent items.
Different from [Apriori-like](http://en.wikipedia.org/wiki/Apriori_algorithm) algorithms designed for the same purpose,
the second step of FP-growth uses a suffix tree (FP-tree) structure to encode transactions without generating candidate sets
explicitly, which are usually expensive to generate.
After the second step, the frequent itemsets can be extracted from the FP-tree.
In MLlib, we implemented a parallel version of FP-growth called PFP,
as described in [Li et al., PFP: Parallel FP-growth for query recommendation](http://dx.doi.org/10.1145/1454008.1454027).
PFP distributes the work of growing FP-trees based on the suffices of transactions,
and hence more scalable than a single-machine implementation.
We refer users to the papers for more details.
MLlib's FP-growth implementation takes the following (hyper-)parameters:
* `minSupport`: the minimum support for an itemset to be identified as frequent.
For example, if an item appears 3 out of 5 transactions, it has a support of 3/5=0.6.
* `numPartitions`: the number of partitions used to distribute the work.
**Examples**
<div class="codetabs">
<div data-lang="scala" markdown="1">
[`FPGrowth`](api/scala/index.html#org.apache.spark.mllib.fpm.FPGrowth) implements the
FP-growth algorithm.
It take a `RDD` of transactions, where each transaction is an `Array` of items of a generic type.
Calling `FPGrowth.run` with transactions returns an
[`FPGrowthModel`](api/scala/index.html#org.apache.spark.mllib.fpm.FPGrowthModel)
that stores the frequent itemsets with their frequencies. The following
example illustrates how to mine frequent itemsets and association rules
(see [Association
Rules](mllib-frequent-pattern-mining.html#association-rules) for
details) from `transactions`.
Refer to the [`FPGrowth` Scala docs](api/scala/index.html#org.apache.spark.mllib.fpm.FPGrowth) for details on the API.
{% highlight scala %}
import org.apache.spark.rdd.RDD
import org.apache.spark.mllib.fpm.FPGrowth
val data = sc.textFile("data/mllib/sample_fpgrowth.txt")
val transactions: RDD[Array[String]] = data.map(s => s.trim.split(' '))
val fpg = new FPGrowth()
.setMinSupport(0.2)
.setNumPartitions(10)
val model = fpg.run(transactions)
model.freqItemsets.collect().foreach { itemset =>
println(itemset.items.mkString("[", ",", "]") + ", " + itemset.freq)
}
val minConfidence = 0.8
model.generateAssociationRules(minConfidence).collect().foreach { rule =>
println(
rule.antecedent.mkString("[", ",", "]")
+ " => " + rule.consequent .mkString("[", ",", "]")
+ ", " + rule.confidence)
}
{% endhighlight %}
</div>
<div data-lang="java" markdown="1">
[`FPGrowth`](api/java/org/apache/spark/mllib/fpm/FPGrowth.html) implements the
FP-growth algorithm.
It take an `JavaRDD` of transactions, where each transaction is an `Iterable` of items of a generic type.
Calling `FPGrowth.run` with transactions returns an
[`FPGrowthModel`](api/java/org/apache/spark/mllib/fpm/FPGrowthModel.html)
that stores the frequent itemsets with their frequencies. The following
example illustrates how to mine frequent itemsets and association rules
(see [Association
Rules](mllib-frequent-pattern-mining.html#association-rules) for
details) from `transactions`.
Refer to the [`FPGrowth` Java docs](api/java/org/apache/spark/mllib/fpm/FPGrowth.html) for details on the API.
{% highlight java %}
import java.util.Arrays;
import java.util.List;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.fpm.AssociationRules;
import org.apache.spark.mllib.fpm.FPGrowth;
import org.apache.spark.mllib.fpm.FPGrowthModel;
SparkConf conf = new SparkConf().setAppName("FP-growth Example");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> data = sc.textFile("data/mllib/sample_fpgrowth.txt");
JavaRDD<List<String>> transactions = data.map(
new Function<String, List<String>>() {
public List<String> call(String line) {
String[] parts = line.split(" ");
return Arrays.asList(parts);
}
}
);
FPGrowth fpg = new FPGrowth()
.setMinSupport(0.2)
.setNumPartitions(10);
FPGrowthModel<String> model = fpg.run(transactions);
for (FPGrowth.FreqItemset<String> itemset: model.freqItemsets().toJavaRDD().collect()) {
System.out.println("[" + itemset.javaItems() + "], " + itemset.freq());
}
double minConfidence = 0.8;
for (AssociationRules.Rule<String> rule
: model.generateAssociationRules(minConfidence).toJavaRDD().collect()) {
System.out.println(
rule.javaAntecedent() + " => " + rule.javaConsequent() + ", " + rule.confidence());
}
{% endhighlight %}
</div>
<div data-lang="python" markdown="1">
[`FPGrowth`](api/python/pyspark.mllib.html#pyspark.mllib.fpm.FPGrowth) implements the
FP-growth algorithm.
It take an `RDD` of transactions, where each transaction is an `List` of items of a generic type.
Calling `FPGrowth.train` with transactions returns an
[`FPGrowthModel`](api/python/pyspark.mllib.html#pyspark.mllib.fpm.FPGrowthModel)
that stores the frequent itemsets with their frequencies.
Refer to the [`FPGrowth` Python docs](api/python/pyspark.mllib.html#pyspark.mllib.fpm.FPGrowth) for more details on the API.
{% highlight python %}
from pyspark.mllib.fpm import FPGrowth
data = sc.textFile("data/mllib/sample_fpgrowth.txt")
transactions = data.map(lambda line: line.strip().split(' '))
model = FPGrowth.train(transactions, minSupport=0.2, numPartitions=10)
result = model.freqItemsets().collect()
for fi in result:
print(fi)
{% endhighlight %}
</div>
</div>
## Association Rules
<div class="codetabs">
<div data-lang="scala" markdown="1">
[AssociationRules](api/scala/index.html#org.apache.spark.mllib.fpm.AssociationRules)
implements a parallel rule generation algorithm for constructing rules
that have a single item as the consequent.
Refer to the [`AssociationRules` Scala docs](api/java/org/apache/spark/mllib/fpm/AssociationRules.html) for details on the API.
{% highlight scala %}
import org.apache.spark.rdd.RDD
import org.apache.spark.mllib.fpm.AssociationRules
import org.apache.spark.mllib.fpm.FPGrowth.FreqItemset
val freqItemsets = sc.parallelize(Seq(
new FreqItemset(Array("a"), 15L),
new FreqItemset(Array("b"), 35L),
new FreqItemset(Array("a", "b"), 12L)
));
val ar = new AssociationRules()
.setMinConfidence(0.8)
val results = ar.run(freqItemsets)
results.collect().foreach { rule =>
println("[" + rule.antecedent.mkString(",")
+ "=>"
+ rule.consequent.mkString(",") + "]," + rule.confidence)
}
{% endhighlight %}
</div>
<div data-lang="java" markdown="1">
[AssociationRules](api/java/org/apache/spark/mllib/fpm/AssociationRules.html)
implements a parallel rule generation algorithm for constructing rules
that have a single item as the consequent.
Refer to the [`AssociationRules` Java docs](api/java/org/apache/spark/mllib/fpm/AssociationRules.html) for details on the API.
{% highlight java %}
import java.util.Arrays;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.fpm.AssociationRules;
import org.apache.spark.mllib.fpm.FPGrowth.FreqItemset;
JavaRDD<FPGrowth.FreqItemset<String>> freqItemsets = sc.parallelize(Arrays.asList(
new FreqItemset<String>(new String[] {"a"}, 15L),
new FreqItemset<String>(new String[] {"b"}, 35L),
new FreqItemset<String>(new String[] {"a", "b"}, 12L)
));
AssociationRules arules = new AssociationRules()
.setMinConfidence(0.8);
JavaRDD<AssociationRules.Rule<String>> results = arules.run(freqItemsets);
for (AssociationRules.Rule<String> rule: results.collect()) {
System.out.println(
rule.javaAntecedent() + " => " + rule.javaConsequent() + ", " + rule.confidence());
}
{% endhighlight %}
</div>
</div>
## PrefixSpan
PrefixSpan is a sequential pattern mining algorithm described in
[Pei et al., Mining Sequential Patterns by Pattern-Growth: The
PrefixSpan Approach](http://dx.doi.org/10.1109%2FTKDE.2004.77). We refer
the reader to the referenced paper for formalizing the sequential
pattern mining problem.
MLlib's PrefixSpan implementation takes the following parameters:
* `minSupport`: the minimum support required to be considered a frequent
sequential pattern.
* `maxPatternLength`: the maximum length of a frequent sequential
pattern. Any frequent pattern exceeding this length will not be
included in the results.
* `maxLocalProjDBSize`: the maximum number of items allowed in a
prefix-projected database before local iterative processing of the
projected databse begins. This parameter should be tuned with respect
to the size of your executors.
**Examples**
The following example illustrates PrefixSpan running on the sequences
(using same notation as Pei et al):
~~~
<(12)3>
<1(32)(12)>
<(12)5>
<6>
~~~
<div class="codetabs">
<div data-lang="scala" markdown="1">
[`PrefixSpan`](api/scala/index.html#org.apache.spark.mllib.fpm.PrefixSpan) implements the
PrefixSpan algorithm.
Calling `PrefixSpan.run` returns a
[`PrefixSpanModel`](api/scala/index.html#org.apache.spark.mllib.fpm.PrefixSpanModel)
that stores the frequent sequences with their frequencies.
Refer to the [`PrefixSpan` Scala docs](api/scala/index.html#org.apache.spark.mllib.fpm.PrefixSpan) and [`PrefixSpanModel` Scala docs](api/scala/index.html#org.apache.spark.mllib.fpm.PrefixSpanModel) for details on the API.
{% highlight scala %}
import org.apache.spark.mllib.fpm.PrefixSpan
val sequences = sc.parallelize(Seq(
Array(Array(1, 2), Array(3)),
Array(Array(1), Array(3, 2), Array(1, 2)),
Array(Array(1, 2), Array(5)),
Array(Array(6))
), 2).cache()
val prefixSpan = new PrefixSpan()
.setMinSupport(0.5)
.setMaxPatternLength(5)
val model = prefixSpan.run(sequences)
model.freqSequences.collect().foreach { freqSequence =>
println(
freqSequence.sequence.map(_.mkString("[", ", ", "]")).mkString("[", ", ", "]") + ", " + freqSequence.freq)
}
{% endhighlight %}
</div>
<div data-lang="java" markdown="1">
[`PrefixSpan`](api/java/org/apache/spark/mllib/fpm/PrefixSpan.html) implements the
PrefixSpan algorithm.
Calling `PrefixSpan.run` returns a
[`PrefixSpanModel`](api/java/org/apache/spark/mllib/fpm/PrefixSpanModel.html)
that stores the frequent sequences with their frequencies.
Refer to the [`PrefixSpan` Java docs](api/java/org/apache/spark/mllib/fpm/PrefixSpan.html) and [`PrefixSpanModel` Java docs](api/java/org/apache/spark/mllib/fpm/PrefixSpanModel.html) for details on the API.
{% highlight java %}
import java.util.Arrays;
import java.util.List;
import org.apache.spark.mllib.fpm.PrefixSpan;
import org.apache.spark.mllib.fpm.PrefixSpanModel;
JavaRDD<List<List<Integer>>> sequences = sc.parallelize(Arrays.asList(
Arrays.asList(Arrays.asList(1, 2), Arrays.asList(3)),
Arrays.asList(Arrays.asList(1), Arrays.asList(3, 2), Arrays.asList(1, 2)),
Arrays.asList(Arrays.asList(1, 2), Arrays.asList(5)),
Arrays.asList(Arrays.asList(6))
), 2);
PrefixSpan prefixSpan = new PrefixSpan()
.setMinSupport(0.5)
.setMaxPatternLength(5);
PrefixSpanModel<Integer> model = prefixSpan.run(sequences);
for (PrefixSpan.FreqSequence<Integer> freqSeq: model.freqSequences().toJavaRDD().collect()) {
System.out.println(freqSeq.javaSequence() + ", " + freqSeq.freq());
}
{% endhighlight %}
</div>
</div>