spark-instrumented-optimizer/docs/mllib-naive-bayes.md
Xiangrui Meng df0aa8353a [WIP][SPARK-1871][MLLIB] Improve MLlib guide for v1.0
Some improvements to MLlib guide:

1. [SPARK-1872] Update API links for unidoc.
2. [SPARK-1783] Added `page.displayTitle` to the global layout. If it is defined, use it instead of `page.title` for title display.
3. Add more Java/Python examples.

Author: Xiangrui Meng <meng@databricks.com>

Closes #816 from mengxr/mllib-doc and squashes the following commits:

ec2e407 [Xiangrui Meng] format scala example for ALS
cd9f40b [Xiangrui Meng] add a paragraph to summarize distributed matrix types
4617f04 [Xiangrui Meng] add python example to loadLibSVMFile and fix Java example
d6509c2 [Xiangrui Meng] [SPARK-1783] update mllib titles
561fdc0 [Xiangrui Meng] add a displayTitle option to global layout
195d06f [Xiangrui Meng] add Java example for summary stats and minor fix
9f1ff89 [Xiangrui Meng] update java api links in mllib-basics
7dad18e [Xiangrui Meng] update java api links in NB
3a0f4a6 [Xiangrui Meng] api/pyspark -> api/python
35bdeb9 [Xiangrui Meng] api/mllib -> api/scala
e4afaa8 [Xiangrui Meng] explicity state what might change
2014-05-18 17:00:57 -07:00

133 lines
5.4 KiB
Markdown

---
layout: global
title: Naive Bayes - MLlib
displayTitle: <a href="mllib-guide.html">MLlib</a> - Naive Bayes
---
Naive Bayes is a simple multiclass classification algorithm with the assumption of independence
between every pair of features. Naive Bayes can be trained very efficiently. Within a single pass to
the training data, it computes the conditional probability distribution of each feature given label,
and then it applies Bayes' theorem to compute the conditional probability distribution of label
given an observation and use it for prediction. For more details, please visit the Wikipedia page
[Naive Bayes classifier](http://en.wikipedia.org/wiki/Naive_Bayes_classifier).
In MLlib, we implemented multinomial naive Bayes, which is typically used for document
classification. Within that context, each observation is a document, each feature represents a term,
whose value is the frequency of the term. For its formulation, please visit the Wikipedia page
[Multinomial Naive Bayes](http://en.wikipedia.org/wiki/Naive_Bayes_classifier#Multinomial_naive_Bayes)
or the section
[Naive Bayes text classification](http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html)
from the book Introduction to Information
Retrieval. [Additive smoothing](http://en.wikipedia.org/wiki/Lidstone_smoothing) can be used by
setting the parameter $\lambda$ (default to $1.0$). For document classification, the input feature
vectors are usually sparse. Please supply sparse vectors as input to take advantage of
sparsity. Since the training data is only used once, it is not necessary to cache it.
## Examples
<div class="codetabs">
<div data-lang="scala" markdown="1">
[NaiveBayes](api/scala/index.html#org.apache.spark.mllib.classification.NaiveBayes$) implements
multinomial naive Bayes. It takes an RDD of
[LabeledPoint](api/scala/index.html#org.apache.spark.mllib.regression.LabeledPoint) and an optional
smoothing parameter `lambda` as input, and output a
[NaiveBayesModel](api/scala/index.html#org.apache.spark.mllib.classification.NaiveBayesModel), which
can be used for evaluation and prediction.
{% highlight scala %}
import org.apache.spark.mllib.classification.NaiveBayes
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
val data = sc.textFile("mllib/data/sample_naive_bayes_data.txt")
val parsedData = data.map { line =>
val parts = line.split(',')
LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(' ').map(_.toDouble)))
}
// Split data into training (60%) and test (40%).
val splits = parsedData.randomSplit(Array(0.6, 0.4), seed = 11L)
val training = splits(0)
val test = splits(1)
val model = NaiveBayes.train(training, lambda = 1.0)
val prediction = model.predict(test.map(_.features))
val predictionAndLabel = prediction.zip(test.map(_.label))
val accuracy = 1.0 * predictionAndLabel.filter(x => x._1 == x._2).count() / test.count()
{% endhighlight %}
</div>
<div data-lang="java" markdown="1">
[NaiveBayes](api/java/org/apache/spark/mllib/classification/NaiveBayes.html) implements
multinomial naive Bayes. It takes a Scala RDD of
[LabeledPoint](api/java/org/apache/spark/mllib/regression/LabeledPoint.html) and an
optionally smoothing parameter `lambda` as input, and output a
[NaiveBayesModel](api/java/org/apache/spark/mllib/classification/NaiveBayesModel.html), which
can be used for evaluation and prediction.
{% highlight java %}
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.mllib.classification.NaiveBayes;
import org.apache.spark.mllib.classification.NaiveBayesModel;
import org.apache.spark.mllib.regression.LabeledPoint;
import scala.Tuple2;
JavaRDD<LabeledPoint> training = ... // training set
JavaRDD<LabeledPoint> test = ... // test set
final NaiveBayesModel model = NaiveBayes.train(training.rdd(), 1.0);
JavaRDD<Double> prediction =
test.map(new Function<LabeledPoint, Double>() {
@Override public Double call(LabeledPoint p) {
return model.predict(p.features());
}
});
JavaPairRDD<Double, Double> predictionAndLabel =
prediction.zip(test.map(new Function<LabeledPoint, Double>() {
@Override public Double call(LabeledPoint p) {
return p.label();
}
}));
double accuracy = 1.0 * predictionAndLabel.filter(new Function<Tuple2<Double, Double>, Boolean>() {
@Override public Boolean call(Tuple2<Double, Double> pl) {
return pl._1() == pl._2();
}
}).count() / test.count();
{% endhighlight %}
</div>
<div data-lang="python" markdown="1">
[NaiveBayes](api/python/pyspark.mllib.classification.NaiveBayes-class.html) implements multinomial
naive Bayes. It takes an RDD of
[LabeledPoint](api/python/pyspark.mllib.regression.LabeledPoint-class.html) and an optionally
smoothing parameter `lambda` as input, and output a
[NaiveBayesModel](api/python/pyspark.mllib.classification.NaiveBayesModel-class.html), which can be
used for evaluation and prediction.
<!-- TODO: Make Python's example consistent with Scala's and Java's. -->
{% highlight python %}
from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.classification import NaiveBayes
# an RDD of LabeledPoint
data = sc.parallelize([
LabeledPoint(0.0, [0.0, 0.0])
... # more labeled points
])
# Train a naive Bayes model.
model = NaiveBayes.train(data, 1.0)
# Make prediction.
prediction = model.predict([0.0, 0.0])
{% endhighlight %}
</div>
</div>