spark-instrumented-optimizer/docs/mllib-clustering.md
Michael Giannakopoulos db56f2df1b [SPARK-1945][MLLIB] Documentation Improvements for Spark 1.0
Standalone application examples are added to 'mllib-linear-methods.md' file written in Java.
This commit is related to the issue [Add full Java Examples in MLlib docs](https://issues.apache.org/jira/browse/SPARK-1945).
Also I changed the name of the sigmoid function from 'logit' to 'f'. This is because the logit function
is the inverse of sigmoid.

Thanks,
Michael

Author: Michael Giannakopoulos <miccagiann@gmail.com>

Closes #1311 from miccagiann/master and squashes the following commits:

8ffe5ab [Michael Giannakopoulos] Update code so as to comply with code standards.
f7ad5cc [Michael Giannakopoulos] Merge remote-tracking branch 'upstream/master'
38d92c7 [Michael Giannakopoulos] Adding PCA, SVD and LBFGS examples in Java. Performing minor updates in the already committed examples so as to eradicate the call of 'productElement' function whenever is possible.
cc0a089 [Michael Giannakopoulos] Modyfied Java examples so as to comply with coding standards.
b1141b2 [Michael Giannakopoulos] Added Java examples for Clustering and Collaborative Filtering [mllib-clustering.md & mllib-collaborative-filtering.md].
837f7a8 [Michael Giannakopoulos] Merge remote-tracking branch 'upstream/master'
15f0eb4 [Michael Giannakopoulos] Java examples included in 'mllib-linear-methods.md' file.
2014-07-20 20:48:44 -07:00

6.1 KiB

layout title displayTitle
global Clustering - MLlib <a href="mllib-guide.html">MLlib</a> - Clustering
  • Table of contents {:toc}

Clustering

Clustering is an unsupervised learning problem whereby we aim to group subsets of entities with one another based on some notion of similarity. Clustering is often used for exploratory analysis and/or as a component of a hierarchical supervised learning pipeline (in which distinct classifiers or regression models are trained for each cluster).

MLlib supports k-means clustering, one of the most commonly used clustering algorithms that clusters the data points into predefined number of clusters. The MLlib implementation includes a parallelized variant of the k-means++ method called kmeans||. The implementation in MLlib has the following parameters:

  • k is the number of desired clusters.
  • maxIterations is the maximum number of iterations to run.
  • initializationMode specifies either random initialization or initialization via k-means||.
  • runs is the number of times to run the k-means algorithm (k-means is not guaranteed to find a globally optimal solution, and when run multiple times on a given dataset, the algorithm returns the best clustering result).
  • initializationSteps determines the number of steps in the k-means|| algorithm.
  • epsilon determines the distance threshold within which we consider k-means to have converged.

Examples

Following code snippets can be executed in `spark-shell`.

In the following example after loading and parsing data, we use the KMeans object to cluster the data into two clusters. The number of desired clusters is passed to the algorithm. We then compute Within Set Sum of Squared Error (WSSSE). You can reduce this error measure by increasing k. In fact the optimal k is usually one where there is an "elbow" in the WSSSE graph.

{% highlight scala %} import org.apache.spark.mllib.clustering.KMeans import org.apache.spark.mllib.linalg.Vectors

// Load and parse the data val data = sc.textFile("data/mllib/kmeans_data.txt") val parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble)))

// Cluster the data into two classes using KMeans val numClusters = 2 val numIterations = 20 val clusters = KMeans.train(parsedData, numClusters, numIterations)

// Evaluate clustering by computing Within Set Sum of Squared Errors val WSSSE = clusters.computeCost(parsedData) println("Within Set Sum of Squared Errors = " + WSSSE) {% endhighlight %}

All of MLlib's methods use Java-friendly types, so you can import and call them there the same way you do in Scala. The only caveat is that the methods take Scala RDD objects, while the Spark Java API uses a separate `JavaRDD` class. You can convert a Java RDD to a Scala one by calling `.rdd()` on your `JavaRDD` object. A standalone application example that is equivalent to the provided example in Scala is given bellow:

{% highlight java %} import org.apache.spark.api.java.*; import org.apache.spark.api.java.function.Function; import org.apache.spark.mllib.clustering.KMeans; import org.apache.spark.mllib.clustering.KMeansModel; import org.apache.spark.mllib.linalg.Vector; import org.apache.spark.mllib.linalg.Vectors; import org.apache.spark.SparkConf;

public class KMeansExample { public static void main(String[] args) { SparkConf conf = new SparkConf().setAppName("K-means Example"); JavaSparkContext sc = new JavaSparkContext(conf);

// Load and parse data
String path = "data/mllib/kmeans_data.txt";
JavaRDD<String> data = sc.textFile(path);
JavaRDD<Vector> parsedData = data.map(
  new Function<String, Vector>() {
    public Vector call(String s) {
      String[] sarray = s.split(" ");
      double[] values = new double[sarray.length];
      for (int i = 0; i < sarray.length; i++)
        values[i] = Double.parseDouble(sarray[i]);
      return Vectors.dense(values);
    }
  }
);

// Cluster the data into two classes using KMeans
int numClusters = 2;
int numIterations = 20;
KMeansModel clusters = KMeans.train(parsedData.rdd(), numClusters, numIterations);

// Evaluate clustering by computing Within Set Sum of Squared Errors
double WSSSE = clusters.computeCost(parsedData.rdd());
System.out.println("Within Set Sum of Squared Errors = " + WSSSE);

} } {% endhighlight %}

In order to run the above standalone application using Spark framework make sure that you follow the instructions provided at section Standalone Applications of the quick-start guide. What is more, you should include to your build file spark-mllib as a dependency.

Following examples can be tested in the PySpark shell.

In the following example after loading and parsing data, we use the KMeans object to cluster the data into two clusters. The number of desired clusters is passed to the algorithm. We then compute Within Set Sum of Squared Error (WSSSE). You can reduce this error measure by increasing k. In fact the optimal k is usually one where there is an "elbow" in the WSSSE graph.

{% highlight python %} from pyspark.mllib.clustering import KMeans from numpy import array from math import sqrt

Load and parse the data

data = sc.textFile("data/mllib/kmeans_data.txt") parsedData = data.map(lambda line: array([float(x) for x in line.split(' ')]))

Build the model (cluster the data)

clusters = KMeans.train(parsedData, 2, maxIterations=10, runs=10, initializationMode="random")

Evaluate clustering by computing Within Set Sum of Squared Errors

def error(point): center = clusters.centers[clusters.predict(point)] return sqrt(sum([x**2 for x in (point - center)]))

WSSSE = parsedData.map(lambda point: error(point)).reduce(lambda x, y: x + y) print("Within Set Sum of Squared Error = " + str(WSSSE)) {% endhighlight %}