spark-instrumented-optimizer/docs/mllib-basics.md
Xiangrui Meng 26d35f3fd9 [SPARK-1506][MLLIB] Documentation improvements for MLlib 1.0
Preview: http://54.82.240.23:4000/mllib-guide.html

Table of contents:

* Basics
  * Data types
  * Summary statistics
* Classification and regression
  * linear support vector machine (SVM)
  * logistic regression
  * linear linear squares, Lasso, and ridge regression
  * decision tree
  * naive Bayes
* Collaborative Filtering
  * alternating least squares (ALS)
* Clustering
  * k-means
* Dimensionality reduction
  * singular value decomposition (SVD)
  * principal component analysis (PCA)
* Optimization
  * stochastic gradient descent
  * limited-memory BFGS (L-BFGS)

Author: Xiangrui Meng <meng@databricks.com>

Closes #422 from mengxr/mllib-doc and squashes the following commits:

944e3a9 [Xiangrui Meng] merge master
f9fda28 [Xiangrui Meng] minor
9474065 [Xiangrui Meng] add alpha to ALS examples
928e630 [Xiangrui Meng] initialization_mode -> initializationMode
5bbff49 [Xiangrui Meng] add imports to labeled point examples
c17440d [Xiangrui Meng] fix python nb example
28f40dc [Xiangrui Meng] remove localhost:4000
369a4d3 [Xiangrui Meng] Merge branch 'master' into mllib-doc
7dc95cc [Xiangrui Meng] update linear methods
053ad8a [Xiangrui Meng] add links to go back to the main page
abbbf7e [Xiangrui Meng] update ALS argument names
648283e [Xiangrui Meng] level down statistics
14e2287 [Xiangrui Meng] add sample libsvm data and use it in guide
8cd2441 [Xiangrui Meng] minor updates
186ab07 [Xiangrui Meng] update section names
6568d65 [Xiangrui Meng] update toc, level up lr and svm
162ee12 [Xiangrui Meng] rename section names
5c1e1b1 [Xiangrui Meng] minor
8aeaba1 [Xiangrui Meng] wrap long lines
6ce6a6f [Xiangrui Meng] add summary statistics to toc
5760045 [Xiangrui Meng] claim beta
cc604bf [Xiangrui Meng] remove classification and regression
92747b3 [Xiangrui Meng] make section titles consistent
e605dd6 [Xiangrui Meng] add LIBSVM loader
f639674 [Xiangrui Meng] add python section to migration guide
c82ffb4 [Xiangrui Meng] clean optimization
31660eb [Xiangrui Meng] update linear algebra and stat
0a40837 [Xiangrui Meng] first pass over linear methods
1fc8271 [Xiangrui Meng] update toc
906ed0a [Xiangrui Meng] add a python example to naive bayes
5f0a700 [Xiangrui Meng] update collaborative filtering
656d416 [Xiangrui Meng] update mllib-clustering
86e143a [Xiangrui Meng] remove data types section from main page
8d1a128 [Xiangrui Meng] move part of linear algebra to data types and add Java/Python examples
d1b5cbf [Xiangrui Meng] merge master
72e4804 [Xiangrui Meng] one pass over tree guide
64f8995 [Xiangrui Meng] move decision tree guide to a separate file
9fca001 [Xiangrui Meng] add first version of linear algebra guide
53c9552 [Xiangrui Meng] update dependencies
f316ec2 [Xiangrui Meng] add migration guide
f399f6c [Xiangrui Meng] move linear-algebra to dimensionality-reduction
182460f [Xiangrui Meng] add guide for naive Bayes
137fd1d [Xiangrui Meng] re-organize toc
a61e434 [Xiangrui Meng] update mllib's toc
2014-04-22 11:20:47 -07:00

18 KiB

layout title
global <a href="mllib-guide.html">MLlib</a> - Basics
  • Table of contents {:toc}

MLlib supports local vectors and matrices stored on a single machine, as well as distributed matrices backed by one or more RDDs. In the current implementation, local vectors and matrices are simple data models to serve public interfaces. The underly linear algebra operations are provided by Breeze and jblas. A training example used in supervised learning is called "labeled point" in MLlib.

Local vector

A local vector has integer-typed and 0-based indices and double-typed values, stored on a single machine. MLlib supports two types of local vectors: dense and sparse. A dense vector is backed by a double array representing its entry values, while a sparse vector is backed by two parallel arrays: indices and values. For example, a vector (1.0, 0.0, 3.0) can be represented in dense format as [1.0, 0.0, 3.0] or in sparse format as (3, [0, 2], [1.0, 3.0]), where 3 is the size of the vector.

The base class of local vectors is Vector, and we provide two implementations: DenseVector and SparseVector. We recommend using the factory methods implemented in Vectors to create local vectors.

{% highlight scala %} import org.apache.spark.mllib.linalg.{Vector, Vectors}

// Create a dense vector (1.0, 0.0, 3.0). val dv: Vector = Vectors.dense(1.0, 0.0, 3.0) // Create a sparse vector (1.0, 0.0, 3.0) by specifying its indices and values corresponding to nonzero entries. val sv1: Vector = Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0)) // Create a sparse vector (1.0, 0.0, 3.0) by specifying its nonzero entries. val sv2: Vector = Vectors.sparse(3, Seq((0, 1.0), (2, 3.0))) {% endhighlight %}

Note

Scala imports scala.collection.immutable.Vector by default, so you have to import org.apache.spark.mllib.linalg.Vector explicitly to use MLlib's Vector.

The base class of local vectors is Vector, and we provide two implementations: DenseVector and SparseVector. We recommend using the factory methods implemented in Vectors to create local vectors.

{% highlight java %} import org.apache.spark.mllib.linalg.Vector; import org.apache.spark.mllib.linalg.Vectors;

// Create a dense vector (1.0, 0.0, 3.0). Vector dv = Vectors.dense(1.0, 0.0, 3.0); // Create a sparse vector (1.0, 0.0, 3.0) by specifying its indices and values corresponding to nonzero entries. Vector sv = Vectors.sparse(3, new int[] {0, 2}, new double[] {1.0, 3.0}); {% endhighlight %}

MLlib recognizes the following types as dense vectors:
  • NumPy's array
  • Python's list, e.g., [1, 2, 3]

and the following as sparse vectors:

We recommend using NumPy arrays over lists for efficiency, and using the factory methods implemented in Vectors to create sparse vectors.

{% highlight python %} import numpy as np import scipy.sparse as sps from pyspark.mllib.linalg import Vectors

Use a NumPy array as a dense vector.

dv1 = np.array([1.0, 0.0, 3.0])

Use a Python list as a dense vector.

dv2 = [1.0, 0.0, 3.0]

Create a SparseVector.

sv1 = Vectors.sparse(3, [0, 2], [1.0, 3.0])

Use a single-column SciPy csc_matrix as a sparse vector.

sv2 = sps.csc_matrix((np.array([1.0, 3.0]), np.array([0, 2]), np.array([0, 2])), shape = (3, 1)) {% endhighlight %}

Labeled point

A labeled point is a local vector, either dense or sparse, associated with a label/response. In MLlib, labeled points are used in supervised learning algorithms. We use a double to store a label, so we can use labeled points in both regression and classification. For binary classification, label should be either 0 (negative) or 1 (positive). For multiclass classification, labels should be class indices staring from zero: 0, 1, 2, \ldots.

A labeled point is represented by the case class LabeledPoint.

{% highlight scala %} import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.regression.LabeledPoint

// Create a labeled point with a positive label and a dense feature vector. val pos = LabeledPoint(1.0, Vectors.dense(1.0, 0.0, 3.0))

// Create a labeled point with a negative label and a sparse feature vector. val neg = LabeledPoint(0.0, Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0))) {% endhighlight %}

A labeled point is represented by LabeledPoint.

{% highlight java %} import org.apache.spark.mllib.linalg.Vectors; import org.apache.spark.mllib.regression.LabeledPoint;

// Create a labeled point with a positive label and a dense feature vector. LabeledPoint pos = new LabeledPoint(1.0, Vectors.dense(1.0, 0.0, 3.0));

// Create a labeled point with a negative label and a sparse feature vector. LabeledPoint neg = new LabeledPoint(1.0, Vectors.sparse(3, new int[] {0, 2}, new double[] {1.0, 3.0})); {% endhighlight %}

A labeled point is represented by LabeledPoint.

{% highlight python %} from pyspark.mllib.linalg import SparseVector from pyspark.mllib.regression import LabeledPoint

Create a labeled point with a positive label and a dense feature vector.

pos = LabeledPoint(1.0, [1.0, 0.0, 3.0])

Create a labeled point with a negative label and a sparse feature vector.

neg = LabeledPoint(0.0, SparseVector(3, [0, 2], [1.0, 3.0])) {% endhighlight %}

Sparse data

It is very common in practice to have sparse training data. MLlib supports reading training examples stored in LIBSVM format, which is the default format used by LIBSVM and LIBLINEAR. It is a text format. Each line represents a labeled sparse feature vector using the following format:

label index1:value1 index2:value2 ...

where the indices are one-based and in ascending order. After loading, the feature indices are converted to zero-based.

MLUtils.loadLibSVMData reads training examples stored in LIBSVM format.

{% highlight scala %} import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.util.MLUtils import org.apache.spark.rdd.RDD

val training: RDD[LabeledPoint] = MLUtils.loadLibSVMData(sc, "mllib/data/sample_libsvm_data.txt") {% endhighlight %}

[`MLUtils.loadLibSVMData`](api/mllib/index.html#org.apache.spark.mllib.util.MLUtils$) reads training examples stored in LIBSVM format.

{% highlight java %} import org.apache.spark.mllib.regression.LabeledPoint; import org.apache.spark.mllib.util.MLUtils; import org.apache.spark.rdd.RDDimport;

RDD[LabeledPoint] training = MLUtils.loadLibSVMData(sc, "mllib/data/sample_libsvm_data.txt") {% endhighlight %}

Local matrix

A local matrix has integer-typed row and column indices and double-typed values, stored on a single machine. MLlib supports dense matrix, whose entry values are stored in a single double array in column major. For example, the following matrix \[ \begin{pmatrix} 1.0 & 2.0 \\ 3.0 & 4.0 \\ 5.0 & 6.0 \end{pmatrix} \] is stored in a one-dimensional array [1.0, 3.0, 5.0, 2.0, 4.0, 6.0] with the matrix size (3, 2). We are going to add sparse matrix in the next release.

The base class of local matrices is Matrix, and we provide one implementation: DenseMatrix. Sparse matrix will be added in the next release. We recommend using the factory methods implemented in Matrices to create local matrices.

{% highlight scala %} import org.apache.spark.mllib.linalg.{Matrix, Matrices}

// Create a dense matrix ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0)) val dm: Matrix = Matrices.dense(3, 2, Array(1.0, 3.0, 5.0, 2.0, 4.0, 6.0)) {% endhighlight %}

The base class of local matrices is Matrix, and we provide one implementation: DenseMatrix. Sparse matrix will be added in the next release. We recommend using the factory methods implemented in Matrices to create local matrices.

{% highlight java %} import org.apache.spark.mllib.linalg.Matrix; import org.apache.spark.mllib.linalg.Matrices;

// Create a dense matrix ((1.0, 2.0), (3.0, 4.0), (5.0, 6.0)) Matrix dm = Matrices.dense(3, 2, new double[] {1.0, 3.0, 5.0, 2.0, 4.0, 6.0}); {% endhighlight %}

Distributed matrix

A distributed matrix has long-typed row and column indices and double-typed values, stored distributively in one or more RDDs. It is very important to choose the right format to store large and distributed matrices. Converting a distributed matrix to a different format may require a global shuffle, which is quite expensive. We implemented three types of distributed matrices in this release and will add more types in the future.

Note

The underlying RDDs of a distributed matrix must be deterministic, because we cache the matrix size. It is always error-prone to have non-deterministic RDDs.

RowMatrix

A RowMatrix is a row-oriented distributed matrix without meaningful row indices, backed by an RDD of its rows, where each row is a local vector. This is similar to data matrix in the context of multivariate statistics. Since each row is represented by a local vector, the number of columns is limited by the integer range but it should be much smaller in practice.

A RowMatrix can be created from an RDD[Vector] instance. Then we can compute its column summary statistics.

{% highlight scala %} import org.apache.spark.mllib.linalg.Vector import org.apache.spark.mllib.linalg.distributed.RowMatrix

val rows: RDD[Vector] = ... // an RDD of local vectors // Create a RowMatrix from an RDD[Vector]. val mat: RowMatrix = new RowMatrix(rows)

// Get its size. val m = mat.numRows() val n = mat.numCols() {% endhighlight %}

A RowMatrix can be created from a JavaRDD<Vector> instance. Then we can compute its column summary statistics.

{% highlight java %} import org.apache.spark.mllib.linalg.Vector; import org.apache.spark.mllib.linalg.distributed.RowMatrix;

JavaRDD rows = ... // a JavaRDD of local vectors // Create a RowMatrix from an JavaRDD. RowMatrix mat = new RowMatrix(rows.rdd());

// Get its size. long m = mat.numRows(); long n = mat.numCols(); {% endhighlight %}

Multivariate summary statistics

We provide column summary statistics for RowMatrix. If the number of columns is not large, say, smaller than 3000, you can also compute the covariance matrix as a local matrix, which requires \mathcal{O}(n^2) storage where n is the number of columns. The total CPU time is \mathcal{O}(m n^2), where m is the number of rows, which could be faster if the rows are sparse.

RowMatrix#computeColumnSummaryStatistics returns an instance of MultivariateStatisticalSummary, which contains the column-wise max, min, mean, variance, and number of nonzeros, as well as the total count.

{% highlight scala %} import org.apache.spark.mllib.linalg.Matrix import org.apache.spark.mllib.linalg.distributed.RowMatrix import org.apache.spark.mllib.stat.MultivariateStatisticalSummary

val mat: RowMatrix = ... // a RowMatrix

// Compute column summary statistics. val summary: MultivariateStatisticalSummary = mat.computeColumnSummaryStatistics() println(summary.mean) // a dense vector containing the mean value for each column println(summary.variance) // column-wise variance println(summary.numNonzers) // number of nonzeros in each column

// Compute the covariance matrix. val Cov: Matrix = mat.computeCovariance() {% endhighlight %}

IndexedRowMatrix

An IndexedRowMatrix is similar to a RowMatrix but with meaningful row indices. It is backed by an RDD of indexed rows, which each row is represented by its index (long-typed) and a local vector.

An IndexedRowMatrix can be created from an RDD[IndexedRow] instance, where IndexedRow is a wrapper over (Long, Vector). An IndexedRowMatrix can be converted to a RowMatrix by dropping its row indices.

{% highlight scala %} import org.apache.spark.mllib.linalg.distributed.{IndexedRow, IndexedRowMatrix, RowMatrix}

val rows: RDD[IndexedRow] = ... // an RDD of indexed rows // Create an IndexedRowMatrix from an RDD[IndexedRow]. val mat: IndexedRowMatrix = new IndexedRowMatrix(rows)

// Get its size. val m = mat.numRows() val n = mat.numCols()

// Drop its row indices. val rowMat: RowMatrix = mat.toRowMatrix() {% endhighlight %}

An IndexedRowMatrix can be created from an JavaRDD<IndexedRow> instance, where IndexedRow is a wrapper over (long, Vector). An IndexedRowMatrix can be converted to a RowMatrix by dropping its row indices.

{% highlight java %} import org.apache.spark.mllib.linalg.distributed.IndexedRow; import org.apache.spark.mllib.linalg.distributed.IndexedRowMatrix; import org.apache.spark.mllib.linalg.distributed.RowMatrix;

JavaRDD[IndexedRow] rows = ... // a JavaRDD of indexed rows // Create an IndexedRowMatrix from a JavaRDD. IndexedRowMatrix mat = new IndexedRowMatrix(rows.rdd());

// Get its size. long m = mat.numRows(); long n = mat.numCols();

// Drop its row indices. RowMatrix rowMat = mat.toRowMatrix(); {% endhighlight %}

CoordinateMatrix

A CoordinateMatrix is a distributed matrix backed by an RDD of its entries. Each entry is a tuple of (i: Long, j: Long, value: Double), where i is the row index, j is the column index, and value is the entry value. A CoordinateMatrix should be used only in the case when both dimensions of the matrix are huge and the matrix is very sparse.

A CoordinateMatrix can be created from an RDD[MatrixEntry] instance, where MatrixEntry is a wrapper over (Long, Long, Double). A CoordinateMatrix can be converted to a IndexedRowMatrix with sparse rows by calling toIndexedRowMatrix. In this release, we do not provide other computation for CoordinateMatrix.

{% highlight scala %} import org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix, MatrixEntry}

val entries: RDD[MatrixEntry] = ... // an RDD of matrix entries // Create a CoordinateMatrix from an RDD[MatrixEntry]. val mat: CoordinateMatrix = new CoordinateMatrix(entries)

// Get its size. val m = mat.numRows() val n = mat.numCols()

// Convert it to an IndexRowMatrix whose rows are sparse vectors. val indexedRowMatrix = mat.toIndexedRowMatrix() {% endhighlight %}

A CoordinateMatrix can be created from a JavaRDD<MatrixEntry> instance, where MatrixEntry is a wrapper over (long, long, double). A CoordinateMatrix can be converted to a IndexedRowMatrix with sparse rows by calling toIndexedRowMatrix.

{% highlight scala %} import org.apache.spark.mllib.linalg.distributed.CoordinateMatrix; import org.apache.spark.mllib.linalg.distributed.MatrixEntry;

JavaRDD entries = ... // a JavaRDD of matrix entries // Create a CoordinateMatrix from a JavaRDD. CoordinateMatrix mat = new CoordinateMatrix(entries);

// Get its size. long m = mat.numRows(); long n = mat.numCols();

// Convert it to an IndexRowMatrix whose rows are sparse vectors. IndexedRowMatrix indexedRowMatrix = mat.toIndexedRowMatrix(); {% endhighlight %}