cleanup (extraneous file)

This commit is contained in:
carlnues@buffalo.edu 2022-09-06 13:47:40 -04:00
parent 38ad60f897
commit e86512bc97

View file

@ -1,43 +0,0 @@
$ z^2 = \sqrt{x^2 + y^2} $
%Logarithm: $ L(ab) = L(a) + L(b) $
%Exponent: $ E(a + b) = E(a)E(b) $
Derivative:
\[ f'(x) = \lim_{h\to 0} \frac{f(x + h) - f(x)}{h} \]
So for the Log function $ L(x) $, then:
\[ L'(x) = \lim_{h\to 0} \frac{L(x + h) - L(x)}{h} \]
Since $ L(a) - L(b) = L(\frac{a}{b})$ then:
\[ \Rightarrow L'(x) = \lim_{h\to 0} \frac{L(\frac{x + h}{x})}{h} = \lim_{h\to 0} \frac{L(1 + \frac{h}{x})}{h} = \lim_{h\to 0} \frac{1}{h}L(1 + \frac{h}{x}) \]
Since $ bL(a) = L(a^b) $ then:
\[ \Rightarrow L'(x) = \lim_{h\to 0} L(1 + \frac{h}{x})^{\frac{1}{h}} \]
Substituting $ j = \frac{h}{x} \Rightarrow h = xj $ then:
\[ \Rightarrow L'(x) = \lim_{xj\to 0} L(1 + j)^{\frac{1}{xj}} = \lim_{j\to 0} L(1 + j)^\frac{1}{xj} \]
or, reverting the limit back to $h$,
\[ = \lim_{h\to 0} L(1 + h)^\frac{1}{xh} \]
Since \[ \lim_{h\to 0} (1 + h)^{\frac{x}{h}} = e^x \Rightarrow \lim_{h\to 0} (1 + h)^{\frac{1}{xh}} = e^\frac{1}{x} \]
then:
\[ \Rightarrow L'(x) = \lim_{h\to 0} L(e^\frac{1}{x}) = \frac{1}{x} \]
for $ L(x) = \log_e(x) $