spark-instrumented-optimizer/docs/mllib-clustering.md
Aaron Staple ff637c9380 [SPARK-1484][MLLIB] Warn when running an iterative algorithm on uncached data.
Add warnings to KMeans, GeneralizedLinearAlgorithm, and computeSVD when called with input data that is not cached. KMeans is implemented iteratively, and I believe that GeneralizedLinearAlgorithm’s current optimizers are iterative and its future optimizers are also likely to be iterative. RowMatrix’s computeSVD is iterative against an RDD when run in DistARPACK mode. ALS and DecisionTree are iterative as well, but they implement RDD caching internally so do not require a warning.

I added a warning to GeneralizedLinearAlgorithm rather than inside its optimizers, where the iteration actually occurs, because internally GeneralizedLinearAlgorithm maps its input data to an uncached RDD before passing it to an optimizer. (In other words, the warning would be printed for every GeneralizedLinearAlgorithm run, regardless of whether its input is cached, if the warning were in GradientDescent or other optimizer.) I assume that use of an uncached RDD by GeneralizedLinearAlgorithm is intentional, and that the mapping there (adding label, intercepts and scaling) is a lightweight operation. Arguably a user calling an optimizer such as GradientDescent will be knowledgable enough to cache their data without needing a log warning, so lack of a warning in the optimizers may be ok.

Some of the documentation examples making use of these iterative algorithms did not cache their training RDDs (while others did). I updated the examples to always cache. I also fixed some (unrelated) minor errors in the documentation examples.

Author: Aaron Staple <aaron.staple@gmail.com>

Closes #2347 from staple/SPARK-1484 and squashes the following commits:

bd49701 [Aaron Staple] Address review comments.
ab2d4a4 [Aaron Staple] Disable warnings on python code path.
a7a0f99 [Aaron Staple] Change code comments per review comments.
7cca1dc [Aaron Staple] Change warning message text.
c77e939 [Aaron Staple] [SPARK-1484][MLLIB] Warn when running an iterative algorithm on uncached data.
3b6c511 [Aaron Staple] Minor doc example fixes.
2014-09-25 16:11:00 -07:00

6.1 KiB

layout title displayTitle
global Clustering - MLlib <a href="mllib-guide.html">MLlib</a> - Clustering
  • Table of contents {:toc}

Clustering

Clustering is an unsupervised learning problem whereby we aim to group subsets of entities with one another based on some notion of similarity. Clustering is often used for exploratory analysis and/or as a component of a hierarchical supervised learning pipeline (in which distinct classifiers or regression models are trained for each cluster).

MLlib supports k-means clustering, one of the most commonly used clustering algorithms that clusters the data points into predefined number of clusters. The MLlib implementation includes a parallelized variant of the k-means++ method called kmeans||. The implementation in MLlib has the following parameters:

  • k is the number of desired clusters.
  • maxIterations is the maximum number of iterations to run.
  • initializationMode specifies either random initialization or initialization via k-means||.
  • runs is the number of times to run the k-means algorithm (k-means is not guaranteed to find a globally optimal solution, and when run multiple times on a given dataset, the algorithm returns the best clustering result).
  • initializationSteps determines the number of steps in the k-means|| algorithm.
  • epsilon determines the distance threshold within which we consider k-means to have converged.

Examples

The following code snippets can be executed in `spark-shell`.

In the following example after loading and parsing data, we use the KMeans object to cluster the data into two clusters. The number of desired clusters is passed to the algorithm. We then compute Within Set Sum of Squared Error (WSSSE). You can reduce this error measure by increasing k. In fact the optimal k is usually one where there is an "elbow" in the WSSSE graph.

{% highlight scala %} import org.apache.spark.mllib.clustering.KMeans import org.apache.spark.mllib.linalg.Vectors

// Load and parse the data val data = sc.textFile("data/mllib/kmeans_data.txt") val parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble))).cache()

// Cluster the data into two classes using KMeans val numClusters = 2 val numIterations = 20 val clusters = KMeans.train(parsedData, numClusters, numIterations)

// Evaluate clustering by computing Within Set Sum of Squared Errors val WSSSE = clusters.computeCost(parsedData) println("Within Set Sum of Squared Errors = " + WSSSE) {% endhighlight %}

All of MLlib's methods use Java-friendly types, so you can import and call them there the same way you do in Scala. The only caveat is that the methods take Scala RDD objects, while the Spark Java API uses a separate `JavaRDD` class. You can convert a Java RDD to a Scala one by calling `.rdd()` on your `JavaRDD` object. A standalone application example that is equivalent to the provided example in Scala is given below:

{% highlight java %} import org.apache.spark.api.java.*; import org.apache.spark.api.java.function.Function; import org.apache.spark.mllib.clustering.KMeans; import org.apache.spark.mllib.clustering.KMeansModel; import org.apache.spark.mllib.linalg.Vector; import org.apache.spark.mllib.linalg.Vectors; import org.apache.spark.SparkConf;

public class KMeansExample { public static void main(String[] args) { SparkConf conf = new SparkConf().setAppName("K-means Example"); JavaSparkContext sc = new JavaSparkContext(conf);

// Load and parse data
String path = "data/mllib/kmeans_data.txt";
JavaRDD<String> data = sc.textFile(path);
JavaRDD<Vector> parsedData = data.map(
  new Function<String, Vector>() {
    public Vector call(String s) {
      String[] sarray = s.split(" ");
      double[] values = new double[sarray.length];
      for (int i = 0; i < sarray.length; i++)
        values[i] = Double.parseDouble(sarray[i]);
      return Vectors.dense(values);
    }
  }
);
parsedData.cache();

// Cluster the data into two classes using KMeans
int numClusters = 2;
int numIterations = 20;
KMeansModel clusters = KMeans.train(parsedData.rdd(), numClusters, numIterations);

// Evaluate clustering by computing Within Set Sum of Squared Errors
double WSSSE = clusters.computeCost(parsedData.rdd());
System.out.println("Within Set Sum of Squared Errors = " + WSSSE);

} } {% endhighlight %}

In order to run the above standalone application, follow the instructions provided in the Standalone Applications section of the Spark quick-start guide. Be sure to also include spark-mllib to your build file as a dependency.

The following examples can be tested in the PySpark shell.

In the following example after loading and parsing data, we use the KMeans object to cluster the data into two clusters. The number of desired clusters is passed to the algorithm. We then compute Within Set Sum of Squared Error (WSSSE). You can reduce this error measure by increasing k. In fact the optimal k is usually one where there is an "elbow" in the WSSSE graph.

{% highlight python %} from pyspark.mllib.clustering import KMeans from numpy import array from math import sqrt

Load and parse the data

data = sc.textFile("data/mllib/kmeans_data.txt") parsedData = data.map(lambda line: array([float(x) for x in line.split(' ')]))

Build the model (cluster the data)

clusters = KMeans.train(parsedData, 2, maxIterations=10, runs=10, initializationMode="random")

Evaluate clustering by computing Within Set Sum of Squared Errors

def error(point): center = clusters.centers[clusters.predict(point)] return sqrt(sum([x**2 for x in (point - center)]))

WSSSE = parsedData.map(lambda point: error(point)).reduce(lambda x, y: x + y) print("Within Set Sum of Squared Error = " + str(WSSSE)) {% endhighlight %}