spark-instrumented-optimizer/docs/mllib-naive-bayes.md
Xiangrui Meng 26d35f3fd9 [SPARK-1506][MLLIB] Documentation improvements for MLlib 1.0
Preview: http://54.82.240.23:4000/mllib-guide.html

Table of contents:

* Basics
  * Data types
  * Summary statistics
* Classification and regression
  * linear support vector machine (SVM)
  * logistic regression
  * linear linear squares, Lasso, and ridge regression
  * decision tree
  * naive Bayes
* Collaborative Filtering
  * alternating least squares (ALS)
* Clustering
  * k-means
* Dimensionality reduction
  * singular value decomposition (SVD)
  * principal component analysis (PCA)
* Optimization
  * stochastic gradient descent
  * limited-memory BFGS (L-BFGS)

Author: Xiangrui Meng <meng@databricks.com>

Closes #422 from mengxr/mllib-doc and squashes the following commits:

944e3a9 [Xiangrui Meng] merge master
f9fda28 [Xiangrui Meng] minor
9474065 [Xiangrui Meng] add alpha to ALS examples
928e630 [Xiangrui Meng] initialization_mode -> initializationMode
5bbff49 [Xiangrui Meng] add imports to labeled point examples
c17440d [Xiangrui Meng] fix python nb example
28f40dc [Xiangrui Meng] remove localhost:4000
369a4d3 [Xiangrui Meng] Merge branch 'master' into mllib-doc
7dc95cc [Xiangrui Meng] update linear methods
053ad8a [Xiangrui Meng] add links to go back to the main page
abbbf7e [Xiangrui Meng] update ALS argument names
648283e [Xiangrui Meng] level down statistics
14e2287 [Xiangrui Meng] add sample libsvm data and use it in guide
8cd2441 [Xiangrui Meng] minor updates
186ab07 [Xiangrui Meng] update section names
6568d65 [Xiangrui Meng] update toc, level up lr and svm
162ee12 [Xiangrui Meng] rename section names
5c1e1b1 [Xiangrui Meng] minor
8aeaba1 [Xiangrui Meng] wrap long lines
6ce6a6f [Xiangrui Meng] add summary statistics to toc
5760045 [Xiangrui Meng] claim beta
cc604bf [Xiangrui Meng] remove classification and regression
92747b3 [Xiangrui Meng] make section titles consistent
e605dd6 [Xiangrui Meng] add LIBSVM loader
f639674 [Xiangrui Meng] add python section to migration guide
c82ffb4 [Xiangrui Meng] clean optimization
31660eb [Xiangrui Meng] update linear algebra and stat
0a40837 [Xiangrui Meng] first pass over linear methods
1fc8271 [Xiangrui Meng] update toc
906ed0a [Xiangrui Meng] add a python example to naive bayes
5f0a700 [Xiangrui Meng] update collaborative filtering
656d416 [Xiangrui Meng] update mllib-clustering
86e143a [Xiangrui Meng] remove data types section from main page
8d1a128 [Xiangrui Meng] move part of linear algebra to data types and add Java/Python examples
d1b5cbf [Xiangrui Meng] merge master
72e4804 [Xiangrui Meng] one pass over tree guide
64f8995 [Xiangrui Meng] move decision tree guide to a separate file
9fca001 [Xiangrui Meng] add first version of linear algebra guide
53c9552 [Xiangrui Meng] update dependencies
f316ec2 [Xiangrui Meng] add migration guide
f399f6c [Xiangrui Meng] move linear-algebra to dimensionality-reduction
182460f [Xiangrui Meng] add guide for naive Bayes
137fd1d [Xiangrui Meng] re-organize toc
a61e434 [Xiangrui Meng] update mllib's toc
2014-04-22 11:20:47 -07:00

4.7 KiB

layout title
global <a href="mllib-guide.html">MLlib</a> - Naive Bayes

Naive Bayes is a simple multiclass classification algorithm with the assumption of independence between every pair of features. Naive Bayes can be trained very efficiently. Within a single pass to the training data, it computes the conditional probability distribution of each feature given label, and then it applies Bayes' theorem to compute the conditional probability distribution of label given an observation and use it for prediction. For more details, please visit the wikipedia page Naive Bayes classifier.

In MLlib, we implemented multinomial naive Bayes, which is typically used for document classification. Within that context, each observation is a document, each feature represents a term, whose value is the frequency of the term. For its formulation, please visit the wikipedia page Multinomial naive Bayes or the section Naive Bayes text classification from the book Introduction to Information Retrieval. Additive smoothing can be used by setting the parameter \lambda (default to $1.0$). For document classification, the input feature vectors are usually sparse. Please supply sparse vectors as input to take advantage of sparsity. Since the training data is only used once, it is not necessary to cache it.

Examples

NaiveBayes implements multinomial naive Bayes. It takes an RDD of LabeledPoint and an optional smoothing parameter lambda as input, and output a NaiveBayesModel, which can be used for evaluation and prediction.

{% highlight scala %} import org.apache.spark.mllib.classification.NaiveBayes

val training: RDD[LabeledPoint] = ... // training set val test: RDD[LabeledPoint] = ... // test set

val model = NaiveBayes.train(training, lambda = 1.0) val prediction = model.predict(test.map(_.features))

val predictionAndLabel = prediction.zip(test.map(_.label)) val accuracy = 1.0 * predictionAndLabel.filter(x => x._1 == x._2).count() / test.count() {% endhighlight %}

NaiveBayes implements multinomial naive Bayes. It takes a Scala RDD of LabeledPoint and an optionally smoothing parameter lambda as input, and output a NaiveBayesModel, which can be used for evaluation and prediction.

{% highlight java %} import org.apache.spark.mllib.classification.NaiveBayes;

JavaRDD training = ... // training set JavaRDD test = ... // test set

NaiveBayesModel model = NaiveBayes.train(training.rdd(), 1.0);

JavaRDD prediction = model.predict(test.map(new Function<LabeledPoint, Vector>() { public Vector call(LabeledPoint p) { return p.features(); } }) JavaPairRDD<Double, Double> predictionAndLabel = prediction.zip(test.map(new Function<LabeledPoint, Double>() { public Double call(LabeledPoint p) { return p.label(); } }) double accuracy = 1.0 * predictionAndLabel.filter(new Function<Tuple2<Double, Double>, Boolean>() { public Boolean call(Tuple2<Double, Double> pl) { return pl._1() == pl._2(); } }).count() / test.count() {% endhighlight %}

NaiveBayes implements multinomial naive Bayes. It takes an RDD of LabeledPoint and an optionally smoothing parameter lambda as input, and output a NaiveBayesModel, which can be used for evaluation and prediction.

{% highlight python %} from pyspark.mllib.regression import LabeledPoint from pyspark.mllib.classification import NaiveBayes

an RDD of LabeledPoint

data = sc.parallelize([ LabeledPoint(0.0, [0.0, 0.0]) ... # more labeled points ])

Train a naive Bayes model.

model = NaiveBayes.train(data, 1.0)

Make prediction.

prediction = model.predict([0.0, 0.0]) {% endhighlight %}