spark-instrumented-optimizer/python
itholic 0227793f9e [SPARK-36689][PYTHON] Cleanup the deprecated APIs and raise proper warning message
### What changes were proposed in this pull request?

This PR proposes cleanup the deprecated APIs in `missing/*.py`, and raise proper warning message for the deprecated APIs such as pandas does.

Also remove the checking for pandas < 1.0, since now we only focus on following the behavior of latest pandas.

### Why are the changes needed?

We should follow the deprecation of APIs of latest pandas.

### Does this PR introduce _any_ user-facing change?

Now the some APIs raise proper alternative message for deprecated functions such as pandas does.

### How was this patch tested?

Ran `dev/lint-python` and manually check the pandas API documents one by one.

Closes #33931 from itholic/SPARK-36689.

Authored-by: itholic <haejoon.lee@databricks.com>
Signed-off-by: Hyukjin Kwon <gurwls223@apache.org>
2021-09-09 19:50:29 +09:00
..
docs [SPARK-36401][PYTHON] Implement Series.cov 2021-09-03 10:41:27 -07:00
lib [SPARK-34688][PYTHON] Upgrade to Py4J 0.10.9.2 2021-03-11 09:51:41 -06:00
pyspark [SPARK-36689][PYTHON] Cleanup the deprecated APIs and raise proper warning message 2021-09-09 19:50:29 +09:00
test_coverage [SPARK-36092][INFRA][BUILD][PYTHON] Migrate to GitHub Actions with Codecov from Jenkins 2021-08-01 21:37:19 +09:00
test_support Spelling r common dev mlib external project streaming resource managers python 2020-11-27 10:22:45 -06:00
.coveragerc [SPARK-7721][PYTHON][TESTS] Adds PySpark coverage generation script 2018-01-22 22:12:50 +09:00
.gitignore [SPARK-3946] gitignore in /python includes wrong directory 2014-10-14 14:09:39 -07:00
MANIFEST.in [SPARK-32714][PYTHON] Initial pyspark-stubs port 2020-09-24 14:15:36 +09:00
mypy.ini [SPARK-35684][INFRA][PYTHON] Bump up mypy version in GitHub Actions 2021-07-07 13:26:28 +09:00
pylintrc [SPARK-32435][PYTHON] Remove heapq3 port from Python 3 2020-07-27 20:10:13 +09:00
README.md [SPARK-36474][PYTHON][DOCS] Mention 'pandas API on Spark' in Spark overview pages 2021-08-11 22:57:26 +09:00
run-tests [SPARK-29672][PYSPARK] update spark testing framework to use python3 2019-11-14 10:18:55 -08:00
run-tests-with-coverage [SPARK-36092][INFRA][BUILD][PYTHON] Migrate to GitHub Actions with Codecov from Jenkins 2021-08-01 21:37:19 +09:00
run-tests.py [SPARK-32194][PYTHON] Use proper exception classes instead of plain Exception 2021-05-26 11:54:40 +09:00
setup.cfg [SPARK-1267][SPARK-18129] Allow PySpark to be pip installed 2016-11-16 14:22:15 -08:00
setup.py [SPARK-35759][PYTHON] Remove the upperbound for numpy for pandas-on-Spark 2021-06-15 09:59:05 +09:00

Apache Spark

Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, pandas API on Spark for pandas workloads, MLlib for machine learning, GraphX for graph processing, and Structured Streaming for stream processing.

https://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page

Python Packaging

This README file only contains basic information related to pip installed PySpark. This packaging is currently experimental and may change in future versions (although we will do our best to keep compatibility). Using PySpark requires the Spark JARs, and if you are building this from source please see the builder instructions at "Building Spark".

The Python packaging for Spark is not intended to replace all of the other use cases. This Python packaged version of Spark is suitable for interacting with an existing cluster (be it Spark standalone, YARN, or Mesos) - but does not contain the tools required to set up your own standalone Spark cluster. You can download the full version of Spark from the Apache Spark downloads page.

NOTE: If you are using this with a Spark standalone cluster you must ensure that the version (including minor version) matches or you may experience odd errors.

Python Requirements

At its core PySpark depends on Py4J, but some additional sub-packages have their own extra requirements for some features (including numpy, pandas, and pyarrow). See also Dependencies for production, and dev/requirements.txt for development.