spark-instrumented-optimizer/docs/mllib-decision-tree.md
Xiangrui Meng 26d35f3fd9 [SPARK-1506][MLLIB] Documentation improvements for MLlib 1.0
Preview: http://54.82.240.23:4000/mllib-guide.html

Table of contents:

* Basics
  * Data types
  * Summary statistics
* Classification and regression
  * linear support vector machine (SVM)
  * logistic regression
  * linear linear squares, Lasso, and ridge regression
  * decision tree
  * naive Bayes
* Collaborative Filtering
  * alternating least squares (ALS)
* Clustering
  * k-means
* Dimensionality reduction
  * singular value decomposition (SVD)
  * principal component analysis (PCA)
* Optimization
  * stochastic gradient descent
  * limited-memory BFGS (L-BFGS)

Author: Xiangrui Meng <meng@databricks.com>

Closes #422 from mengxr/mllib-doc and squashes the following commits:

944e3a9 [Xiangrui Meng] merge master
f9fda28 [Xiangrui Meng] minor
9474065 [Xiangrui Meng] add alpha to ALS examples
928e630 [Xiangrui Meng] initialization_mode -> initializationMode
5bbff49 [Xiangrui Meng] add imports to labeled point examples
c17440d [Xiangrui Meng] fix python nb example
28f40dc [Xiangrui Meng] remove localhost:4000
369a4d3 [Xiangrui Meng] Merge branch 'master' into mllib-doc
7dc95cc [Xiangrui Meng] update linear methods
053ad8a [Xiangrui Meng] add links to go back to the main page
abbbf7e [Xiangrui Meng] update ALS argument names
648283e [Xiangrui Meng] level down statistics
14e2287 [Xiangrui Meng] add sample libsvm data and use it in guide
8cd2441 [Xiangrui Meng] minor updates
186ab07 [Xiangrui Meng] update section names
6568d65 [Xiangrui Meng] update toc, level up lr and svm
162ee12 [Xiangrui Meng] rename section names
5c1e1b1 [Xiangrui Meng] minor
8aeaba1 [Xiangrui Meng] wrap long lines
6ce6a6f [Xiangrui Meng] add summary statistics to toc
5760045 [Xiangrui Meng] claim beta
cc604bf [Xiangrui Meng] remove classification and regression
92747b3 [Xiangrui Meng] make section titles consistent
e605dd6 [Xiangrui Meng] add LIBSVM loader
f639674 [Xiangrui Meng] add python section to migration guide
c82ffb4 [Xiangrui Meng] clean optimization
31660eb [Xiangrui Meng] update linear algebra and stat
0a40837 [Xiangrui Meng] first pass over linear methods
1fc8271 [Xiangrui Meng] update toc
906ed0a [Xiangrui Meng] add a python example to naive bayes
5f0a700 [Xiangrui Meng] update collaborative filtering
656d416 [Xiangrui Meng] update mllib-clustering
86e143a [Xiangrui Meng] remove data types section from main page
8d1a128 [Xiangrui Meng] move part of linear algebra to data types and add Java/Python examples
d1b5cbf [Xiangrui Meng] merge master
72e4804 [Xiangrui Meng] one pass over tree guide
64f8995 [Xiangrui Meng] move decision tree guide to a separate file
9fca001 [Xiangrui Meng] add first version of linear algebra guide
53c9552 [Xiangrui Meng] update dependencies
f316ec2 [Xiangrui Meng] add migration guide
f399f6c [Xiangrui Meng] move linear-algebra to dimensionality-reduction
182460f [Xiangrui Meng] add guide for naive Bayes
137fd1d [Xiangrui Meng] re-organize toc
a61e434 [Xiangrui Meng] update mllib's toc
2014-04-22 11:20:47 -07:00

7.8 KiB

layout title
global <a href="mllib-guide.html">MLlib</a> - Decision Tree
  • Table of contents {:toc}

Decision trees and their ensembles are popular methods for the machine learning tasks of classification and regression. Decision trees are widely used since they are easy to interpret, handle categorical variables, extend to the multiclass classification setting, do not require feature scaling and are able to capture nonlinearities and feature interactions. Tree ensemble algorithms such as decision forest and boosting are among the top performers for classification and regression tasks.

Basic algorithm

The decision tree is a greedy algorithm that performs a recursive binary partitioning of the feature space by choosing a single element from the best split set where each element of the set maximizes the information gain at a tree node. In other words, the split chosen at each tree node is chosen from the set $\underset{s}{\operatorname{argmax}} IG(D,s)$ where $IG(D,s)$ is the information gain when a split $s$ is applied to a dataset $D$.

Node impurity and information gain

The node impurity is a measure of the homogeneity of the labels at the node. The current implementation provides two impurity measures for classification (Gini impurity and entropy) and one impurity measure for regression (variance).

ImpurityTaskFormulaDescription
Gini impurity Classification $\sum_{i=1}^{M} f_i(1-f_i)$$f_i$ is the frequency of label $i$ at a node and $M$ is the number of unique labels.
Entropy Classification $\sum_{i=1}^{M} -f_ilog(f_i)$$f_i$ is the frequency of label $i$ at a node and $M$ is the number of unique labels.
Variance Regression $\frac{1}{n} \sum_{i=1}^{N} (x_i - \mu)^2$$y_i$ is label for an instance, $N$ is the number of instances and $\mu$ is the mean given by $\frac{1}{N} \sum_{i=1}^n x_i$.

The information gain is the difference in the parent node impurity and the weighted sum of the two child node impurities. Assuming that a split s partitions the dataset $D$ of size $N$ into two datasets $D_{left}$ and $D_{right}$ of sizes $N_{left}$ and $N_{right}$, respectively:

$IG(D,s) = Impurity(D) - \frac{N_{left}}{N} Impurity(D_{left}) - \frac{N_{right}}{N} Impurity(D_{right})$

Split candidates

Continuous features

For small datasets in single machine implementations, the split candidates for each continuous feature are typically the unique values for the feature. Some implementations sort the feature values and then use the ordered unique values as split candidates for faster tree calculations.

Finding ordered unique feature values is computationally intensive for large distributed datasets. One can get an approximate set of split candidates by performing a quantile calculation over a sampled fraction of the data. The ordered splits create "bins" and the maximum number of such bins can be specified using the maxBins parameters.

Note that the number of bins cannot be greater than the number of instances $N$ (a rare scenario since the default maxBins value is 100). The tree algorithm automatically reduces the number of bins if the condition is not satisfied.

Categorical features

For $M$ categorical features, one could come up with $2^M-1$ split candidates. However, for binary classification, the number of split candidates can be reduced to $M-1$ by ordering the categorical feature values by the proportion of labels falling in one of the two classes (see Section 9.2.4 in Elements of Statistical Machine Learning for details). For example, for a binary classification problem with one categorical feature with three categories A, B and C with corresponding proportion of label 1 as 0.2, 0.6 and 0.4, the categorical features are orded as A followed by C followed B or A, B, C. The two split candidates are A | C, B and A , B | C where | denotes the split.

Stopping rule

The recursive tree construction is stopped at a node when one of the two conditions is met:

  1. The node depth is equal to the maxDepth training parammeter
  2. No split candidate leads to an information gain at the node.

Practical limitations

  1. The tree implementation stores an Array[Double] of size O(#features * #splits * 2^maxDepth) in memory for aggregating histograms over partitions. The current implementation might not scale to very deep trees since the memory requirement grows exponentially with tree depth.
  2. The implemented algorithm reads both sparse and dense data. However, it is not optimized for sparse input.
  3. Python is not supported in this release.

We are planning to solve these problems in the near future. Please drop us a line if you encounter any issues.

Examples

Classification

The example below demonstrates how to load a CSV file, parse it as an RDD of LabeledPoint and then perform classification using a decision tree using Gini impurity as an impurity measure and a maximum tree depth of 5. The training error is calculated to measure the algorithm accuracy.

{% highlight scala %} import org.apache.spark.SparkContext import org.apache.spark.mllib.tree.DecisionTree import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.tree.configuration.Algo._ import org.apache.spark.mllib.tree.impurity.Gini

// Load and parse the data file val data = sc.textFile("mllib/data/sample_tree_data.csv") val parsedData = data.map { line => val parts = line.split(',').map(_.toDouble) LabeledPoint(parts(0), Vectors.dense(parts.tail)) }

// Run training algorithm to build the model val maxDepth = 5 val model = DecisionTree.train(parsedData, Classification, Gini, maxDepth)

// Evaluate model on training examples and compute training error val labelAndPreds = parsedData.map { point => val prediction = model.predict(point.features) (point.label, prediction) } val trainErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / parsedData.count println("Training Error = " + trainErr) {% endhighlight %}

Regression

The example below demonstrates how to load a CSV file, parse it as an RDD of LabeledPoint and then perform regression using a decision tree using variance as an impurity measure and a maximum tree depth of 5. The Mean Squared Error (MSE) is computed at the end to evaluate goodness of fit.

{% highlight scala %} import org.apache.spark.SparkContext import org.apache.spark.mllib.tree.DecisionTree import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.linalg.Vectors import org.apache.spark.mllib.tree.configuration.Algo._ import org.apache.spark.mllib.tree.impurity.Variance

// Load and parse the data file val data = sc.textFile("mllib/data/sample_tree_data.csv") val parsedData = data.map { line => val parts = line.split(',').map(_.toDouble) LabeledPoint(parts(0), Vectors.dense(parts.tail)) }

// Run training algorithm to build the model val maxDepth = 5 val model = DecisionTree.train(parsedData, Regression, Variance, maxDepth)

// Evaluate model on training examples and compute training error val valuesAndPreds = parsedData.map { point => val prediction = model.predict(point.features) (point.label, prediction) } val MSE = valuesAndPreds.map{ case(v, p) => math.pow((v - p), 2)}.reduce(_ + _)/valuesAndPreds.count println("training Mean Squared Error = " + MSE) {% endhighlight %}